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Abstract

Girard (1987) introduced proof nets as a syntax of linear proofs which eliminates

inessential rule ordering manifested by sequent calculus. Proof nets adapted to the

Lambek calculus (Roorda 1991) fulfill a role in categorial grammar analogous to that of

phrase structure trees in CFG so that categorial proof nets have a central part to play in

computational syntax and semantics; in particular they allow a reinterpretation of the

“problem” of spurious ambiguity as an opportunity for parallelism. This article aims to

make three contributions: i) provide a tutorial overview of categorial proof nets, ii) apply

and provide motivation for proof nets by showing how a partial execution eschews the

need for semantic evaluation in language processing, and iii) analyse the intrinsic

geometry of partially commutative proof nets for the kinds of discontinuity attested in

language, offering proof nets for the in situ binder type-constructor Q(⋅, ⋅ ,  ⋅ ) of

Moortgat (1991/6).
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 ‘Thus Riemann made the first momentous

break with Newton in 200 years, banishing the

action-as-a-distance principle. To Riemann,

“force” was a consequence of geometry’

Kaku (1994, p.36)

0. Introduction

A logical model of computation can be founded on the Curry-Howard correspondence:

formulas-as-types and proofs-as-programs. On this scheme logical foundations of

computation are developed with computation as proof normalisation or Cut-elimination.

We believe that in a similar way a logical model of language can be founded on what

might be termed a ‘Lambek-van Benthem correspondence’:  formulas-as-categories and

proofs-as-derivations:

(0)

Formulas and proofs

Types and programs Categories and derivations

LOGIC

COMPUTATION LANGUAGE

Curry-Howard Lambek-van Benthem

This paper is concerned with developing such logical foundations of language. Categorial

grammar predates both the Chomskian programme of formal syntax and that of Montague

in formal semantics, but it is convenient to see the formulation of categorial grammar

employed here, Type Logical Grammar (TLG), as the product of three revolutions in an

integrated programme of syntax and semantics.

The first is a linguistic revolution of lexicalism (Bresnan 1982). This dismissed the

notion that the lexicon should be the locus of only idiosyncratic information and that all

regularities should be expressed as syntactic rules. Instead, linguistic generalisations

could be expressed as regularities of lexical categorization. Classical transformational

grammar had a multistratal architecture in which successive application of transformations

related multiple levels of representation. The lexical relocation of information reduced this

to a bistratal architecture relating just two levels of derivational representation, a level of

constituent structure and a level of functional structure.
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The second is a computational revolution of compositionality (Gazdar et al. 1985).

This incorporated a Montagovian notion of compositionality whereby the syntactic rule

applications in a phrase structure are correlated with semantic operations. Consequently,

linguistic dependencies are localised in a single level of derivational representation in a

computationally amenable monostratal architecture.

The third is a logical revolution of minimalism in which formal grammatical systems

are refined to logical ones. By a logical system we mean a formal language with an

interpretation which defines consequence in terms of a model-theoretic notion of validity.

Any formal system can be embedded in a logic by representing its rules as axioms; we

mean a refinement of grammar to logic without non-logical axioms. In this case there is a

nostratal architecture with no essential level of derivational representation: all properties

are projected from the model-theoretic specification of what the formalism signifies. We

take this to be the essential nature of TLG (Moortgat 1988, 1997; van Benthem 1991/95;

Morrill 1994; Carpenter 1997).

A language, on the Saussurian view, is a collection of signs, where each sign

associates a signifier and a signified. A grammar, as a description of language, is to

specify a set of pairings of representations of signifiers and signifieds (we shall say

prosodic and semantic forms) corresponding to the signs. On such a view syntax is not in

the language: note that there is no observation which bears specifically on syntax in the

way that there are observations which bear specifically on prosodics and semantics. The

nostratal TLG architecture simply retains an agnosticism regarding an issue on which the

Saussurian view makes no demand.

Another outlook on language is that it is fundamentally dynamic: that the basic

linguistic phenomena are productions and comprehensions of signs, that is,

computational processes. To build such a view on top of a static Saussurian perspective

one becomes concerned with the calculation of semantics from prosodics and of

prosodics from semantics, that is with proof theory of categorial logic. But proofs can be

presented in any number of formats, and to escape notational irrelevancies we want to

identify the pure structure of proofs.

To the question “What is the pure, geometric, structure of a proof?” there is quite a

good answer in the case of say implicational intuitionistic logic: it is the structure of

Prawitz-style natural deductions or (what is the same thing) simply typed lambda terms.

For the linear logic of Girard (1987) there is a rather different answer: the geometry of

proofs is given by the notion of proof net. For categorial logic, being akin to linear logic,

the answer is expected to be some variety of the same. Thus, just as the logical modelling
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of computation yields the outlook computation as Cut-elimination, we wish to propose

here that logical modelling of language yields the outlook syntactic structures as proof

nets.

In sections 1--8 we present a tutorial overview of categorial proof nets. In section 9 we

apply and provide motivation for proof nets by showing how a partial execution eschews

the need for semantic evaluation in language processing. In section 10 we analyse the

intrinsic geometry of partially commutative proof nets for the kinds of discontinuity

attested in language, offering in particular proof nets for the in situ binder type-

constructor Q(⋅, ⋅, ⋅) of Moortgat (1991/6).

1. Paraphrase, long distance extraction, quantificational ambiguity, and in situ binding

We will formulate our observations by reference to paraphrase, long distance extraction,

quantificational ambiguity, and in situ binding. Paraphrase is exemplified by the

following:

(1) a. Frodo inhabits Bag End.

b. Frodo lives in Bag End.

Both of these sentences have a logical semantic form which can be represented by the

following functional term, where (φ ψ) is the functional application of φ to ψ:

(2) ((in b) (live f))

Likewise, the sentences (3a) and (3b) are paraphrases, sharing a semantic form (3c).

(3) a. John tries to find Mary.

b. John seeks Mary.

c. ((try (find m)) j)

Long distance extraction, as realised in such constructions as relativization,

interrogativization and topicalization, is illustrated in (4).

(4) a. (John met the) man whomi Mary saw the brother of ei

b. (John met the) man whomi Bill said Mary saw the brother of ei

c. (John met the) man whomi Suzy thinks Bill said Mary saw the brother of

ei
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Sometimes an extracted element can bring with it part of its context (“pied piping”):

(5) (John met the) man [the brother of whom]i Mary saw ei

Example (5) is a paraphrase of (4a). The semantic form of both can be represented by the

functional term (6) where λxφ is the functional abstraction of φ over x. The long distance

dependency between the relative pronoun and the extraction site is mediated by variable

binding.

(6) ((rel λx((see (the (brother (of x)))) m)) man)

Example (7a) is also a paraphrase of (4a), but (7b) is ungrammatical: ‘that’ does not

exhibit pied piping.

(7) a. (John met the) man thati Mary saw the brother of ei

b. *(John met the) man [the brother of that]i Mary saw ei

Pied piping is a form of in situ binding: in (5) ‘whom’ converts its context ‘the brother

of ...’ into a relativising element. Linguistically, we want to categorize ‘whom’ and ‘that’

in such a way that both realize long distance extraction but only the former realizes pied

piping.

Another form of in situ binding is manifested by quantification. Quantifiers occur

embedded in sentences, but semantically they take sentential scope:

(8) a. John gave someone Fido.

b. (someone λx(((give x) f) j))

Sometimes quantification gives rise to ambiguity. One kind of quantificational

ambiguity is the differentiation of de re and de dicto readings in a case such as (9) where a

quantifier occurs within the scope of a propositional attitude verb.

(9) John believes someone runs.

On the de re (or: specific) interpretation it is reported that there is someone in the world of

evaluation of the overall report towards whom John holds a belief:

(10) (someone λx((believe (run x)) j))



6

On the de dicto (or: non-specific) interpretation it is just reported that in the world of

John's beliefs there is held to be someone who runs:

(11) ((believe (someone λx(run x))) j)

A similar ambiguity arises in an example such as (12).

(12) John tries to find someone.

There is a de re/specific reading in which it is reported that there is some specific person

in the world of evaluation towards whom John's efforts are directed, and a de dicto/non-

specific one in which it is just reported that John aspires to achieve a state wherein some

or other person has been found. The paraphrase (13) exhibits exactly the same two

readings.

(13) John seeks someone.

Another kind of quantificational ambiguity is that between subject wide scope and

object wide scope readings in cases like (14a). In the subject wide scope interpretation

(14b) it is only required that each person loves some, in general different, person. In the

object wide scope interpretation (14c) it is required that there be a single person loved by

all.

(14) a. Everyone loves someone.

b. (everyone λx(someone λy((love y) x)))

c. (someone λy(everyone λx((love y) x)))

Note that (14c) entails (14b), but not vice versa.

2. Categorial grammar

We consider categorial grammar with types (or: formulas, or: categories) defined by the

following grammar:

(15) a. F ::= A | F\F | F/F | F•F

b. A ::= S | N | CN | PP | …

The types in A are referred to as atoms (or: primitives) and correspond to the kinds of

expressions which are considered to be “complete”. Fairly uncontroversially, this class
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may be taken to include at least sentences and names; what the class is is not fixed by the

formalism.

The left division type A\B (‘A under B’) is that of expressions (functors) which

concatenate with (arguments) in A on the left to yield Bs. The right division type B/A (‘B

over A’) is that of expressions (functors) which concatenate with (arguments) in A on the

right yielding Bs. The product type A•B is that of expressions which are the result of

concatenating an A with a B; products do not play a dominant role here.

More precisely, let L be the set of strings (including the empty string ε) over a finite

vocabulary V and let + be the operation of concatenation (i.e. (L, ε, +) is the free monoid

generated by V)1. Each type A is interpreted as a subset D(A) of L. When the

interpretation of atomic types has been fixed, that of complex types is defined by (16).

(16) [[A\B]] = { s| ∀s'∈[[A]], s'+s∈[[B]]}

[[B/A]] = { s| ∀s'∈[[A]], s+s'∈[[B]]}

[[A•B]] = { s1+s2| s1∈[[A]] & s2∈[[B]]}

The following are some examples of types:

(17) S sentence John runs, Mary gives John Fido

N name John, the man

CN common noun man, man that John sees

PP prepositional phraseof John

PP/N preposition of

N\S intransitive verb runs, finds Mary

(N\S)/N transitive verb finds, gives John

((N\S)/N)/N ditransitive verb gives

(N\S)/S says, believes

(N\S)/(N\S) tries

In general, given some type assignments others may be inferred. Such reasoning is

precisely formulated in the Lambek calculus L.

                                    
1 In fact Lambek (1958) excluded the empty string ---and hence empty antecedents in the calculus of
(18)--- but it is convenient to include it here.
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3. Lambek sequent calculus

In the sequent calculus of Lambek (1958) a sequent Γ ⇒ A consists of a sequence Γ of

types (the antecedent) and a type A (the succedent). A sequent states that the

concatenation of expressions of the types in Γ yields an expression of the type A. The

valid sequents are the theorems derivable from the following axiom and rule schemata.2

(18) a.

A ⇒ A
id Γ ⇒ A ∆1, A, ∆2 ⇒ B

∆1, Γ, ∆2 ⇒ B
Cut

b.

Γ ⇒ A\B
\RA, Γ ⇒ B Γ ⇒ A ∆1, B, ∆2 ⇒ C

∆1, Γ,  A\B, ∆2 ⇒ C
\L

c.

Γ ⇒ B/A
/RΓ, A ⇒ B Γ ⇒ A ∆1, B, ∆2 ⇒ C

∆1, B/A, Γ, ∆2 ⇒ C
/L

d.

Γ1 ⇒ A Γ2 ⇒ B

Γ1, Γ2 ⇒ A•B
•R

Γ1, A•B, Γ2 ⇒ C

Γ1, A, B, Γ2 ⇒ C
•L

The calculus L lacks the usual structural rules of permutation, contraction and weakening.

Adding permutation collapses the two divisions into a non-directional implication −o and

yields the multiplicative fragment of intuitionistic linear logic, known as the Lambek-van

Benthem calculus LP.3

The validity of the id axiom and the Cut rule follows from the reflexivity and the

transitivity respectively of set containment. The calculus enjoys the property of Cut

elimination whereby every proof has a Cut-free equivalent (indeed, one in which only

atomic id axioms are used: what we shall call βη-long sequent proofs).4 Thus,

                                    
2The completeness of the calculus with respect to the intended interpretation was proved in Pentus
(1993).
3Adding also contraction and weakening we obtain the implicational and conjunctive fragment of
intuitionistic logic. Thus every Lambek proof can be read as an intuitionistic proof and has a constructive
content which can be identified with its intuitionistic normal form natural deduction proof (Prawitz 1965)
or, what is the same thing under the Curry-Howard correspondence, its normal form as a typed lambda
term.
4By ‘equivalent’ we mean a proof of the same theorem with the same constructive content (fn. 3).
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processing can be performed using just the left (L) and right (R) rules, which introduce

connectives in the left and the right of the conclusion sequents respectively. These rules

all have exactly one connective occurrence less in the premises than in the conclusion,

therefore one can compute all the (Cut-free) proofs of any sequent by traversing the finite

space of proof search without Cut.

By way of illustration of the sequent calculus, the following is a proof of a theorem of

lifting, or (subject) type raising:

(19)

N ⇒ N S ⇒ S \L
N, N\S ⇒ S /R
N ⇒ S/(N\S)

Where a labels the antecedent, the coding of this proof as a lambda term ---what we shall

call the derivational semantics--- is λx(x a). ). The converse of lifting, lowering, in (20a)

is not derivable. A proof of a theorem of composition (it has as its semantics functional

composition) is given in (20b).

(20) a. S/(N\S) ⇒ N

b.

B ⇒ B C ⇒ C

B, B\C ⇒ CA ⇒ A

A, A\B, B\C ⇒ C

\L

\L

A\B, B\C ⇒ A\C
\R

A grammar contains a set of lexical assignments α: A of types to expressions; the

lexical expressions, which may or may not comprise exactly one word, may receive

multiple assignments (lexical ambiguity). An expression w1+…+wm is of type A just in

case w1+…+wm is the concatenation α1+…+αn of lexical expressions such that αi: A i,

1≤i≤n, and A1, …, An ⇒ A is valid. For instance, assuming the expected lexical type

assignments to proper names and intransitive, transitive and ditransitive verbs, there are

the following derivations:
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(21)

N ⇒ N S ⇒ S \L
N, N\S ⇒ S

john+runs: S

(22)

N ⇒ N S ⇒ S\L
N, N\S ⇒ SN ⇒ N /L

N, (N\S)/N, N ⇒ S

john+finds+mary: S

(23)

N ⇒ N S ⇒ S \L
N, N\S ⇒ SN ⇒ N /L

N, (N\S)/N, N ⇒ SN ⇒ N /L
N, ((N\S)/N)/N, N, N ⇒ S

john+gives+mary+fido: S

Ungrammaticality occurs when there is invalidity of the sequents arising by lexical

insertion, as in the following:

(24)

N\S, N ⇒ S

runs+john: S

4. Ambiguity and spurious ambiguity

The sentence (25) is structurally ambiguous.

(25) Sometimes it rains surprisingly.

There is a reading “it is surprising that sometimes it rains” and another “sometimes the

manner in which it rains is surprising”. As would be expected there are in such a case

distinct derivations corresponding to alternative scopings of the adverbials:
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(26) a.

S/S, S, S\S ⇒ S

sometimes+it+rains+surprisingly: S

b.

S ⇒ SS ⇒ S

S/S, S ⇒ SS ⇒ S

S/S, S, S\S ⇒ S

/L

\L

c.

S ⇒ S S ⇒ S

S, S\S ⇒ SS ⇒ S

S/S, S, S\S ⇒ S

\L

/L

However, sometimes a non-ambiguous expression also has more than one sequent proof

(even excluding Cut); thus the sequent in (27a) has the proofs (27b) and (27c).

(27) a.

N/CN, CN, N\S ⇒ S

the+man+runs: S

b.

N ⇒ N S ⇒ S \L
N, N\S ⇒ SCN ⇒ CN /L

N/CN, CN, N\S ⇒ S

c.

CN ⇒ CN N ⇒ N /L
N/CN, CN ⇒ N S ⇒ S \L

N/CN, CN, N\S ⇒ S

As the reader may check, N/CN, CN ⇒ S/(N\S) has three Cut-free proofs; in general the

combinatorial possibilities multiply exponentially. This feature is sometimes referred to as

the problem of spurious ambiguity or derivational equivalence. It is regarded as

problematic computationally because it means that in an exhaustive traversal of the proof

search space one must either repeat subcomputations, or else perform book-keeping to

avoid so doing.
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The problem is that different βη-long sequent derivations do not necessarily represent

different readings, and this is the case because the sequent calculus forces us to choose

between a sequencialisation of inferences ---in the case of (27) instances of /L and \L---

when in fact they are not ordered by dependency and can be performed in parallel.

The problem can be resolved by defining stricter normalised proofs which impose a

unique ordering when alternatives would otherwise be available (König 1990, Hepple

1991, Hendriks 1993). However, while this removes spurious ambiguity as a problem

arising from independence of inferences, it signally fails to exploit the fact that such

inferences can be parallelised. Thus we prefer the term ‘derivational equivalence’ to

‘spurious ambiguity’ and interpret the phenomenon not as a problem for

sequencialisation, but as an opportunity for parallelism. This opportunity is grasped in

proof nets.

5. Proof nets for L

Proof nets for L were first developed in detail by Roorda (1991), adapting their original

introduction for linear logic in Girard (1987). In proof nets, the opposition of types

arising from their location in either the antecedent or the succedent of sequents is replaced

by assignment of negative (antecedent) or positive (succedent) polarity. A proof net here

is a connected graph of polar types.

First we define a more general concept of proof structure. These are graphs assembled

out of the following components:

(28) a.

X ~X

X ~X

id: Cut:

zero premises, two premises,

two conclusions zero conclusions
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b.
B+ A-

A\B+

i

A+ B-

A\B-

ii

A- B+

B/A+

i

B- A+

B/A-

ii

B+ A+

ii

A•B+

A- B-

i

A•B-

i- and ii-cells: two premises, one conclusion

In the id and Cut components X  and ~X schematise over occurrences of the same type

with opposite polarity (either way round). These are sometimes referred to as id and Cut

links. Note that the nodes of components are also marked (implicitly) as being either

conclusions (looking down) or premises (looking up). In the i- and ii-cells the middle

nodes are the conclusions and the outer nodes the premises. The i-cells correspond to

unary sequent rules and the ii-cells to binary sequent rules. Observe that in the positive

(succedent), but not in the negative (antecedent) unfoldings, the order of subformulas is

switched between premises and conclusion.

The proof structures are assembled by identifying nodes of the same polar type which

are the premises and conclusions of different components; premises and conclusions not

unified in this way are the premises and conclusions of the proof structure as a whole.

For example, in (29a) two id components and two cells are assembled into a proof

structure (29b) with no premises and two conclusions, N- and S/(N\S)+:
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(29) a.

S/(N\S)+

N\S-

S+

N+ S-

ii

i

⇓ ⇓

⇓

N-

N+ S-

S+

N\S-
⇓

b.

S/(N\S)+

N\S- S+

N+ S-

ii

i

N-

The proof structures arise, essentially, by forgetting the contexts (Γ and ∆) of the

sequent rules, and not all proof structures are well-formed as proofs. There must exist a

global synchronization of the partitioning of contexts by rules (the long trip condition).

We shall say that a "circularity" is a circuit which is elementary (i.e. it only traverses

edges once) and which does not traverse both edges of any i-cell. A proof structure is

well-formed, a module (partial proof net), only if it contains no circularity. A module is a

proof net only if it contains no premises. The structure (29b) is a proof net, in fact it is the

proof net for our instance (19) of lifting since its conclusions are the polar types for this

sequent:

(30)
S/(N\S)+N-

N ⇒ S/(N\S)

The structure in (31) is not a module because it contains the circularity indicated: it

corresponds to the lowering (20a), which is invalid.
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(31)

S/(N\S)-

S- N\S+

S+ N-

N+

ii

i

S/(N\S) ⇒ S

The structure (32) is a module with two premises and three conclusions; the latter are the

polar types of our composition theorem (20b). Adding the remaining id axiom link makes

it a proof net for composition.

(32)

A+ B- B+ C- C+ A-

A\B- B\C- A\C+

ii ii i

A\B, B\C ⇒ A\C

For L proof nets must be planar, i.e. with no crossing edges. This corresponds to the

non-commutativity of L. In LP, linear logic, which is commutative, there is no such

requirement.

6. Cut eliminacion

Proof nets, like the sequent calculus, enjoy the Cut elimination property whereby every

proof has a Cut-free equivalent. The evaluation of a net to its Cut-free normal form is a

process of graph reduction. The reductions are as follows:
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(33) a.

X

Y Z

i

~Z ~Y

~X

ii

Y Z ~Z ~Y

b.

X

Y Z

ii

~Z ~Y

~X

i

Y Z ~Z ~Y

(34) a.

~XX X X

b.

~XX X X

We shall see examples shortly in the context of the application of section 9.
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7. Automated language processing

As is the case for the sequent calculus, with proof nets every proof has a Cut-free

equivalent in which only atomic id axiom links are used: what we shall call βη-long proof

nets. However, whereas some βη-long sequent proofs are equivalent, leading to spurious

ambiguity/derivational equivalence, distinct βη-long proof nets always have distinct

readings.

Performing search for βη-long proof nets resolves the problem of spurious ambiguity

and at the same time represents parallelism which can be simulated by memoisation or, in

computational linguistic terms, chart parsing (Morrill 1996).

The analysis of an expression as search for proof nets can be construed in three

phases, 1) selection of lexical types for elements in the expression, 2) unfolding of these

types into a frame of trees of i- and ii-cells with atomic leaves (literals), and 3) addition of

(planar) id axiom links to form proof nets:

(35)

A1- ... An- A+

A1 ... An ⇒ A 

w1+...+wm: A

1: selection of lexical types

2: unfolding into a frame of cells

3: addition of id axiom links

For example, ‘John walks’ has the following analysis:

(36)

N+ S-

N\S-

ii

N- S+

N, N\S ⇒ S

john+walks:S



18

The sentence ‘John finds Mary’ has the analysis given in (37).

(37)

N+ S-

N\S-

(N\S)/N-N-

N+

N- S+

N, (N\S)/N, N ⇒ S

john+finds+mary: S

ii

ii

Long distance extraction as exemplified by (7a) has the analysis (38); the relative pronoun

has a higher order type (Steedman 1985) and other types are as would be expected.

(38)

CN-

CN+ CN-

CN\CN-

(CN\CN)/(S/N)-

S/N+

N- S+

ii

ii

i

N-

N+ S-

N\S-

(N\S)/N-

N+

ii

ii

N-

N/CN-

CN+ CN-

CN/PP-

PP+ PP-

PP/N-

N+

CN+
ii ii ii

CN, (CN\CN)/(S/N), N, (N\S)/N, N/CN, CN/PP, PP/N ⇒ CN

man+that+mary+saw+the+brother+of: CN

The ungrammaticality of ‘walks John’ is attested by the non-planarity of the proof

structure (39).
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(39)

N+ S-

N\S- N- S+

ii

N\S, N ⇒ S

walks+john:S

As expected, where there is structural ambiguity there are multiple derivations:

(40) a.
S- S+

S/S- S-

S+ S-

S-

S/S, S, S\S ⇒ S

sometimes+it+rains+surprisingly: S

S+

ii ii

b.

S- S+

S/S- S-

S+ S-

S- S+

ii ii

c.

S- S+

S/S- S-

S+ S-

S- S+

ii ii
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But now also, when there is not structural ambiguity there is only one derivation:

(41)

N- CN+

N/CN- CN-

N+ S-

N\S- S+

ii ii

N/CN, CN, N\S ⇒ S

the+man+runs: S

This property is entirely general: the problem of spurious ambiguity is resolved.

8. How to extract the semantic content from a net

Until now we have not been explicit about how a proof determines a semantic reading.

We shall show here how to extract from a proof net a functional term representing the

semantics (see de Groote and Retoré 1996, who reference Lamarche 1995). This is done

by travelling from premises to conclusions and from conclusions to premises in a proof

net following deterministic instructions. The proof nets are proof structures in which

following these instructions visits each node exactly once.

First one assigns a distinct index to each i-cell; then one starts travelling upwards

through the unique positive conclusion. Thereafter one proceeds as follows (for brevity

we exclude product):

(42) a. Going up through the conclusion of a i-cell, make a functional abstraction

and continue upwards through the positive premise:

Λ(

+ in

) = λxnΛ (

+ in

)

Λ(

+in

) = λxnΛ(

+in

)
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b. Going up through one id conclusion, go down through the other:

Λ( ) = Λ( )

Λ( ) = Λ( )

c. Going down through one premise of Cut, go up through the other:

Λ( ) = Λ( )

Λ( ) = Λ( )

d. Going down through one premise of a ii-cell, make a functional application

and continue going down through the conclusion (function) and going up

through the other (argument):

Λ(

ii

) = (Λ(

ii

) Λ(

ii

) )

Λ(

ii

) = (Λ(

ii

) Λ(

ii

) )

e. Going down through the premise of a i-cell, put the corresponding bound

variable:

Λ(

in

) = xn

Λ(

in

) = xn

f . Going down through a terminal node, substitute the associated lexical

semantics:

Λ( φ ) = φ
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For example, traversal of the proof net (43a) generated in (38) for (7a) proceeds as

shown in (43b), where * marks the point at construction and roman numerals indicate the

argument traversals, performed after the function traversals, triggered by entry into ii-

cells.

(43) a.

CN-

CN+ CN-

CN\CN-

(CN\CN)/(S/N)-

S/N+

N- S+

ii

ii

i1

N-

N+ S-

N\S-

(N\S)/N-

N+

ii

ii

N-

N/CN-

CN+ CN-

CN/PP-

PP+ PP-

PP/N-

N+

CN+
ii ii ii

man rel m see the brother of

b. (* I)

((* II) I)

((rel *) I)

((rel λx1*) I)

((rel λx1(* III)) I)

((rel λx1((* IV) III)) I)

((rel λx1((see *) III)) I)

((rel λx1((see (* V)) III)) I)

((rel λx1((see (the *)) III)) I)

((rel λx1((see (the (* VI))) III)) I)

((rel λx1((see (the (brother*))) III)) I)

((rel λx1((see (the (brother (* VII)))) III)) I)

((rel λx1((see (the (brother (of *)))) III)) I)

((rel λx1((see (the (brother (of x1)))) *)) I)

((rel λx1((see (the (brother (of x1)))) m)) *)

((rel λx1((see (the (brother (of x1)))) m)) man)
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Let us observe that the following lexical type assignments capture the paraphrasing of

(1a) and (1b); α-φ := A signifies the assignment to type A of expression α with lexical

semantics φ.

(44) a. frodo - f

:= N

b. l ives - live

:= N\S

c. in - in

:= (S\S)/N

d. bag+end - b

:= N

e. inhabits - λxλy((in x) (live y))

:= (N\S)/N

Then (1a) has the analysis (45a) with semantics (45b).

(45) a.

N+ S-

N\S-N-

S+ S-

S\S-

(S\S)/N-

N+

S+

ii

ii

ii

N-

N, N\S, (S\S)/N, N ⇒ S

frodo+lives+in+bag+end: S

f live in b

b. (* I)

((* II) I)

((in *) I)

((in b) *)

((in b) (* III))

((in b) (live *))

((in b) (live f))
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Example (1b) has the analysis (46a) from which the semantics extracted is (46b).

(46) a.

N+ S-

N\S- N+

(N\S)/N-N- N- S+

ii

ii

f bλxλy((in x) (live y))

N, (N\S)/N, N ⇒ S

frodo+inhabits+bag+end: S

b. (* I)

((* II) I)

((λxλy((in x) (live y)) *) I)

((λxλy((in x) (live y)) b) *)

((λxλy((in x) (live y)) b) f)

This is not the same semantic term as that in (45b) but it reduces to the same by β-

conversion, showing that the semantic content in the two cases is identical, that is, that

there is paraphrase:

(46) ((λxλy((in x) (live y)) b) f) =

λy((in b) (live y)) f) =

((in b) (live f))

Such λ-conversion only calculates what the grammar defines and is not part of the

grammar itself, but computationally one might hope to aspire to on-line processing in

which such manipulation is not necessary, for example by always maintaining normal

semantic forms. This can be achieved with proof nets by partial evaluation in an off-line

lexical compilation.
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9. Partial evaluation of substitution of lexical semantics

In the processing as presented so far semantic evaluation is, as is usual, normalisation

of the result of substituting lexical semantics into derivational semantics. Logically

speaking, this substitution at the lexico-syntactic interface is a Cut, and the normalisation

is Cut elimination. Currently the substitution and Cut elimination is executed after the

proof search. However, if lexical semantics is represented as a proof net, one can

calculate off-line the module resulting from connecting the lexical semantics with a Cut to

the module resulting from the unfolding of the lexical types.5

A linear λ-term is one in which each abstraction binds exactly one variable occurrence.

Lexical semantics expressed as a linear λ-term is unfolded into a proof net by the

algorithm (47) (we do not consider the net ordered):

(47) a. Start with the λ-term φ at a + node: φ+.

b. To unfold λxnφ+, make it the conclusion of a i-cell with index n and

unfold φ+ at the positive premise:

λxnφ+

φ+

in

c. To unfold λxnφ-, make it a Cut premise and unfold λxnφ+ at the other

premise:

λxnφ+λxnφ-

d. To unfold (ψ φ)-, make it the premise of a ii-cell and unfold φ+ at the

conclusion and ψ- at the other premise:

(φ ψ)- ψ+

φ-

ii

                                    
5 The resulting association of modules with words is reminiscent of Lecomte and Retoré (1995) but their
motivation is not made with reference to semantic processing, it being to make lexical categorization
more expressive syntactically by using modules in general to classify words rather than just types
(=modules without id or Cut links).
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e. To unfold (ψ φ)+ make it the conclusion of an id link and unfold (ψ φ)- at

the other conclusion:

(φ ψ)+ (φ ψ)-

f. At a constant k- unfolding stops; to unfold a constant k+ make it an id

premise first:

k+ k-

g. To unfold a bound variable xn- make it the other premise of the i-cell with

index n:

in

xn-

;

to unfold xn+ make it an id premise first:

in

xn- xn+

For example, the lexical semantics of ‘inhabits’can be unfolded as follows:

(48)

λx1λx2((in x1) (live x2))+

x1-(in x1)-

(live x2)+ x2-

λx2((in x1) (live x2))+

((in x1) (live x2))+

x1+x2+

ii

ii

ii
i1

i2

live- in-
a

a

((in x1) (live x2))-

d

d

g

ee

(live x2)-

d

g

The result of such unfolding of lexical semantics can be substituted into the unfolded

lexical type by a Cut, and the resulting module normalised by Cut elimination in a

precompilation. Thus, for the ‘inhabits’ example:
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(49) a.

N+

(N\S)/N-

N\S-

S-N+

ii

ii

+

-

-

-

-+ -

+

+

+-+

-
ii

ii

ii i

i

b.

N+N\S-

S-N+

ii

-

-

-

-+ -

+

+

+-+

-
ii

ii

ii

i

c.

N+

S-N+

-

-

-

-+ -+

+-+

-
ii

ii

ii

d.

N+

S-

N+ -

-

-

-+ +

+-

-
ii

ii

ii
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e.

N+

S-

N+ -

-

-

+

+-

-
ii

ii

ii

f .

N+

S-

N+

-

-

+

-

-
ii

ii

ii

In this way, rather than starting the proof search with a frame comprising just the

unfolding of lexical types, one starts with a frame comprising the pre-evaluated modules

resulting from lexical substitution. Let us consider again (1b) from this point of view.

First note, as well as (49), the precompilation of a proper name lexical assignment:

(50)

b- b+ N- N-
b

f

Thus the proof frame prior to proof search is (51a). Adding axiom links yields the net

(51b) from which the semantics extracted is already normalised and is the same as that

obtained from (45a) for (1a); indeed it is the same net.
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(51) a.

N+

S-

N+

-

-

+

-

-
ii

ii

ii

live in
N- N- S+

f b

N, (N\S)/N, N ⇒ S

frodo+inhabits+bag+end: S

b.

N+

S-

N+

-

-

+

-

-
ii

ii

ii

live in
N- N- S+

f b

A slightly more involved illustration of the same point is provided by the following

lexical assignments for the paraphrases (3a) and (3b).

(52) a. john - j

:= N

b. tries - try

:= (N\S)/(N\S)

c. to - λxx

:= (N\S)/(N\S)

d. find - find

:= (N\S)/N

e. mary - m

:= N

f. seeks - λx(try (x find))

:= (N\S)/(((N\S)/N)\(N\S))
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(The Montagovian higher order assignment for ‘seeks’ is motivated by the requirement to

capture the two readings of (13).) These assign semantics (3c) to both (3a) and (3b) and,

as the reader may check, by partially evaluating lexical modules in a precompilation,

normal form semantics is obtained directly in both cases.

In both this example and the one worked out explicitly above, we deal with words

which are synonyms of continuous expressions: ‘inhabits’ = ‘lives in’ and ‘seeks’ =

‘tries to find’. This enables us to represent the evaluated lexical modules as planar.

However it should be noted that in general lexical substitution involves linking syntactic

modules which are ordered with lexical semantic modules which are not ordered, and Cut

elimination has to be performed in a hybrid architecture which must preserve the linear

precedence of syntactic literals.

10. In situ binding (Moortgat 1990)

In the earlier sections our concerns have been for the most part programmatic, explaining

and motivating the basic grammatical paradigm. In the last section a new motivation for

proof nets was given. In this section we begin to address the kind of generalisation

appropriate for linguistic practicality. Although the Lambek calculus L is not without

linguistic interest (e.g. it serves for certain cases of long distance extraction, as illustrated

above, as well as subcategorization) in TLG it is not the calculus itself which is central,

but the logical methodology that it exemplifies. This provides a profound computational

framework from which to enter into the technical task, driven by empirical requirements,

of typing the constructs of linguistic generalisation. The operators ⋅\⋅ and ⋅ / ⋅  are binary

type constructors of concatenation. However, natural language also exercises

discontinuous dependencies motivating type constructors for discontinuity. An  effective

proposal, originating in Moortgat (1990), is to add a ternary in situ binder type

constructor Q(⋅ , ⋅, ⋅) of interpolation. Our definition (15a) of compound types is now

updated to the following:

(53) F ::= A | F\F | F/F | F•F | Q(F, F, F)

We can represent the action of the operators intuitively as follows:
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(54)

  

A

A\B

A\B

    
B

B/A

  

A

B/A

    

B

A

     

B

Q(B, A, C)

        

C

Q(B, A, C)

Expressions of type A\B suffix themselves to expressions of type A thereby forming a B;

expressions of type B/A prefix themselves to expressions of type A thereby forming a B .

Now, expressions of type Q(B, A, C) interpolate themselves in expressions of type B

containing an A, substituting themselves for the A and thereby forming a C; i.e. [[Q(B,

A, C)]] = { s| ∀〈s1, s2〉∈L2, (∀s’∈[[A]] s1+s’+s2∈[[B]])⇒s1+s+s2∈[[C]]}. Semantically

Q(B, A, C) is of type (τA→τB)→τC, applying to the abstraction of B over A. For example,

quantifer phrases such as ‘someone’ and ‘every man’ will be of type Q(S, N, S) where B

and C happen to be equal: they substitute themselves at the positions of names in

sentences. A quantifier like ‘every’ will have type Q(S, N, S)/CN: forming a quantifier

phrase after combining with a common noun to the right.

As observed by Herman Hendriks (p.c.) a sequent such as (55) is surely valid, since

something which interpolates in an S can interpolate in N\S, an incomplete S, to yield a

result which is incomplete in the same sense.

(55) Q(S, N, S) ⇒ Q(N\S, N, N\S)
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(Where a is the semantics of the antecedent, the succedent has semantics λyλz(x λw((y

w) z)).) However, there appears to be no sequent calculus for L+{Q} that is satisfactory

in this respect; (56), for example, does not generate (55).

(56)

B ⇒ CΓ ⇒ A

Γ ⇒ Q(B, A, C)
QR

∆1, C, ∆2 ⇒ DΓ1, A, Γ2 ⇒ B

∆1, Γ1, Q(B, A, C), Γ2, ∆2 ⇒ D
QL

Our analysis of this problem is that the operator Q really combines two inference steps, an

extraction and an infixation, and that incompleteness results from trying to treat Q as a

unit in sequent calculus because that means proofs can only be constructed which perform

these two inferences in immediate succession: not all validities have such proofs. The

problem can be resolved by treating Q as a defined connective in more general systems

(for example, in a sorted associative discontinuity calculus, Morrill and Merenciano 1996,

or a non-associative discontinuity calculus with modalities, Moortgat 1996). But since

proof nets are already motivated by the kinds of computational considerations made

earlier, it is interesting to ask whether it might be possible to formulate proof nets for Q as

a unit irrespective of possible decompositions and the question of proof nets for more

general systems.

We have already observed that the ordering of nets for L corresponds to the non-

commutativity of concatenation. For partial commutativity and discontinuity in general, or

the Q in situ binder in particular, we cannot expect to preserve exactly the same form of

ordering and planarity. One option already pursued (Moortgat 1992, Oehrle 1995, Morrill

1995) is that of dropping all ordering and regulating word order by labelling (Gabbay

1996) LP proof nets with terms subject to unification checks. However, this increases

enormously the size of the search space for linking. We do not really want to abandon

ordering altogether only to have to somehow regain it.

Our central suggestion is based on the following observations. In L the horizontal

arrangement of i- and ii-cells defines a total order < on the literals of a sequent and axiom

linking must be planar in this ordering. An axiom linking can be looked at as an

involutive operation f on the literal occurrences: every literal is linked to exactly one other,

which is in turn linked to itself. The planarity requirement is that ~∃x, y, x<y<f(x)<f(y).

In LP we can consider the literals to be totally unordered, but still subject to the planarity

requirement; it is just that the literals being unordered, no linking will be prohibited. This

provides us with a unified outlook on partial commutativity with commutativity and non-

commutativity as limit cases:
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 (57) a. i. In the non-commutative calculus L the literals are totally ordered by

cells.

ii. In the commutative calculus LP the literals are totally unordered by

cells.

iii. In a partially commutative calculus literals will be partially ordered

by cells.

b. The planarity requirement ~∃x, y, x<y<f(x)<f(y), that axiom linking be

planar in the partial order < determined by cells, applies in all cases.

In general we shall want to define the partial order |⋅| on polar literal occurrences defined

by a polar type, and hence a sequent: |A1, ..., An ⇒ A| = |An\(...(A1\A)...)+|. We have

|Ap| = 〈{ Ap}, ∅〉 where A is a literal occurrence of polarity p. Then where lAp and <Ap are

the literal occurrences and their partial ordering of type A of polarity p, we have e.g.

|Α−oΒ+| = 〈lA-∪lB+, <A-∪<B+〉 but |Α\Β+| = 〈lA-∪lB+, <A-∪<B+∪(lA-×lB+)〉.

We propose in particular the following unfolding for Q:

(58) a. b.

Q(B, A, C)-

+

A-

B+

C-

ii

i

Q(B, A, C)+

C+A+ B-

-
ii

i

The negative type is unfolded into its three component parts which are stacked one above

the other, indicating that they are not ordered with respect to one another. The positive

type is unfolded horizontally. That is to say |Q(B, A, C)-| = 〈lA-∪lB+∪lC-, <A-∪<B+∪<C-〉
and |Q(B, A, C)-| = 〈lA+∪lB-∪lC+, <A+∪<B-∪<C+∪(lA+×lC+)+∪(lA+×lB-)+∪(lC+×lB-)〉. Note that

there is a node unlabelled by any syntactic type; this corresponds to an implicit,

discontinuous element, the context (shaded grey) in (54). The vertical unfolding means

that the dependencies entered into by one subtype do not constrain those entered into by

another. The straight and curved edges enter into (non-)circularity and the extraction of

semantics just as before.

As a first example, there is the following proof net for the Q-lifting N ⇒ Q(S, N, S):
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 (59)

Q(S, N, S)+

S+N+ S-

-
ii

i

N-

The semantics in terms of that a of the antecedent is λx(x a) as expected and required.

Note that the Q-lowering Q(S, N, S) ⇒ N is invalid and accordingly the following proof

structure contains the circularity indicated.

(60)

Q(S, N, S)-

+

N-

S+

S-

i

ii

N-

As a second example we prove in (61) a: Q(A, A, B) ⇒ (a λxx): B.

(61)

Q(A, A, B)-

+

A-

A+

B-

i

ii

B-
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As a third example we give a proof net for the theorem (56) which could not be derived in

sequent calculus:

(62)

Q(N\S, N, N\S)+

-

N\S+N+ N\S-

S+ N- N+ S-

Q(S, N, S)

+

N-

S+

S-

i ii

i

ii

ii

i

This proof net has semantics λyλz(a λw((y w) z)) as required. Finally by way of general

properties, we give the proofnets showing that Q-lifting is a closure operation: Q(S, N,

S) ⇔ Q(S, Q(S, N, S), S):

(63) a.

S-S+Q(S, N, S)+

S+ S-N+

Q(S, Q(S, N, S), S)+Q(S, N, S)-

+

N-

S+

S-

-
ii

ii

-
i

ii i

i
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b.

S-

S+

S-

S+

N-

+

Q(S, N, S)-

+

Q(S, Q(S, N, S), S)- Q(S, N, S)+

-

N+ S+ S-

ii

i

ii

i

ii

i

Let us consider the linguistic example of quantification; lexical type assignments are as

follows.

(64) a. everyone - everyone

:= Q(S, N, S)

b. someone - someone

:= Q(S, N, S)

Example (8a) has the analysis (65). Note how the quantifier phrase unfolding is

transparent to the verb’s communication with its remote object.
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(65)

N- ((N\S)/N)/N-

N+

N+(N\S)/N-

N+N\S-

S-

Q(S, N, S)-

+

N-

N- S+

ii

ii

ii

S+

S-

ii

i

N, ((N\S)/N)/N, Q(S, N, S), N ⇒ S

j give someone f

john+gave+someone+fido: S

As the reader may check, travel according to the semantic extraction algorithm yields the

expected semantic form (8b).

For the example (9) of de re/de dicto quantificational ambiguity the proof frame is

(66).
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(66)

(N\S)/S-

S+N\S-

S-N+

N- Q(S, N, S)-

+

N-

S+

S-

N\S-

N+ S-

S+

ii

i
ii

ii ii

j believe someone run

N, (N\S)/S, Q(S, N, S), N\S ⇒ S

john+believes+someone+runs: S

From this we can construct the de re analysis (67) and the de dicto analysis (68).
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(67)

(N\S)/S-

S+N\S-

S-N+

N- Q(S, N, S)-

+

N-

S+

S-

N\S-

N+ S-

S+

ii

i
ii

ii ii

j believe someone run

(68)

(N\S)/S-

S+N\S-

S-N+

N- Q(S, N, S)-

+

N-

S+

S-

N\S-

N+ S-

S+

ii

i
ii

ii ii

j believe someone run

These have semantics (10) and (11) respectively.

For the example (14) of subject versus object wide scope quantificational ambiguity

the proof frame is (69).
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(69)

Q(S, N, S)-

+

N-

S+

(N\S)/N-

N\S- N+

N+ S-

Q(S, N, S)-

+

N-

S+

S-S-

ii

ii

i

ii ii

i

everyone love someone

S+

Q(S, N, S), (N\S)/N, Q(S, N, S) ⇒ S

everyone+loves+someone: S

From this, the subject wide scope analysis is constructed in (70).

(70)

Q(S, N, S)-

+

N-

S+

(N\S)/N-

N\S- N+

N+ S-

Q(S, N, S)-

+

N-

S+

S-

S-

ii

ii

i

ii ii

i

everyone love someone

S+
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We leave to the reader the object wide scope analysis, and checking of the semantics, and

consideration of (12) and (13) according to (52).

A second kind of illustration is provided by the application of Q to pied piping (Morrill

1994). We have already seen how the assignment (71a) generates (7a).

(71) a. that - rel

:= (CN\CN)/(S/N)

b. whom- λyλx(rel λz(x (y z)))

:= Q(N, N, (CN\CN)/(S/N))

We shall see now that the single assignment (71b) is adequate for both pied piping as in

(5) and non-pied piping as in (4a). The former is as follows:

(72) a.

CN-

N- CN+ CN- PP+

-

N+

- N-

N+ S-

N+

CN+- -

PP-

-

+

N-

-

N+

ii ii ii

ii

ii

-

i2

ii

+-

CN+ CN- N- S+

ii

ii i1

man the brother of λxλy(rel λz(x (y z))) m see

CN, N/CN, CN/PP, PP/N, Q(N, N, (CN\CN)/(S/N)), N, (N\S)/N ⇒ CN

man+the+brother+of+whom+mary+saw: CN

b. (((λyλx(rel λz(x (y z))) λx2(the (brother (of x2)))) λx2((see x1) m)) man) =

((rel λz((see (the (brother (of z)))) m)) man)

That (71b) is also adequate for non-pied piping can be seen from the fact that an

assignment of the form (71a) can be derived from (71b); that is in fact already proved in
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(61), and accordingly applying the lexical semantics of (71b) to the identity function we

obtain the lexical semantics of (71a):

(73) (λyλx(rel λz(x (y z))) λx1x1) =

λx(rel λz(x z)) =

λx(rel x) =

rel

The converse on the other hand is not the case: no proof net can be constructed for the

frame corresponding to (7b).
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