Geometry of Language

Glyn Morrill
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Modul C5 - Campus Nord
Jordi Girona Salgado, 1--3
E-08034 Barcelona

E-mail: morrill@lsi.upc.es
HTTP: /lwww-Isi.upc.es/~glyn/

11th October 1997
Abstract

Girard (1987) introducedproof nets as a syntax of linear proofs which eliminates
inessentialrule ordering manifestedby sequentcalculus. Proof nets adaptedto the
Lambekcalculus(Roordal1991)fulfill arolein categorialgrammaranalogoudo that of
phrasestructuretreesin CFG so that categorialproof netshavea centralpartto play in
computationalsyntax and semanticsjn particular they allow a reinterpretationof the
“problem” of spuriousambiguity asan opportunity for parallelism.This article aims to
make three contributions: i) provide a tuto&krview of categorialproof nets,ii) apply
and provide motivationfor proof netsby showinghow a partial executioneschewsthe
needfor semanticevaluationin languageprocessing,and iii) analysethe intrinsic
geometryof partially commutativeproof netsfor the kinds of discontinuity attestedin
language,offering proof nets for the in situ binder type-constructorQ (L] 0 O of
Moortgat (1991/6).



‘Thus Riemann made the first momentous
break with Newton in 200 years, banishing the
action-as-a-distance principle. To Riemann,
“force” was a consequence of geometry’
Kaku (1994, p.36)

0. Introduction

A logical modelof computationcan be foundedon the Curry-Howard correspondence:
formulas-as-types and proofs-as-programs. On this scheme logical foundations of
computationare developedwith computationas proofnormalisationor Cut-elimination.
We believethatin a similar way a logical model of languagecan be foundedon what
might be termeda ‘ Lambek-van Benthem correspondence’: formulas-as-categories and
proofs-as-derivations:
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This paper is concerned with developing such logical foundatiolamngfiage Categorial
grammar predates both the Chomskian programme of formal syntax andNtaitafue
in formal semanticsput it is convenientto seethe formulation of categorialgrammar
employed herelype Logical Grammar (TLG), asthe productof threerevolutionsin an
integrated programme of syntax and semantics.

Thefirst is a linguistic revolution of lexicalism (Bresnan1982). This dismissedthe
notion that the lexicon shouldbe the locus of only idiosyncraticinformationandthat all
regularitiesshould be expressedas syntactic rules. Instead, linguistic generalisations
could be expresseds regularitiesof lexical categorization.Classicaltransformational
grammar had enultistratal architecture in which successive applicatiotrahsformations
related multiple levels of representation. The lexical relocation of informegducedthis
to abigratal architecturerelating just two levelsof derivationalrepresentatiora level of
constituent structure and a level of functional structure.



The secondis a computational revolution of compositionality (Gazdaret al. 1985).
This incorporateda Montagoviannotion of compositionalitywherebythe syntacticrule
applications in ghrasestructureare correlatedwith semanticoperations. Consequently,
linguistic dependenciearelocalisedin a single level of derivationalrepresentationn a
computationally amenabieonostratal architecture.

The third is alogical revolutionof minimalism in which formal grammaticalsystems
arerefined to logical ones. By a logical systemwe meana formal languagewith an
interpretation which defines consequence in termsmbdel-theoretimotion of validity.
Any formal systemcanbe embeddedn a logic by representingts rules as axioms; we
mean a refinement of grammar to logithout non-logical axioms. In this casethereis a
nostratal architecturewith no essentialevel of derivationalrepresentationall properties
are projectedrom the model-theoreticspecificationof what the formalism signifies. We
take this to be the essential naturd b (Moortgat1988, 1997;van Benthem1991/95;
Morrill 1994; Carpenter 1997).

A language,on the Saussuriarview, is a collection of signs, where each sign
associates signifier anda signified. A grammar,as a descriptionof language,is to
specify a set of pairingsof representationsf signifiers and signifieds (we shall say
prosodic and semantic forms) corresponding to the signs. On such a view syntax is not
the languagenotethatthereis no observationwvhich bearsspecificallyon syntaxin the
way that there arebservationsvhich bearspecificallyon prosodicsand semanticsThe
nostratal TLG architecture simply retains an agnosticesgardingan issue orwhich the
Saussurian view makes no demand.

Another outlook on languageis that it is fundamentally dynamic: that the basic
linguistic phenomenaare productions and comprehensionsof signs, that is,
computational processes. Daild sucha view on top of a static Saussuriarperspective
one becomesconcernedwith the calculation of semanticsfrom prosodics and of
prosodics from semantics, that is with proof theory of categorial IBgicproofs canbe
presentedn any numbeiof formats,and to escapenotationalirrelevancieswe want to
identify the pure structure of proofs.

To the question‘What is the pure, geometric structureof a proof?” thereis quite a
good answein the caseof sayimplicational intuitionistic logic: it is the structure of
Prawitz-style natural deductios (whatis the samething) simply typedlambdaterms.
For the linear logic of Girard (1987)thereis a ratherdifferentanswer:the geometryof
proofs is given by the notion pfoof net. For categorial logic, beingkin to linear logic,
the answer is expected to be some variety of the same. Thus, fustaggcal modelling
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of computationyields the outlook computation as Cut-elimination, we wish to propose
herethat logical modellingof languageyields the outlook syntactic structures as proof
nets.

In sections 1--8 we present a tutorial overview of categorial proof nets. In section 9 we
apply and provide motivation for proof nets by showing leopartial executioneschews
the needfor semanticevaluationin languageprocessingin section10 we analysethe
intrinsic geometryof partially commutativeproof nets for the kinds of discontinuity
attestedin language,offering in particular proof nets for the in situ binder type-
constructor QUL of Moortgat (1991/6).

1. Paraphrase, long distance extraction, quantificational ambiguity, and in situ binding

We will formulate ourobservationsy referenceto paraphrasepng distanceextraction,
guantificational ambiguity, and in situ binding. Paraphraseis exemplified by the
following:

1) a. Frodo inhabits Bag End.
b. Frodo lives in Bag End.

Both of thesesentencefavea logical semanticform which can be representedy the
following functional term, wherep(l) is the functional application gfto :

(2)  ((inb) (livef))
Likewise, the sentences (3a) and (3b) are paraphrases, sharing a semantic form (3c).

(3) a. John tries to find Mary.
b. John seeks Mary.

c.  ((try find m))j)

Long distance extraction, as realised in such constructions as relativization,
interrogativization and topicalization, is illustrated in (4).

4) a. (John met the) man whgiary saw the brother &
(John met the) man whgmill said Mary saw the brother ef
(John met the) man whgr8uzy thinks Bill said Mary saw the brothar
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Sometimes an extracted element can bring with it part of its context (“pied piping”):

(5)  (John met the) man [the brother of whoMpry sawg

Example (5) is a paraphrase of (4a). The semantic form of botheaapresentedby the
functional term (6) whergxg@is the functional abstraction @fover x. The long distance

dependencyetweenthe relative pronounand the extractionsite is mediatedby variable
binding.

(6)  ((rel Ax((see (the (brother (of x)))) m)) man)

Example(7a) is also a paraphrasef (4a), but (7b) is ungrammatical:that’ does not
exhibit pied piping.

(7) a. (John met the) man thaflary saw the brother &
b. *(John met the) man [the brother of thatlary sawe

Pied piping is a form of in situ binding: in (5) ‘whom’ converts its contie brother
of ..."” into a relativising element. Linguistically, we want to categoma®m’ and ‘that’
in such away that both realizelong distanceextractionbut only the former realizespied

piping.

Another form of in situ binding is manifestedby quantification. Quantifiers occur
embedded in sentences, but semantically they take sentential scope:

(8) a. John gave someone Fido.
b. (someone Ax(((give x) f) j))

Sometimesquantification gives rise to ambiguity. One kind of quantificational
ambiguity is the differentiation afe re andde dicto readings in a case such as (9) where a
guantifier occurs within the scope of a propositional attitude verb.

(9)  John believes someone runs.

On thedere (or: specific) interpretation it is reported that there is someone indHd of
evaluation of the overall report towards whom John holds a belief:

(10)  (someone Ax((believe (run X)) j))



On the de dicto (or: non-specific)interpretationit is just reportedthat in the world of
John's beliefs there is held to be someone who runs:

(11) ((believe (someone Ax(run x))) j)

A similar ambiguity arises in an example such as (12).

(12) John tries to find someone.

There is ae refspecific reading irwhich it is reportedthat thereis somespecific person
in the world of evaluation towards whom John's effartsdirected,and a de dicto/non-
specific one in which it is just reportéidat Johnaspiresto achievea statewhereinsome
or other person hadeenfound. The paraphrasg13) exhibits exactly the sametwo
readings.

(13) John seeks someone.

Another kind of quantificationalambiguity is that betweensubjectwide scopeand
objectwide scopereadingsin casedike (14a).In the subjectwide scopeinterpretation
(14b) it is only required that each perdowessome,in generaldifferent, person.In the
object wide scope interpretation (14c) it is required tivate be a single personloved by
all.

(14) a. Everyone loves someone.
b. (everyone Ax(someone Ay((lovey) x)))
C. (someone Ay(everyone Ax((lovey) x)))

Note that (14c) entails (14b), but not vice versa.

2. Categorial grammar

We considercategorialgrammarwith types(or: formulas,or: categoriespefinedby the
following grammar:

(15) a. F:=A|RF|F/F|FF
b. A:=S|N|CN|PP..

The typesin A arereferredto asatoms(or: primitives) and correspondo the kinds of
expressionsvhich are consideredo be “complete”. Fairly uncontroversially this class
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may be taken to include at least sentences and names; what the idasx fixed by the
formalism.

The left division type A\B (‘A under B’) is that of expressiongfunctors) which
concatenate with (arguments)Aron the left to yields. The rightdivision type B/A (‘B
overA) is that of expressions (functors) which concatenate with (argumerispimthe
right yielding Bs. The producttype A« B is that of expressionsvhich are the result of
concatenating aA with aB; products do not play a dominant role here.

More precisely,let L be the setof strings(including the empty string €) over a finite
vocabularyV and let + be the operation of concatenation (Lgg,(+) is the free monoid
generatedby V). Each type A is interpretedas a subsetD(A) of L. When the
interpretation of atomic types has been fixed, that of complex types is defined by (16).

(16) [[AB]] = {s| UsTI[A]], s+s0[[BI]}
[[B/A]] = {s| OST[[A]], s+sT[[B]]}
[[A=B]] = {s1*s2 s1L[[A]] & sz0[[ B}

The following are some examples of types:

@7 s sentence John runs, Mary gives John Fido
N name John, the man
CN common noun man, man that John sees
PP prepositional phraseof John
PP/N preposition of
N\S intransitive verb runs, finds Mary
(N\S)/N transitive verb finds, gives John
((N\S)/N)/N ditransitive verb gives
(N\S)/S says, believes
(N\S)/(N\S) tries

In general given sometype assignment®thersmay be inferred. Suchreasoningis
precisely formulated in the Lambek calculus

1 In fact Lambek(1958) excludedthe empty string -—-and henceempty antecedentsn the calculus of
(18)--- but it is convenient to include it here.
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3. Lambek sequent calculus

In the sequent calculudf Lambek(1958)a sequent ' [ A consists ofa sequencé of

types (the antecedent)and a type A (the succedent).A sequentstates that the
concatenatiorof expressions athe typesin I yields an expressionof the type A. The

valid sequents are the theorems derivable from the following axiom and rule schemata.

(18) a.
id rg A AlLAA20 B Cut
Al A Al T,A200 B
b.
A,FDB\R rgo A Al,B,A20 C\L
O AB AL, T, AB,A20 C
C.
rAOB R roA Al,BA20C ,
r O BIA Al,B/IAT,A20 C
d.
rig A I'ZDBR r,A B Ir20C
r1,r20 A<B FL,AeB,r20 C

The calculud lacks the usual structural rules of permutation, contraction and weakening.
Adding permutation collapses the two division® a non-directionaimplication —o and

yields the multiplicative fragment aftuitionistic linear logic, known asthe Lambek-van
Benthem calculuk P.3

The validity of the id axiom and the Cut rule follows from the reflexivity and the
transitivity respectivelyof set containment.The calculus enjoys the property of Cut
elimnation wherebyevery proof hasa Cut-free equivalent(indeed,one in which only
atomic id axioms are used: what we shall call Bn-long sequentproofs)4 Thus,

2The completenes®f the calculuswith respectto the intendedinterpretationwas proved in Pentus
(1993).

3Adding also contraction and weakeningwe obtain the implicational and conjunctive fragment of
intuitionistic logic. Thus every Lambek proof can be read as an intuitionistic proof aadcbastructive
content which can be identified with its intuitionistic normal form natural deduptioof (Prawitz 1965)
or, whatis the samething underthe Curry-Howardcorrespondencets normalform as a typed lambda
term.

4By ‘equivalent’ we mean a proof of the same theorem with the same constructive content (fn. 3).
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processing cabe performedusingjust the left (L) andright (R) rules, which introduce
connectives irthe left andthe right of the conclusionsequentsespectively.Theserules
all haveexactly one connectiveoccurrencdessin the premisesthan in the conclusion,
therefore one can compute all the (Cut-free) proofs of any selquératversingthe finite
space of proof search without Cut.

By way of illustration of the sequent calculus, the following is a pobdaf theoremof
lifting, or (subject) type raising:

(19)
NO N SO S,
N,N\SO S 5
N O S/(N\S

Wherea labels the antecedent, the coding of this proat lasnbdaterm ---what we shall
call the derivational semantics---Ag(x @). ). The conversef lifting, lowering, in (20a)
is notderivable.A proof of a theoremof composition(it has asts semanticdunctional
composition) is given in (20b).

(200 a.  SIN\S)O N

BO B COC,
AOA BBCOC
A AB,B\CO C \n
A\B,B\CO AC

A grammarcontainsa set of lexical assignmentsi: A of typesto expressionsthe
lexical expressionswhich may or may not comprise exactly one word, may receive
multiple assignments (lexical ambiguitn expressiorws+...+wp, is of type A justin
casewi+...+Wp is theconcatenatiom1+...+ap of lexical expressions sucthata;j: A,
1<i<n, andAj, ..., Anp O A is valid. For instanceassumingthe expectedexical type
assignments$o propernamesand intransitive,transitiveand ditransitiveverbs, thereare
the following derivations:



(21)
NO N SO S,
N, N\SO S

john+runs: S

(22)
NO N SO S\L
N[O N N, N\SO S /L
N, (N\S)/N, NO S
john+findstmary: S
(23)
NO N SO S \L
NO N N, N\S[ S/L
NO N N, (N\S)/N, NO S/L

N, (N\S)/N)/N, N, NO S

john+givestmary+fido: S

Ungrammaticalityoccurswhen thereis invalidity of the sequentsarising by lexical
insertion, as in the following:

(24)
N\S, NO S

runstjohn: S
4. Ambiguity and spurious ambiguity
The sentence (25) is structurally ambiguous.
(25) Sometimes it rains surprisingly.
Thereis areading“it is surprisingthat sometimest rains” and another“sometimesthe

mannerin which it rainsis surprising”. As would be expectedhere are in sucha case
distinct derivations corresponding to alternative scopings of the adverbials:
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(26) a.
SIS, S, S\&1 S

sometimestit+rainstsurprisingly: S

b.
sO s sO s,
sO s SIS, S0 S .
SIS, S, S\& S
C.
sO s SO S,
sO s S,S\sJ S,
SIS, S, S\& S

However, sometimes a non-ambiguous expression also haghmaone sequeniproof
(even excluding Cut); thus the sequent in (27a) has the proofs (27b) and (27c).

(27) a.

N/CN, CN, N\SOO S

thetman+runs: S
b.

NO N SO S \L
CNO CN N, N\SO S IL
N/CN, CN, N\SOO S

C.

CNOCN  NONj,
N/CN, CNO N SO s,
N/CN, CN, N\SO S

As the reader may check, N/CN, CN S/(N\S) has three Cut-free prooiis;generalthe
combinatorial possibilities multiply exponentially. This feature is sometimes referesd to
the problem of spurious ambiguity or derivational equivalence.lt is regardedas
problematic computationally because it metnadin an exhaustivetraversalof the proof
searchspaceone musteitherrepeatsubcomputationspr else perform book-keepingto
avoid so doing.
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The problem is that differeifi)-long sequentderivationsdo not necessarilyepresent
differentreadings,andthis is the casebecausehe sequentalculusforcesus to choose
between sequencialisationf inferences--in the caseof (27) instancesf /L and\L---
when in fact they are not ordered by dependency and can be performed in parallel.

The problemcanbe resolvedby defining stricter normalisedproofs which imposea
uniqueordering when alternativeswould otherwisebe available(Konig 1990, Hepple
1991, Hendriks1993). However, while this removesspuriousambiguity as a problem
arising from independenc®f inferencesi,t signally fails to exploit the fact that such
inferencescan be parallelised.Thus we prefer the term ‘derivational equivalence’to
‘spurious ambiguity’ and interpret the phenomenonnot as a problem for
sequencialisatiorhut as an opportunityfor parallelism.This opportunityis graspedin
proof nets.

5. Proof nets foL

Proof nets foL. werefirst developedn detail by Roorda(1991), adaptingtheir original
introductionfor linear logic in Girard (1987). In proof nets, the opposition of types
arising from their location in either the antecedent or the succedsetoéntss replaced
by assignment of negative (anteced@mtpositive (succedentpolarity. A proof net here
is a connected graph of polar types.

First we define a more general concepprabf structure. Theseare graphsassembled
out of the following components:

(28) a.
X ~X
X ~X
id: Cut:
zero premises, two premises,
two conclusions zero conclusions
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B+ A- A+ B-
N i/ N i/
A\B+ A\B-

A- B+ B- A+
N i/ N i/
B/A+ B/A-

B+ A+ A- B-
N\ i/ N i/

A B+ A B-

i- and ii-cells: two premises, one conclusion

In theid and Cut componentsX and~X schematis@ver occurrence®f the sametype
with opposite polarity (either way round). Theme sometimegeferredto asid and Cut
links. Note that the nodes ofcomponentsare also marked (implicitly) as being either
conclusionglooking down) or premiseglooking up). In the i- andii-cells the middle
nodesarethe conclusionsand the outer nodesthe premises.The i-cells correspondo
unary sequentulesandtheii-cells to binary sequentules. Observethatin the positive
(succedent), but nan the negative(antecedentunfoldings,the orderof subformulads
switched between premises and conclusion.

The proof structures are assembled by identifying nofléise samepolar type which
are the premises ammnclusionsof different componentspremisesand conclusionsnot
unified in this way are the premisesand conclusionsof the proof structureas a whole.
For example,in (29a) two id componentsand two cells are assemblednto a proof
structure (29b) with no premises and two conclusions, N- and S/(N\S)+:
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(29) a.

N+ S-
O O
N+ S-
\ i /
N- N\S- S+
O O
N\S- S+
N\ i/
S/(N\S)+
b.
N+ S
\ i /
N\S- S+
N\ i/
N- S/(N\S)+

The proof structuresarise, essentially,by forgetting the contexts(I and A) of the
sequent rules, and not altoof structuresare well-formedas proofs. Theremustexista
global synchronizatiorof the partitioning of contextsby rules (the long trip condition).

We shall saythat a "circularity” is a circuit which is elementary(i.e. it only traverses
edgesonce)andwhich doesnot traverseboth edgesof any i-cell. A proof structureis
well-formed, amodule (partial proof net), only if it contains no circulari#.moduleis a

proof net only if it contains no premises. The structure (29b) is a proof net, in fact it is the
proof net for our instance (19f lifting sinceits conclusionsarethe polar typesfor this
sequent:

(30)
N- S/(N\S)+

N O S/(N\S

The structurein (31) is not a module becauseit containsthe circularity indicated: it
corresponds to the lowering (20a), which is invalid.
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(31)

Ii
S+ N-
N i /
S- N\S+
N\ i /
S/(N\S)- N+
S/(N\S)O S

The structure (32) is a module with two premiaad threeconclusionsthe latter are the
polar types of our composition theorem (20b). Adding the remaining id dixikrmakes
it a proof net for composition.

(32)

N\ i/ AN i/ N i/
A\B- B\C- A\C+

A\B, B\CUO A\C

ForL proof nets must bglanar, i.e. with nocrossingedges.This correspondso the
non-commutativityof L. In LP, linear logic, which is commutativethereis no such
requirement.

6. Cut eliminacion
Proof nets, like the sequentalculus,enjoy the Cut elimination propertywherebyevery

proof hasa Cut-freeequivalent.The evaluationof a netto its Cut-freenormalform is a
process of graph reduction. The reductions are as follows:
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(33) a.

Y z ~Z ~Y
N i / \ i /
X ~X
| |
Y z ~Z ~Y
b.
Y z ~Z ~Y
\ i / N\ i /
X ~X
| |
Y z ~Z ~Y
(34) a.
X ~X X [> X
|
b.
|
X ~X X [> X

We shall see examples shortly in the context of the application of section 9.
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7. Automated language processing

As is the casefor the sequentcalculus, with proof nets every proof hasa Cut-free
equivalent in which only atomic id axiom links are used: what we shapgading proof
nets. However, whereas sofg-long sequent proofs are equivalent, leading to spurious
ambiguity/derivationalequivalence distinct fn-long proof nets always have distinct
readings.

Performing search f@dn-long proof nets resolvebe problemof spuriousambiguity
and at the same time represents parallelism which can be sintwateeinoisatioror, in
computational linguistic terms, chart parsing (Morrill 1996).

The analysisof an expressionas searchfor proof nets can be construedin three
phases, 1) selection of lexical types for eleméntke expressionp) unfolding of these
types into drame of trees of i- and ii-cells with atomic leaves (literals), anddjition of
(planar) id axiom links to form proof nets:

(35)

| [ | | 3: addition of id axiom links

Y

2: unfolding into a frame of cell

Al- An- A+
Al ...An0J A 1: selection of lexical types
wl+...Awm: A

For example, ‘John walks’ has the following analysis:

(36)

N+ S-
N i/
N- N\S- S+

N, N\\SO S

john+walks.S
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The sentence ‘John finds Mary’ has the analysis given in (37).

(37) o
N+ S
N\ i/
N\S- N+
N\ i/
N- (N\S)/N- N- S+

N, (N\S)/N, NO S

john+finds+tmary: S

Long distance extraction as exemplified by (7a) has the analysis (38); the i@atieein
has a higher order type (Steedman 1985) and other types are as would be expected.

(38)

=

CN+ CN- N- S+ | N+ S-

\ii / \Ni/ Nii / [ — —
CN\CN- SIN+ N\S- N+ N- CN+CN- PP+ PP- N+
\ i / \ii / \i / \i/  Nii /
CN- (CN\CN)/(S/N)-  N- (N\S)/N-  N/CN- CN/PP-  PP/N- CN+

CN, (CN\CN)/(S/N), N, (N\S)/N, N/CN, CN/PP, PPIN CN

man+that+mary+saw+the+brother +of: CN

The ungrammaticalityof ‘walks John’ is attestedby the non-planarityof the proof
structure (39).
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(39)

N+ S-

N\S- N- S+

N\S, N[O S

walkstjohn:S

As expected, where there is structural ambiguity there are multiple derivations:

(40) a.
S S+ S+ S
N\ i / N\ i/
SIS S- S S+
SIS, S, S\$&! S
sometimestit+rainstsurprisingly: S
b.
S S+ S+ S
N iy N iy
SIS S- S S+
C.
S- S+ S+ S
N iy N iy
S/S: S- S- S+
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But now also, when there is not structural ambiguity there is only one derivation:

(41)

N- CN+ N+ S-
N\ i / N\ i /
N/CN- CN- N\S- S+

N/CN, CN, N\SO S

the+tman+runs: S

This property is entirely general: the problem of spurious ambiguity is resolved.

8. How to extract the semantic content from a net

Until now we havenot beenexplicit abouthow a proof determinesa semanticreading.
We shall show herehow to extractfrom a proof net a functional term representinghe
semantics (see de Groote and Retoré 1996,refecenceLamarchel995). This is done
by travellingfrom premisego conclusionsand from conclusiongo premisesn a proof
net following deterministicinstructions.The proof nets are proof structuresin which
following these instructions visits each node exactly once.

First one assignsa distinct index to eachi-cell; then one starts travelling upwards

throughthe unique positive conclusion.Thereafterone proceedsas follows (forbrevity
we exclude product):

(42) a. Going up through the conclusiaf a i-cell, makea functional abstraction
and continue upwards through the positive premise:
t in

+ in
A( Y) = AX A (A\/)

n +

\/ in +
A( ) :)\xn/\(\/‘)
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Going up through one id conclusion, go down through the other:

& head
/\(l_l) = /\(’_i)

Going down through one premise of Cut, go up through the other:

L bond b
W hoad )

Going down through one premise of a ii-cell, make a functional application
and continue goingown throughthe conclusion(function) and going up
through the other (argument):

Vi i i
AN = 0O ) A\
i Y i i
AN ) = (W) AN,

Going down through the premisé a i-cell, put the correspondingpound
variable:

/\(Qn/) =X,
/\(\iry) =X,

Going down through a terminal node, substitutethe associatedexical
semantics:

\j
NP =0
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For example,traversalof the proof net (43a) generatedn (38) for (7a) proceedsas
shown in (43b), where * marks the point at construction and remareralsindicatethe
argumentraversals performedafter the function traversals triggeredby entry into ii-
cells.

(43) a.

=

CN+ CN- N- S+ | N+ S-

\ il / \il/ \ii / [ | [ | 1
CN\CN- S/N+ N\S- N+ N- CN+ CN- PP+ PP- N+
\ i / \ii / \ii / \ii / \ii /
CN-  (CN\CN)/(S/IN)- N- (N\S)/N- N/CN- CN/PP- PP/N- CN+
man rel m see the brother of
b. *1n
(cmn
((red %) 1)

((rel Ax*) 1)

((rel Ax,(* 1)) 1)

((rel Ax((x V) 1) 1)

((rel Ax,((see*) 111)) 1)

((rel Ax,((see (* V) ) 1)

((rel Ax,((see (the ) 111)) 1)

((rel Ax,((see (the (* V1)) 111)) I)

((rel Ax,((see (the (brother*))) II1)) 1)

((rel Ax,((see (the (brother (* VII)))) 1)) 1)
((rel Ax,((see (the (brother (of *)))) 1)) 1)

((rel Ax,((see (the (brother (of x,)))) *)) 1)

((rel Ax,((see (the (brother (of x,)))) m)) *)

((rel Ax,((see (the (brother (of x,)))) m)) man)

22



Let us observe that the followirlgxical type assignmentsapturethe paraphrasingf
(1a) and(1b); a-@ := A signifiesthe assignmento type A of expressiora with lexical
semanticsp.

(44) a. frodo - f

= N

b. lives - live
= N\S

C. in - in
= (S\S)/N

d. bag+end - b
= N

e. inhabits - AMAY((in x) (livey))
= (N\S)/N

Then (1a) has the analysis (45a) with semantics (45b).

(45) a.
|
S+ S-
N\ i /
N+ S- S\S N+
N\ i/ \ i /
N- N\S- (S\S)/N- N- S+
f live in b
N, N\S, (S\S)/N, N S
frodotlivestin+bag+end: S
b. *N
mi
((in*) 1)
((inb)*)
((in'b) (* 1))

((inb) (live*))
((inb) (livef))
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Example (1b) has the analysis (46a) from which the semantics extracted is (46b).

(46) a.
N+ S
N i /
N\S- N+
N i /
N- (N\S)/N- N- S+
f MAY((nX) (ivey) P
N, (N\\S)/N, NO S
frodotinhabitstbag+end: S
b.  (*1)

(mi
((AAy((inx) (livey)) *) 1)

((AMAy((inx) (livey)) b) *)
((MAy((inx) (livey)) b) f)

This is not the samesemanticterm as that in (45b) but it reducesto the sameby 3-
conversionshowingthat the semanticcontentin the two casess identical,that is, that
there is paraphrase:

(46)  ((MAy((inx) (livey)) b) f) =

Ay((inb) (livey)) f) =

((inb) (livef))
Such A-conversiononly calculateswhat the grammardefinesand is not part of the
grammaritself, but computationallyone might hopeto aspireto on-line processingn
which suchmanipulationis not necessaryfor exampleby always maintainingnormal

semantic forms. This can laehievedwith proof netsby partial evaluationin an off-line
lexical compilation.
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9. Partial evaluation of substitution of lexical semantics

In the processing as presented so far semantic evalistias isusual,normalisation
of the result of substituting lexical semanticsinto derivational semantics.Logically
speaking, this substitution at the lexico-syntactic interfa@Cut, and the normalisation
is Cut elimination. Currently the substitutionand Cut elimination is executedafter the
proof search.However, if lexical semanticsis representedas a proof net, one can
calculate off-line the module resulting from connecting the lexical semavitita Cut to
the module resulting from the unfolding of the lexical types.

A linearA-term is one in which each abstraction binds exactlyvamni@bleoccurrence.
Lexical semanticsexpressedas a linear A-term is unfolded into a proof net by the
algorithm (47) (we do not consider the net ordered):

47) a. Start with the-termg at a + nodeg+t.

b. To unfold Ax @+, makeit the conclusionof a i-cell with index n and
unfold @+ at the positive premise:
@t
in o
AXn@+
C. To unfold Ax,@-, makeit a Cut premiseand unfold Ax ¢+ at the other
premise:
AXN@- AXn@+

| 4

d. To unfold (¢ @)-, makeit the premiseof a ii-cell and unfold @+ at the
conclusion ands- at the other premise:

(P W)- P+
A i g
(p.

5 The resulting association of modules with words is reminiscent of Lecamdt@etoré(1995) but their
motivation is not madewith referenceto semanticprocessingjt being to make lexical categorization
more expressivesyntacticallyby using modulesin generalto classify words rather than just types
(=modules without id or Cut links).

25



e. To unfold (J @)+ make it the conclusion of an id link and unfaldg)- at
the other conclusion:

| Y

(ey)+ (e Y)-

f. At a constank- unfolding stops;to unfold a constantk+ makeit an id
premise first:

Y

k+ k-
g. To unfold a bound variabbe- makeit the other premiseof thei-cell with
indexn:
Xn-
A in

to unfoldx + make it an id premise first:

Y

Xn- Xn+

A in

For example, the lexical semantics of ‘inhabits’can be unfolded as follows:

(48)
g
e e
| (livex2)+ ((in xl)zive x2))- ((in x1) zlive X2))+ x2-

i A d g aw i2 A

X2+ (livex2)- (inx1)- x1+Xx1- Ax2((in x1) (ive x2))+
wii Ad dA i « 1 T a
live- - \x1Ax2((in x1) (ive x2))+

The result of suchunfolding of lexical semanticscan be substitutedinto the unfolded
lexical type by a Cut, and the resulting module normalisedby Cut elimination in a
precompilation. Thus, for the ‘inhabits’ example:
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(49) a.

OIN LA

/\/\‘ '

@rr
\/mﬂ
N4 \/H 1.
| \
FQ
\

") "
|




F\../
\../ N

N+

F\../ .
\../ N/

In this way, rather than starting the proof searchwith a frame comprisingjust the
unfolding of lexical types, onstartswith a frame comprisingthe pre-evaluateanodules
resultingfrom lexical substitution.Let us consideragain (1b) from this point of view.
First note, as well as (49), the precompilation of a proper name lexical assignment:

(50)

Thusthe proof frame prior to proof searchis (51a). Adding axiom links yields the net
(51b) from which the semanticextracteds alreadynormalisedandis the sameas that
obtained from (45a) for (1a); indeed it is the same net.
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(51) a.

F\../ 5
\../ \../

f live b

N, (N\S)/N, NO S

frodotinhabitstbag+end: S

N
|j\../ </

N- N- S+
f live b

A slightly moreinvolved illustration of the samepoint is provided by the following
lexical assignments for the paraphrases (3a) and (3b).

(52) a. john -j
=N
b. tries -try
= (N\S)/(N\S)
C. to - AXX
= (N\S)/(N\S)
d. find -find
= (N\S)/N
e. mary -m
=N
f. seek s - Ax(try (x find))
= (N\S)/(((N\S)/N)\(N\S))
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(The Montagovian higher order assignment for ‘seeks’ is motivatédergquiremento
capture the two readings of (13).) These assign semantics @utht(8a) and (3b) and,
as the readermay check, bypartially evaluatinglexical modulesin a precompilation,
normal form semantics is obtained directly in both cases.

In both this exampleandthe one worked out explicitly above,we deal with words
which are synonymsof continuousexpressions:inhabits’ = ‘lives in’ and ‘seeks’ =
‘tries to find’. This enablesus to representthe evaluatedlexical modulesas planar.
However it shouldbe notedthatin generallexical substitutioninvolveslinking syntactic
modules which are ordered with lexical semantic modules which are not oraiedeci t
eliminationhasto be performedin a hybrid architecturevhich must preservethe linear
precedence of syntactic literals.

10. In situ binding (Moortgat 1990)

In the earlier sections our concerns have beeth@&mostpart programmaticexplaining
and motivating the basicgrammaticalparadigm.In the last sectiona new motivationfor
proof netswas given. In this sectionwe beginto addressthe kind of generalisation
appropriatefor linguistic practicality. Although the Lambek calculusL is not without
linguistic interest (e.g. it serves for certain cases of thsgnceextraction,as illustrated
above, as welés subcategorizationp TLG it is not the calculusitself which is central,
but the logical methodologythat it exemplifies.This providesa profoundcomputational
framework from which to enter into thechnicaltask, driven by empiricalrequirements,
of typing the constructs of linguistic generalisation. The operidasd [/ [] are binary
type constructors of concatenation. However, natural language also exercises
discontinuous dependencies motivatiyige constructordor discontinuity.An effective
proposal, originating in Moortgat (1990), is to add a ternary in situ binder type
constructor Q, LI0} of interpolation. Our definition (15a) of compoundtypesis now
updated to the following:

(53) F:=A|FR\F|F/F|FF|QF,F,F)

We can represent the action of the operators intuitively as follows:
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(54)

-« | AB B/A -

T T 7 R N |
A A
A\B B/A
O o0oo0ogd N I I [ B
B B
QB A C)

A
oo 0O0O0oQgoogd
B
QB A C)
[ o R A R
C

Expressions of typA\B suffix themselves to expressions of typtherebyforming a B;
expressions of typB/A prefix themselves to expressions of typtherebyforming a B.
Now, expressions ofype Q(B, A, C) interpolatethemselvesn expressions ofype B
containing amM\, substitutingthemselvedor the A andtherebyforming a C; i.e. [[Q(B,
A, O] = {s| O, s,ML? (Os O[[A]ls+s+s,0[[B]]) O s,+s+s,0[[C]]}. Semantically
Q(B, A, C) is of type €. 1s) - T, applying to the abstraction BfoverA. For example,
guantifer phrases such as ‘someone’ and ‘every man’ will be of type Q(SwefB
and C happento be equal: they substitutethemselvesat the positions of namesin
sentencesA quantifierlike ‘every’ will havetype Q(S, N, S)/CN:forming a quantifier
phrase after combining with a common noun to the right.

As observedoy HermanHendriks (p.c.) a sequentsuch as (55) isurely valid, since
something which interpolates an S caninterpolatein N\S, anincompleteS, to yield a
result which is incomplete in the same sense.

(55) Q(S, N, S)J Q(N\S, N, N\S)
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(Wherea is the semanticof the antecedentthe succedenhassemantics\yAz(x Aw((y
w) 2)).) However, there appears to beseguentalculusfor L+{Q} thatis satisfactory
in this respect; (56), for example, does not generate (55).

(56)
roA BOC r,Ar20B A1,C,A20 D

QR QL
ro Q@ A C) AL,T1, Q@ A C),r2,A20 D

Our analysis of this problem is that the operator Q really combines two inference steps, an
extractionand an infixation, andthatincompletenessesultsfrom trying to treatQ as a

unit in sequent calculus because that means proofs can only be constructed which perform
thesetwo inferencesin immediatesuccessionnot all validities have such proofs. The
problemcanbe resolvedby treatingQ as a definedconnectivein more generalsystems

(for example, in a sorted associative discontinuity calculus, Morrill and Merenciano 1996,
or a non-associativeliscontinuity calculuswith modalities,Moortgat 1996). But since

proof nets are already motivated by the kinds of computationalconsiderationamade

earlier, it is interesting to ask whether it might be possible to formulate proof nets for Q as
a unit irrespectiveof possibledecompositionsand the questionof proof netsfor more
general systems.

We have alreadyobservedthat the ordering of netsfor L correspondgo the non-
commutativity of concatenation. For partial commutativity and discontinuity in geoeral,
the Q in situbinderin particular,we cannotexpectto preserveexactly the sameform of
ordering and planarity. One option already pursued (Moortgat 1992, OehrleM&98,
1995) isthat of droppingall orderingand regulatingword order by labelling (Gabbay
1996) L P proof netswith termssubjectto unification checks.However, this increases
enormouslythe size of the searchspacefor linking. We do not really want to abandon
ordering altogether only to have to somehow regain it.

Our central suggestions basedon the following observationsin L the horizontal

arrangement of i- and ii-cells defines a total order < on the litefalsequentand axiom
linking must be planarin this ordering. An axiom linking can be looked at as an
involutive operatiorf on the literal occurrences: every literal is linked to exactly one other,
which is in turn linked to itself. The planaritgquirements that ~[I, y, x<y<f(x)<f(y).
In LP we can consider the literals to be totally unorddeadstill subject to the planarity
requirement; it is just that the literals being unordered,lin&ing will be prohibited.This
provides us with a unified outlook grartial commutativitywith commutativityand non-
commutativity as limit cases:
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(57) a. I. In the non-commutative calculusthe literals are totally orderdzy

cells.

il In the commutative calculusP the literals ardotally unorderedoy
cells.

iii. In a partiallycommutativecalculusliterals will be partially ordered
by cells.

b. The planarity requirement~LI, y, x<y<f(x)<f(y), that axiom linking be
planar in the partial order < determined by cells, applies in all cases.

In general we shall want to define the partial ojd@eon polar literal occurrenceslefined
by a polartype, andhencea sequentiA,, ..., A, O Al = |A\(...(A\A)...)+|. We have
|Ap| = Ap}, ODwhereA is a literal occurrence of polarigy Then wherd,, and<,, are
the literal occurrencesind their partial ordering of type A of polarity p, we havee.g.
|A-0B+| =0, O, <, 0<,,0but JA\B+ =10}, O, <, 0<g,0(1, 1)

We propose in particular the following unfolding for Q:

(58) a. b.
C-
B+
A- A+ C+ B-
[ T
| ii | [
Q(B, A O)- Q(B, A C)+

The negative type is unfolded into its three component pduitsh are stackedone above
the other, indicating that they are not orderedwith respecto one another.The positive
type is unfoldedhorizontally. Thatis to say |QB, A, C)-| = I, Ul 0l., <, 0<g,0<.0
and |QB, A, O)-| = M, Ol  Ol¢,, <,,0<5 0<, 01, ¥1¢,),0(,,x15),0(,%l5 )0 Note that
thereis a node unlabelled by any syntactic type; this correspondsto an implicit,
discontinuouslementthe context(shadedgrey) in (54). The vertical unfolding means
that the dependencies enteneth by one subtypedo not constrainthoseenterednto by
another.The straightand curvededgesenterinto (non-)circularityand the extractionof
semantics just as before.

As a first example, there is the following proof net for the Q-liftingl NQ(S, N, S):
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(59)

N- Q(S, N, S)-

The semanticsn termsof thata of the antecedenis Ax(x @) as expectedand required.
Note that the Q-lowering Q(S, N, 8) N is invalid and accordinglythe following proof
structure contains the circularity indicated.

(60)

Q(S, N, S)- N-
As a second example we prove in (1A, A, B) I (a Axx): B.

(61)

[
.|
[i

Q(A, A, B)- B-
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As a third example we give a proof net for the theorem (56) which could not be derived
sequent calculus:

(62)

Q(N\S, N/ N\S)-

This proof net has semantisgAz(a Aw((y w) 2)) as required. Finallpy way ofgeneral

properties, wagive the proofnetsshowingthat Q-lifting is a closureoperation:Q(S, N,
S) = Q(S, Q(S, N, S), S):

(63) a.
— | |
S- N+ S+ S-
T~
S+ -
K |
N- Q(S, N's)- S+ S-
K '
i K
Q(S, N, S) Q(S, QS N, S), S
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Q(S,Q(S,N, S), S

Q(S, N, S)-

Let us consider the linguistic example of quantification; lexical ag@gnmentare as

follows.
(64) a. everyone - everyone
= Q(S, N, §)
b. someone - someone
= Q(S, N, S)

Example (8a) has the analysis (65). Note how the quantifier phrase unfolding is
transparent to the verb’s communication with its remote object.
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(65)

S-
_| S+
N+ S-
N\ i /
N\S- N+ N-
\ i / :
(N\S)/N- NE 4
N\ i / i
N- ((N\S)/N)/N-  Q(S, N, S) N- S+
] give someone f

N, (N\S)/N)/N, Q(S, N, S), NI S

john+gave+someonet+fido: S

As the reader may chedkavel accordingto the semanticextractionalgorithmyields the
expected semantic form (8b).

For the example(9) of de re/de dicto quantificationalambiguity the proof frame is
(66).
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(66)

S-
S+
N+ S- N-
N\ i/ i
N\S S+ - N+ S
\ i / i \ i /
N- (N\S)/S- Q(S,N;S) N\S- S+
] believe someone run

N, (N\S)/S, Q(S, N, S), N\§ S

john+believestsomeonetruns. S

From this we can construct there analysis (67) and theke dicto analysis (68).
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(67)

N+ S- N-
N s I
N\S- S+ + N+ S
N\ i / |ii N\ i /
N- (N\S)/S- Q(S,N;S) N\S- S+
J believe someone run
(68)
]
S'\
S+
N+ S- N-
N\ i/ |I
N\S- S+ + N+ S
\ i / |ii \ i /
N- (N\S)/S- Q(S, N, S) N\S- S+
] believe someone run

These have semantics (10) and (11) respectively.

For the example(14) of subjectversusobject wide scopequantificationalambiguity
the proof frame is (69).

39



(69)

S S

S+ S+
N- N+ S- N-
)] N/ i
+ N\S- N+ +

| ii N\ i / | ii

Q(S, N, S) (N\S)/N- Q(S, N, S) S+
everyone love someone

Q(S, N, S), (N\S)/N, Q(S, N, §) S

everyonetlovestsomeone: S

From this, the subject wide scope analysis is constructed in (70).

(70)
I
S-
- |

S-
S+

N- N+ S- N-

)] NS i

+ N\S- N+ +

| ii N i/ | ii

Q(S, N, S) (N\S)/N- Q(S,N;S) s+
everyone love someone
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We leave to the reader the object wide scope analysis, and checktiegemanticsand
consideration of (12) and (13) according to (52).

A second kind of illustration is provided by the application of Q to pipthg (Morrill
1994). We have already seen how the assignment (71a) generates (7a).

(71) a. that - rel
= (CN\CN)/(S/N)
b. whom- AYAX(rel Az(x (y 2)))

= Q(N, N, (CN\CN)/(S/N))

We shall see now that tlengle assignmen{71b) isadequatdor both pied piping asin
(5) and non-pied piping as in (4a). The former is as follows:

(72) a.
T
CN+. CN- N- = S+
N\
- +
\n /
N-
N+ S-
\Nii /
N- ~ CN+ CN- ,PP+ : N+ | -7 N+
ii ii
CN- N 7 \_/ \ / i N- N 7/ CN+
man the brother of My(rel Az(x (y2)) M see

CN, N/CN, CN/PP, PP/N, Q(N, N, (CN\CN)/(S/N)), N, (N\\S)INCN

man-+the+brother +of+whom+mary+saw: CN

b. (((AyAX(rel Az(x (y 2))) Ax,(the (brother (of x,)))) AX,((see x,) m)) man) =
((rel Az((see (the (brother (of 2)))) m)) man)

That (71b) is also adequatefor non-pied piping can be seen fromthe fact that an
assignment of the form (71a) candberivedfrom (71b); thatis in fact alreadyprovedin
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(61), and accordinglppplying the lexical semanticof (71b)to the identity function we
obtain the lexical semantics of (71a):

(73)  (AYAX(rel Az(x (y 2))) AxX,) =
AX(rel Az(x 2)) =
AX(rel x) =
rd

The converseon the otherhandis not the case:no proofnetcanbe constructedor the
frame corresponding to (7b).
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