N

. Rules and Derivation:
Binding Phenomena and Coordination
in Categorial Logic

Glyn Morrill
Centre for Cognitive Science, University of Edinburgh
OTS, University of Utrecht :
CWI, University of Amsterdam

DYANA
Deliverable R1.2.D
December 1990

DYANA
Dynamic Interpretation of Natural Language

ESPRIT Basic Research Action BR3175

University of Edinburgh
Centre for Cognitive Science
Department of Artificial Intelligence
Centre for Speech Technology Research
Department of Linguistics
Department of Computer Science

Universiteit van Amsterdam
Instituut voor Taal, Logica en Informatie

Universitit Stuttgart
Institut fir maschinelle Sprachverarbeitung

Universitat Tiibingen
Seminar fur natirlich-sprachliche Systeme

Universitat Miinchen
Zentrum fur Informations und Sprachforschung

For copies of reports, updates on project activities and other DYANA-related information,
contact

DYANA Administrator

Centre for Cognitive Science

University of Edinburgh

2, Buccleuch Place

Edinburgh 88 91w, UK

Copyright ©1990 The Individual Authors

No part of this document may be reproduced or transmitted in ary form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission from the copyright owner.

B,

Contents

Introduction

Free Generative Grammar

1
Phrase Structire Grammar

3.1 Relativisation and Quantification

3.2 Brackets for Islands

Categorial Grammar

4.1 The Lambek Calculi
4.2 Categorial Logic . .
4.3 Agreement.
4.4 BRelativisation
4.5 Quantification
4.6 Reflexivisation . ..
4.7 Coordination

Prolog Implementation and Hlustrative Log

Comments on Coordination, by Guy Barry

6.1 A Note on Proof Search

Comments on Quantification, by Martin Emms

References

11
11
14
17
18
19

21

23

46

51

56

1 Introduction

The structure of this paper is as follows. In section 1 there is set up a general notion of
free generative grammar (FGG); this is approximately the narrowest conception of grammar
broad enough to encompass the varying cases of later sections. Significantly, it is noted
that there may be different presentations of the same grammar, differing in their axioms
and rules, but generating the same theory. It will be a theme throughout that decision
procedures for theorem proving (= derivation search) are obtained by partially executing
axioms and rules with respect to Cut to obtain presentations for which Cut is eliminable.
The idea of FGG and Cut-free presentation for derivation search js exemplified in section 2
by context-free phrase structure grammar, and an extension thereof designed to characterise
relativisation and quantification. It is shown how island constraints may be captured by a
system generating partially bracketed sequences, ¢f. weak generative capacity (sequences)
and strong generative capacity (trees). In section 3 there is discussed categorial grammar:
the associative (sequences) and non-associative (trees) Lambek calculi, and more general
categorial logics. A grammar is given capturing various constraints on and between relativi-
sation, quantification, reflexivisation and coordination.

This research is carried out in 2 context in which essentially Montagovian analysis of
phenomena such as quantification and coordination has been approached via systems of
unary rules effecting flexibility in the types which expressions adopt. Such approaches
raise computational issues: finding terminating algorithms for derivation search, and finding
efficient such algorithms, e.g. by avoiding recomputation of equivalent derivations. The
type-shifting approach to quantification is well-exemplified by Hendriks (1990), and Moort-
gat (1990) shows how decision procedures for alargely equivalent theory can be obtained for
categorial formalisation employing an ‘exponentiation’ type-constructor, by Cut-free deriva-
tion search. The present paper integrates and extends categorial coverage, illustrating how
systems of type-shift can be provided with a principled basis in terms of categorial logic,
and hence be provided with terminating algorithms for derivation search. Consideration
here however does not extend from decidablity to efficiency.

2 Free Generative Grammar

Let us assume that a mathematical model of a language will consist of various language
objects standing in various relations. We say the following:

(1) A language mode! structure consists of a domain of language objects including a
subset of basic language objects, and a set of operations over that domain.

A language object will generally be a tuple made up of values in algebras for whatever
linguistic dimensions are under consideration; an operation will be a tuple of operations
over the individual algebras (cf. Oehrle 1988). The instance implicit in later sections has
it that language objects are form-meaning pairs (signs) classified into categories including a
distinguished category of sentences, the meanings of which are the subject of 2 consequence
relation. However, the framework of free generative grammar defined here abstracts over
such details.

The category symbols (types) 4, B,C, ..., will be interpreted as sets of objects in lan-
guage model structures:

vy

-

(2) An inhabitation is a relation between the domain of language objects and the set
of types.

A lexical inhabitation is a relation between the basic language objects and the set of types.
(3) An (n-ary) configurationis a length n bracketed sequence of types.

Configurations X,Y, Z, ... include those with no brackets, those with binary bracketing, and
so on. We write X(¥) for a configuration X with a distinguished subpart Y.

(4) A statement of formation consists of an n-ary operation # on the domain of language
objects, an n-ary configuration X, and a type A.

A statement of formation asserts that applying the operation @ to any language objects in

the types X yields a language object in the type A. It may be true or false with respect

to an inhabitation. In the following, the operations on forms will uniformly be left implicit

as left-to-right concatenation of the configuration type forms; th# is a convenient but not

necessary feature.

(5) A rule of formation consists of a set {T1,...,Tn} of premise statements of formation,
and a conclusion statement of formation A. ’

We write: % A rule of formation is said to be axiomatic if and only if it has an empty
premise set. There are two universally valid rules of formation, id and Cut, interpreted by
the identity and composition operations:

(6) A=A [id L2EZE=A [Cuy]

(7) A derivation is a sequence of statements of formation each of which is either ax-
iomatic, or else is the conclusion of a rule of formation the premises of which occur

earlier in the sequence. :

A set of rules of formation. is said to generate the set of all the statements of formation which
can conclude derivations on the basis of those rules.

(8) Wecall a n__.m.oé, of jormation any set of statements of formation closed under id
and Cut. The members of a theory of formation are called theorems of formation.

A presentation of a theory of formation is a set of rules of formation generating that theory.
(9) A grammar consists of a lexical inhabitation and a theory of formation.

A grammar presentation consists of a lexical inhabitation and a presentation of a theory of
formation.

3 Phrase Structure Grammar

Consider the following presentation of a phrase structure grammar theory of formation
annotated with a simple functional semantics (' represents application explicitly).

3

(10) z:A=>z:4 d] Y=g8_Xpd)=ed oy

4 X(YT= aldfufa

z:NP y:VP =y’ z:§ [r1]

zD:CN =z ' y:NP [r2]

z:TV NP = z ' y:VP [r3]

z:SV y:S =z’ y:VP [r4]
A derivation will be a list of statements of formation each of which is either an axiom, or
else follows from carlier statements of formation by rule. In relation to (11) there is va“

underlines indicate Cut types.

(11) John thinks the man loves Mary

(12) 1. DCN = NP 2
2. NPVP =5 rl
3. DCNVP =§ 1,2, Cut
4. NPVP =S§ rl
5. SVS = VP r4
6. TVNP = VP 3
7. DCNTVNP = § 6,3, Cut
8. NPSVS =5 " 5,4, Cut
9. NPSVDCNTVNP =S 7,8, Cut

.Umniwzoum mnm.mnBmemmm by derivation structures which identify equivalent derivations
i.e. ones mapping from the same configuration to the same type by the same ovanwao=~

Cwu John thinks the man loves Mary

zD wiCN «TV uNP

T2 3
z ' w:NP u'w:VP .
rl
y:SV (') (z'wkS
z:NP ¥’ :: » ev » AN * w)):VP e

Ll " » rH
(v ((u"v)" (=" w)))> =8
The m.b,q_onwn.mn statements of formation show how to construct the meanings of compound
expressions in terms of the meanings of their parts. We obtain a schematic meaning repre-
o

sentation into which we can substitute the me 1, presentatio for words ven the
2 aning re {uiok]
-1 £ in

(14) John -john :=-NP
Mary - mary :=NP
walks -walk :=VP -

man - man = CN
the —the =D

thinks - think := SV
likes - like =TV

Thus (13) associates the following meaning with (11).

. . it REST

- -_ B

Bl

(15) (think '’ ((the ' man) ’(love ’ mary))) ' john

By derivation search with respect to a theory of formation we mean the task of finding
all the operations mapping from a given configuration to a given type in that theory. This
is tantamount to parsing. A presentiation of a theory of formation offers a strategy for
derivation search: simply search backwards from the given configuration and type for all
derivations which have that statement of formation as conclusion.

Presentations including Cut however provide a poor basis for such derivation search:
the type whick is Cut out is introduced as an unknown on every backwards application of
Cut. A better strategy is to perform derivation search with a presentation which is Cut-free.
The Cut rule must be admissable in such presentations since it is universal and all FGG
theories of formation are closed under Cut. But the idea is to find presentations in which
the contextual management of Cut is built into the other rules, e.g. we can try partially
executing the axiomatic rules above with respect to Cut. Two ways of doing this lead to
the classical bottom-up and top-down procedures, of which the later is as follows:

(16) z:A=>z:4 fid]

XY =8"a:S [R1]
X = a:NP
Y = 8:VP
XY =a’8NP [R2]
X = aD
Y = B:.CN
XY =a’8:VP [R3
X = aTV
Y = B:NP

XY = a’B¥P (R4
X = a8V
Y = 8§

The theorem of formation considered earlier is now derived as follows.

(17) NPSVDCNTVNP =S§ [R1]

NP = NP fid]
SVDCNTV NP = VP [R4]
SV = SV fid]

DCNTVNP =S [R]
DCN = NP [R2]: .

D =D [id]

CN = CN [id]
° TVNP = VP [RJ)
TV =TV [id] -

NP = NP {id]

5

The presentation forms a good basis for derivation search since goal-driven search induces
no new unknowns in subgoals.

From this review of technical and computational properties of phrase structure grammar
from the FGG point of view, we turn in the next section to empirical matters and their
treatment by augmentation of PSG with non-axiomatic rules of formation, intermediaries
betwen metarules (cf. Generalised Phrase Structure Grammar) and transformations (cf.
Transformational Grammar and Government-Binding).

3.1 Relativisation and Quantification

Consider the following.

(18) a. the man that walks
b. *the man that walk
c. *the men that walks
d. the men that walk

(19) the man that Suzy likes

(20) a. the man that Mary thinks walks
b. #*the man that Mary thinks walk
c. *the men that Mary thinks walks
d. the men that Mary thinks walk

(21) the man that Mary thinks Bill claims Suzy likes

For relativisation, let us make the assumption that elements of types forming a sentence are
suitable to form the body of a' that-relative clause whea a noun phrase type is omitted, and
let the mearing of this incomplete sentence be given by the lambda abstraction over the
meaning of the missing element. This is effected by the following rule which is schematised
over sequences of types.!

(2 X nzvu...x 2 vSp

(23) z:CN y:RC = y'z:CN [r5]

(24) z:RP y:RB =z 'y:RC [16]

(25) that - Azdydz((z'z)A(y’'z)) :=RP

The rule is something in between a metarule and a transformation. Metarules (see e.g.
Gazdar 1981, Gazdar et al. 1985, Morrill 1988) technically only close the axioms, with Cut

'Uniformly in what follows, parentheses are omitted under a convention whereby unary operators, includ-
ing quantifier and lambda bindings, adhere more tightly than binary operators.

- w- e .

" =S EF W W O

! lr l -
i . .

by ¥ o N

being left implicit as the only non-axiomatic rule of formation; metarules do not apply to
theorems generated by Cut.? Transformations on the other hand apply to the tree structures
generated by phrase structure grammar; these are distinct from statements of formation. We
now actually turn to consider how derivation structures can record non-axiomatic inferences.

A derivation invelving R is summarised by a derivation structure which is ‘grown’ at
both root and leaf:

26
(26) Ri
z:NP
¥:S
R
Azy:RB
(27) the men that Mary thinks R walk
y:NP ! z:VP X
—_—
z:8V z'y:S
—_ —

w:NP z’ (2! 5"<.WL
(z'(z"y) ' wS 2. L e _
wRP Ay{(z'(z"y)) ' whRB
vCN u’dg((z'(z'y)) wpRC
D M (=t y) W) TeCN
37 (u’2y((z7 (z " 9)) " w)) ' v):NP
The result of substituting the lexical semantics into the derivational semantics and simpli-
fying is:

(28) the ’ Az(((think ’ (walk ’ z)) ' mary) A (men ’ z))

Montague’s analysis of quantification allows quantifier phrases to take scope at the level
of any dominating sentence; thus (29) is predicted to have two readings, and (30) three.
(29) Every man loves a woman

- Vy((man ' y) — 3z((woman' z) A ((love ' z) ' y)))
- 3z((woman ' z) A Vy((man ’ y) — ((love ' z) ’ y)))

(30) Every man claims a woman walks
- Vz((man ’ z) — ((claim ' 3y{(woman ' y) A (walk ' y))) ' z))
- Vz((man ’ z) — 3y((woman ' y) A ((claim ’ (walk ’ 3)) ’ z))
- dy{(woman ' y) A Vz((man ’ z) — ((claim ’ (walk ’ v)) ')))

For quantification, assume the aim is to allow quantifier phrases to occur at the same
sites as other noun phrases, and to have them take scope at the level of any superordinate
sentence:

?For example, if A B = C and D = B are axiomatic rules of formation then A D = C is a theorem of
formation, but generated by Cut, this may not be input to a metarule.

X =:NP V=405
Aw“_.v X QP Y=~ »Hm"mD

(32) z:Q :CN =z’ y:QP [r7]

(83) every -AzAyVz((z'z)—> (y’2) =Q

a -Azdydz((z’2)A (y’2) =Q A\&
Derivations involving quantification are summarised by derivation structures extending at
the root a derivation of S from NP, and connecting a derivation of QP at the NP leaf:

AWAV n".,_“.um._

xS

a ' Azy:S J
ﬁwm.v every man loves a womaan - -
H w:CN
=Q yON _ QP

z .EDmnuu_ H =NP s 1

tuNP z' VP p

(z'3s)'t:S ® -

T(zy) M((z) 1)S i
(u’v) ' As((z " y) " At((z* 9) ' B)):S

1 -

(36) every man loves - a woman
- u:Q w:CN
— —_————T
=:Q n:CN . u ' y:QP
: .ﬁDﬂD =TV =NP 5 !
NP sreve
Tl
(z79)’t:8
—_—

(8 v) " As(z78) ")5
(z"y) " At((u’ v) * As((z* 3) * 1)):S

Q2

Substitution of lexical semantics and simplification for (35) gives (37a) and that for (36)
gives (37b). : .

PR i RN A

(37) a. muﬁ?,_\oaun 'z) A Vy((man’ y) — ((love’ z) ' y)))
b. ¥y((man’y) — Iz((woman ’z) A ((love’ z) ' y))

In 2 similar way, three readings are obtained for every man claims a woman sings: one
with the existential taking scope at the level of the embedded sentence, and two others with
alternative quantifier scoping at the matrix level.

g -

4

The top-down Cut-free presentation of the current grammar suitable for derivation search
is given by adding the following to (16).

(38) XY = Azy:RB [REL}
X z:NPY = 7§

XY =8'aCN [RS]
X = a:CN
Y = B:RC

XY = a’BRC [R6]
X = «:RP
Y = B:RB

XY Z = a’lzy:S [QUANT]
Y = a:QP
X z:NP Z = :§

XY = a’pQP [R7]

X = aQ
Y = g:CN

3.2 Brackets for Islands

The present system however fails to capture the islandhood of relative clauses: the extraction
from a relative clause in (39) is ungrammatical (¢f. Complex Noun Phrase Constraint,
CNPC). i : ’
(39)*the man that Mary likes the woman that loves

The example has a top-down Cut-free derivation involving the derivation of Mary likes the
woman that loves as a relative body as followss

*In fact there are two derivations, with the relative pronouns alternatively binding the subject and object
of loves, but the subsequent remarks apply equally to both cases.

(40) NP TVDCNRPTV = RB [REL]
NP TVDCNRPTVNP =3§ [R1]
NP = NP lid]
TV D CN RP TV NP = VP (R3]
TV =TV fid]
D CNRPTV NP = NP [R2]
D =D fid]
CNRP TVNP = CN {R3]
CN = CN fid]
RP TV NP = RC (R6]
RP = RP fid]
TV NP = RB (REL]
NPTVNP =S [R1]
NP = NP [R1]

TVNP = VP [R3
IV = TV [id]
NP = NP [id]

Furthermore, while the grammar predicts that (41) has two readings, in fact quantifiers
cannot take scope outside of relative clauses in which they occur.!

(41) A man that likes every woman sings.

The adjustment invoked here involves a move from the flat configurations used so far, to
bracketed configurations. Briefly, relative pronouns will require their clauses to be bracketed
off as islands: floors to relativisation and céilings to quantification. The theorems of forma-
tion will now include partially bracketed statements of formation obtained by replacing r6
and R6 as follows:

(42) [z:RP y:RB] = z’'y:RC [r6']

(43) [XY] = a’BRC ([R6]
X = a:RP
Y = 4RB

Now, for R6’ to go in place of R6 in (40), the target statement of formation would need a
bracketed configuration: NP TV D CN [RP TV]. But then as the rule has been given in (22)
— with NP not permitted to be embedded within brackets — the top rule application REL
could not place the ‘trace’ NP inside these brackets, where the trace must be in order to
combine with the embedded TV. These conflicting requirements block derivation. A similar
line of argument shows why as the quantifier rule (31) has been given, this move also blocks
quantifier ‘raising’ out of a relative clause. ’

“Fodor and Sag 1982 observe that indefinites do in fact always have readings in which the quantifier is
constrited outermost at the matrix level, violating any island constraints, but they argue that such readings
arise from a quantificational/referential ambiguity of indefinites.

10

i e)

om—

b o

NN H|

SEIEREEREEENEEEREERNS

4 Categorial Grammar

The previous section illustrated FGG, derivation search by means of a Cut-free presentation
of the theory of formation, and use of bracketed configurations to capture islandhood. The
PSG framework used there is minimally lexical in that a particular language model is defined
by setting up, in addition to the lexicon, a theory of formation subject only to the laws of
id and Cut which are everywhere valid in FGG. We will now switch to the CG framework
which is maximally lexical in that a particular language model is defined soley by setting up
a lexicon. The theory of formation is universal, being just the logic expressing the intended
semantics of the type-constructors used.

4.1 The Lambek Calculi

Classical categorial grammar AB has the following Cut-based presentation:

G&”_ Y= 588 X{yB = oA _“Od.&

(44) z:A=>z:4 TS =0T

z:A/By:B=>z'y:A [/E] |@"mnum/>nvu,e"> N\E]}
A lexicon parallel in effect to the initial phrase structure grammar is as follows:

(45) John - - john -:= NP

Mary - mary := NP .

walks - walk := NP\$

man -man :=CN

the - the := NP/CN

thinks -~ think := (NP\S)/S

likes —like = (NP\S)/NP

AB derivations are represented by natural deduction style derivation structures. First,

a lone type is a derivation (corresponding to id), then derivation structures are built thus:

(46) : : : :
A/B B B B\A

E E
2 S
(47) John thinks the man loves mary
NP/GN CON _ (NP\S)/NP NP
fE /E
NP zm.,m.m
(NP\S)/S _ S & =
— I
NP ¢ NP\S *
.,m“
S

Associative categorial m_.mBBE. (ACG; Lambek 1958) is obtained by adding to this rules
of conditionalisation:

11 :

The corresponding derivation structures indicate cancellation of conditionalised peripheral
types B in the subderivations of A.

(49) - ra
I\Ha I/Ha

ACG theorems are unbracketed sequences of types. Non-associative categorial grammar
(NCG; Lambek 1961) generates binary bracketed sequences of types:

. u\uvm".muznmgnVQ"}
(id] X(Y) = n__,n?_u» (Cut]

(30) z:A=>z:4
[z:A¢§By:Bl=>z'y:A [JE] [y:Bz:BaA]=>z’y:A [}E]
fal]

In alternative presentations (cf. Lambek, Zielonka) the rules of conditionalisation which
schematise over unboundedly long sequences of types get compacted into unary rules of type
shift.

(51) A=A id) *=fAE =4 [Cut]
A/BB=A {/E]| BB\A= 4 0\E]
B = A/(B\A) (L] B = (A/B)\A {L]

A/B = (A/C){(B/C) [D] B\A= (C\B\(C\4) (D]

A Luv muvn. => D ﬁ\w A Mv...m_uvoo,ﬂvm_ D _../_
(52) A= 4 (d e (Cu
[A¢JBB}=>A [¢E] [BBR4]=> A4 [§E]

B = A¢(BRA) [L] B=>(A¢B)AA [L]

‘...wﬂm h.n.....u _”&_ L__.llu...nmul.vn...lu_..h_ _”ﬁ

The €ut-based unary rule presentations provide a poor basis for derivation search. Notice
for example that simple application can be derived an infinite unu._. g of ways by comple-
mentary repeated lifting of functor and argument. What is mmm\\....!r.-w notion of normal
derivation such that backward-search for normal derivations (cf. ﬁ Morrill 1989) of
a given statement of formation is complexity-reducing at every g s is precisely what
is provided by Buszkowski (1986) for the non-associative case. Zo € first that (ignoring id)

12

——

= #a B EA NS EERERERE=ERRANREE

every unary theorem of formation is either complexity increasing or complexity decreasing
where the metric of complexity is the number of type-constructor cnncﬁmunmm.. wcmn_ouimwm
shows that every Cut-based unary NCG derivation has a normal form cou nterpart derivation
which is obtained by applying top-down-complexi ty-reducing unary theorems top-down, w_._nm
bottom-up-complexity-reducing unary theorems bottom-up, with a central core of binary
applications. This normalisation result is used to show equal weak generative power of the
non-associative calculus with context-free grammar. A corresponding normalisation for the
associative calculus has not yet been demonstrated; it seems possible that if it were, it would
bring with it the conjectured context-free weak equivalence result. But in its absence, the
.“E.._._.HMF rule formulation does not provide the basis for a terminating algorithm for derivation
search.

Rather, such an algorithm is obtained on the basis of a Cut-free presentation; this is how
Lambek demonstrated the decidability of his calculi. . .

(53) z:A=>z:4 [id)
X = Aya:A/B (/Rl X(z:A/BY)=1[z"B/s]:C [/L)
Xy:Baa:A Y=>p4:B
. X(z:A)=>7v:C
X = Aya: B\A DRl X(Y z:B\A) =4[z’ B/z]:C [\I]
y:BX=>a:A Y=>3:B
X(z:A)=>v:C
(54) z:A=3z:A [id]
X =>Aya:A¢B [§R] X([z:A$BY]) = +[z’ B/z]:C [4I]
Xy:B]=>ea:4A Y=p8:B
X(z:A)=>7:C
X = \ya:BX4A [AR] X([Y z: BRA)) = [z’ B/z]: C [}L]
[y:BX]=>a:4 Y=43:B
X(z:A)=>~:C

The functional semantics expressed in terms of the lambda calculus is given in e.g. van
Benthem (1983) and Moortgat (1988), It is an instance of the Curry-Howard correspon-
dence between constructive implicational logic and the lambda calculus, embodied by an
isomorphism between natural deductions and typed lambda terms on a ».ondawm-mm.nwvmm
analogy where beta-reduction corrasponds to proof-normalisation:

(35) Aza’B = a[B/z)

13

ST R

4.2 Categorial Logic

Categorial grammar can be seen as an implicatioral logic without structural rules, i.e. one
for which the usual structural rules of intuitionistic logic are dropped. The structural rules
delete, duplicate and permute assumptions; their invalidity here resides in the attempt
to keep the syntactic operation associated with a statement of formation implicit as the
concatenation left-to-right of the the forms associated with the types in that statement. As
structural rules are removed the premises in configurations come to be seen not as sets, but
multisets, lists, and even trees when associativity is not assumed. (Moortgat 1988, Dosen
1989, Morrill, Leslie, Hepple and Barry 1990).

Once categorial grammar is seen in this light, it is natural to consider addition of other
logical type-constructors to obtain a categorial logic with greater expressivity; see e.g. Mor-
rill (1990a) which proceeds with an eye towards linear logic and the Curry-Howard isomor-
phism for other logical types (Girard, Lafont and Taylor 1989). We must content ourselves
here with a terse survey of type-constructors, several of which are used in the next section,
presented in a form for which Cut is meant to be eliminable.

Lambek (1958, 1961) contained already product types:
(57) XY =a,8:A-B [R] X(z2:A4-B)=qmz/z]mz/y]:C [L]

X=>a:A . X(z:Ay:B)=>v:C
Y=>p:B
[XY]= a,8:A0B [OR] X(z:40 B)= ymz/z|[rz/y]:C [OL] .
X=>a:4 X([z:Ay:B))=>~:C
Y=08:B

Here the semantic operations are pairing and projection, as noted by e.g. van Benthem
1987:

(58) m{a,B) =a mo(e,8) =8
Derivations can be represented by derivation structures as follows:

(59)

To obtain binary infixation we may consider a type-constructor which is a simultaneous
forward/backward implication:®

*Note that the associative B\A/C stands in a relation of mutual derivability with (B\A)/C and B\(A/C).

14

-

- B EEEE EEE E E E I

(60) X = Ayza:B\WYC (\V/R] X(Y z:B\YC Z)y=46(z"8"+/z}: D [\/1]
y:BXz:C=>a:4 Y=p8:8B
Z=v:C
X(z:A)=46:D

X = dyza: By¥C "[%$R] X(Y z:BYYC Z]) = 6{z" B’ v/2]: D [dJL]
[y:BXz:Cl=2>a:A Y=p:B
Z=>4:C
X(z:A)=>6:D

Conjunctive and disjunctive types AA B and AV B will pick out expressions which are
of both types A and B, and either type A or B, respectively. The rules of inference for A
are thus:

(61) X =>a*xB:AAB {AR]
X=2>a:A
X=>8:B

X(z:AAB) = b§[n/z]: D [AL;] X(z:AAB)= é{zz/y]: D [ALy]
X(z:A)=>6:D ’ X(y:B)y=>6:D -

Intuitively the operator represents a point of nondeterminism and the operators ; and 2
decisions to take the first and second branches. They obey the usual laws of pairing and
projection, as was the case for product.

(62) (a*Ph=c (e#B)2 =8

The inferences may be represented in derivation structures as follows; X mmmimmm cancella-
tion of the sequence X of leaf types.

- i -

ﬁmuv —n k; =
X .. AAB AAB
Wn H AEa -AEs
A B ey A B
—Aln
AAB

The rules of inference for V are thus:

(64) X =>ia:AVDE [VRa] X=jB:AVB [VRy]
X=2>a:A X=>p:B

X(w:AVB)=>w— zayy : C VL]
X(z:A)=>71:C .
X(y:B)y=>y:C

Intuitively the operator in (64) is a case operator keyed on i and 7. Depending on the
labelling, the first or second branch is taken:

(65) ia — z.7'; 997 = v'[o/z]
ja = z4599 =¥ e/y]

15

vy
AvB AVB X _AYXB. v

Morrill (1989, 1990b) presents modal logic for intensional types. Note first that Mon-
tague’s theory of types IL proceeds thus: if 71, 7, are types, then (ry, 1), (s, ;) are types, i.e.
indices are not a basic type (as in Gallin’s Ty2), rather (s, .) is a one-place type-constructor.
We use a unary operator, notated O for reasons that will become apparent, and give first 2
rule of ‘compositionality for intensions’:

(67)

This states that where expressions of types Aj,...,An can combine to form one in B,
expressions of the corresponding intensional types can combine to form one in OB. The
semantic operation involves abstraction over the values of the component expressions across
indices; in a Ty2 notation:

(68) y1:0A1...¥n : OAn = Ain[tn " i/z1]...[3n " i/24] : OC
Z1:A1... 2t A= 7: C

This modal logic K is common ground between the proposals of van Benthem (1986, ap-
pendix), Prijatelj (1989) and Morrill (1989). But for Montague intensions determine exten-
sions and also intensions of intensions: these are constant functions. Thus Morrill (1990b)
includes the following:
(69) a. QA= 4

b. 0OA = 0O0A
The result is the modal logic S4. Where OX is used to represent configurations with only
modal types, the refinement formulation with IL notation is:

(70) OX = "e:04 [OR] X(y:04)=1["y/z]:C [TE]

. 0X2a:4 X(=z:A)=>+:C
(1) "a=c
72) 3
(72) A oA
—0oI* —0E
a4 X

The asterisk on the rule of O introduction signifies a condition, in this case that every path
from root to leaf contains a modal type not dependent on a discharged assumption.

Morrill, Leslie, Hepple and Barry (1990) discusses structural operators, licensing the
structural rules which no longer apply freely. This strategy of building back the struc-
tural operations in a controlled manner was initiated in Linear Logic (Girard 1987) and the
modal nature of these operators is discussed in Dosen (1989). In particular there may be
bidirectional or unidirectional S4 permutors:

16

s IS NEENESEEERERREAREN

(73) pX=>a:pA (>R] X(z:p>A)=>p:B (L]
DX=>a:A X(z:A)=p3:B

X(y:pAz:C)=>p:B [>P]
X(z:Cy:pA)=0[:8B

A A A D
—bI —bE — _bP
A A D bpA

Inferences for first-order quantification are as follows; semantic interpretation here is
taken as identity (the formulas-as-types interpretation is given in Morrill 1990a).

(75) X=>a:VvA [VR] X(z:VvA)=j3:B VL]
X=2>a:A X(z:Alt/v)=>p6:B
(v not free in context) (t an individual term)
X=>a:3vA [3R] X(z:3vA)=>p3:B {3L)
X = a: Alt/v) X(z:A)=>p:B
(.an individual term) (v not free in context)
(76) : : ? :
A VoA Alt/v] 3vA
- vE — —dE;
YvA Alt/v] JvA A
:
C

4.3 Agreement

It is well known that analysing basic type symbols into predicate-argument structures cre-
ates a sensitivity and generality in type classification with respect to e.g. morphosyntactic
features. Indeed this has inspired approaches which can be seen as type theories formalised
entirely by a complex domain of sorted individuals (Pollard and Sag 1989). Typically inclu-
sion of predicational types is represented by placing individual variables at underspecified
positions and using unification to test substitutions. Suppose we parameterise NP and CN by
an argument for agreement which may take values plural, masculine singular, and feminine
singular: pl, sg(m) and sg(f), where sg is a function symbol:

17

(77) John := NP(sg(m))
Mary := NP(sg(f))
man := CN(sg(m))
men := CN(pl)

woman := CN(sg(f))
women := CN(pl)

this = NP(sg(g))/CN(sg(9))
these := NP(pl)/CN(pl)

the := NP(a)/CN(a)

walk := NP(pD)\S

walks := NP(sg(g))\S

like := (NP(pl)\S)/NP(a)
likes := (NP(sg(9))\S)/NP(a)

It is also well known that problems arise in relation to variable scope, and disjunction which
necessites some copying in type inference for such ‘quantifier free’ types. Morrill (1990a)
suggests that explicit quantification may be used.

(78) this := Vggen(NP(sg(g))/CN(se(s)))
the := Yaagr(NP(e)/CN(a))
walks := Iggen NP(sg{g))\S or Yggen(NP(sg(9))\S)
likes := (ggenNP(sg(9))\S)/JaagrNP(a)

(79) the man walks
Yaag:(NP(a)/CN(a))
NP(sg(m))/CN(sg(m)) CN(sg(m)) .
NP(sg(m)
Jggen NP (sg(g)) mmw.muz.m.?m@ vu/m/m
S

4.4 Relativisation

Assigning types (CN\CN)/(NP\S) and (CN\CN)/(S/NP) to the relative pronoun that gives
only peripheral extraction (although the latter correctly allows relativisation from embed-
ded clauses); instead we can use a type of the kind (CN\CN)/(>NP\S). Encoding also
agreement, and the non-associativity which achieves the CNPC as in section 2, we have the
following:

(80) that -Azdydz((z’z) A (y'2)) := VYaagr((CN(a)\CN(a))4(>NP(a)\S))

18

—

'----l!-—-n-w—r—-’m—-——._.“

SN NRERENRNCENNERNERNIEGEER

(81) {that . Mary thinks
>NP(pl) NP(sg(f)) 5P
NP(sg(f)) &>NP(pl) (39gen NP(sg(9))\S)/S P

(39genNP(sg(g))\S)/S BNP(pl)

>E
NP(pl) NP(pI)\S
=1 m__m
3ggenNP(sg(s)) SggenNP(sg(s))\S, : !
Yaagr({CN{a)\CN(a)) ¢/(vzv?:m:cm s i v
(CN(pD\CN(pl)) (>NP(p)\S) SNPGIS
CN(ph\CN(pl)

The use of a partially associative categorial grammar for capture of constraints on extraction
is first suggested in Oehrle and Zhang (1989); their concern is with non-extractable positions,
as distinct from island boundaries however, and their formalisation is different than that here.

4.5 Quantification - - .

A proposal for the categorial treatment of quantification by means of second-order polymor-
phism is provided in Emms (1990). There are architectural and computational complica-
tions; an approach more immediately in the spirit of categorial logic is provided by Moortgat
(1990) proposes to treat quaatification by means of an exponentiation type-constructor as
follows:

(82) X=Jlz(z’a):A%t B [fR] .KC\NNK»:WNVUEN,»HE\&HG [ftL]

X=2>a:A Yz:AZ=>p8:B
X(y:B)=46:D
(83) : :
A At B
—fl —En
At B .»
B
5
(84) a = AzdyIz((z ' 2) A (y " 2)) = Yggen((NP(sg(9))S)/CN(sg(9)))

every — AzdyVz((z 'z) — (y ' 2)) = Yggen((NP(sg(9))tS)/CN(sg(9)))

The ».o_._oimm two derivations, slightly abbreviated with regards to agreement, give the
expected readings. ’

\E

(85) every man loves a woman
(NP(sg(f))S)/CN(sg(1)) ozAumen
(NP(sg(m))#S)/CN(sg(m)) CN(sg(m)) NP(sg(f))nS o
/E T T 5]
NP(sg(m]}11S = (NP(sg(m))\S)/ NP(sg(f)) zv?m::\m
NP(sg(m)) NP(sg(mINS
s \
-2
S
=1
S >
Ammv every man loves a woman
(NP(sg(£))1tS)/CN(sg(f)) Oz?mafm
(NP(sg(m))S)/CN(sg(m)) CN(sg(m)) NP(sg(()}n1S !
/E e 11 7}
NP(sg(m})1t5 E, (NP (sg{m))}\S)/ NP (sg(f)) NP{sg(f{)) /E
NP(sg({m}) NP(sg(m))\S E
- s \
=1
S.
=2
S

In general, quantifiers will be able to take scope at any dominating sentence level, but
the interaction of L and the non-associative functor type for relative pronouns blocks
quantification out of relative clauses, as required.®

4.6 Reflexivisation

The phenomena of relativisation and quantification are long-distance, and the grammar de-
veloped so far characterises this. If we attempt to treat reflexivisation in an analogous man-
ner, by assignment of type ((NP\S)/NP)\(NP\S) (or NPH{NP\S)) the incorrect prediction
is made that this also is long-distance. The problem comes down to an absence of sensitivity
in type classification to clause boundaries; thus e.g. (NP\S)/NP includes both verb phrases
lacking main clause objects, and embedded clause objects. Morrill (1989, 1990b) observes
that once types are intensional, this information becomes visible in the language of types
when each clause is assumed to form an intensional domain. Thus intensionality provides a
term of reference for locality,”

Intensional type assignments are as follows:®

SMontague’s PTQ, incidently, fails to capture the scope-islandhood of relative clauses: quantifying-in
applies freely.

"We could pracsed by intreducing modal operators tuned exclusively to boundedness facts, as in Hepple
(1990b), but before such a move is made it seems interesting to see the extent to which the facts can be
managed by devices independently motivated on semantic grounds.

*That certain meanings are logical or that proper names might be rigid designators is not taken to
indicate that lexical types should be non-modal, since the infarmation as to the extension across indices must
be available for any element to appear compaositionally in an intensional context, even if the types cannot
capture & generalisation such as that the extension is the same acrass indices.

20

PR RN OPNE WY DO MW G WY MY M MW e memy ey e e ey

" AN RANENNEERERREEEEE NN

(87) John - “john := ONP
Mary - "mary := ONP
walks —walk = O(NP\S)
man - man := OCN
the ~the := O(NP/CN)
thinks - think := Q((NP\S)/0S)
likes - like := O((NP\S)/NP)

Against the basic types of (87), the following type assignments now capture the respective
boundedness of reflexivisation on the one hand, and unboundedness of relativisation and
quantification on the other.

(88) himself — “Azdy((z’v)’y) = O(NPH(NP\S))
a — “Azdy3z((z ' z) A (y ' "z)) := O((GNP)1tS)/CN)
every — "AzMyVz((z ' z) A(y’ “z)) := O((QNP)1S)/CN)
that — “AzdyAz((z "z) A (y ' z)) = O((CN\CN) #(>ONP\S))

4.7 'Coordination

The primary empirical motivation for the generous theories of formation employed in cat-
egorial grammar is drawn from coordination (see e.g. Steedman 1985, 1987, Dowty 1988,
Morrill 1988, Barry and Pickering 1990). Thus if, as seems reasonable, conjuncts have a
unitary meaning, then non-constituent coordination (right node raising, left node raising,
and so on) indicates that many ‘non-constituents’ must be defined as meaningful in the
same way as traditional constituents. The question as to which kinds of expressions can
form constituents, and what kinds of type-constructors would capture the generalisations,
is too extensive to be addressed here; rather, types for some basic constituent coordinators
are listed using the present machinary.

A well-noted constraint on the interaction of relativisation and coordination is that there
can be no relativisation out of a coordinate structure unless is is across-the-board, i.e. from
each conjunct: the Coordinate Structure Constraint minus Across-The-Board Exception
(CSC—ATBE). ’

(89) 2. *the man that walks and John sings
b. *the man that John sings and walks

c. the man that walks and sings

(90) a. +*the man that John likes and Mary sings
b. *the man that John sings and Mary likes
¢. the man that John likes and Mary loves

However, assignment of type S\S/S (or (S\S)/S or S\(5/S)) to a coordinator allows CSC—ATBE

violation:

21

(91) that ; walks and John sings
NP NP\S NP NP\S
A\E == ———\E
s S\s/S s
S VE
—\p
NP\S

Just as the island status of relative clauses was achieved by making relative pronouns non-
associative functors, the CSC is achieved by using S §54S. Then for ATBE:

(92) and - Azyiz((z’z) A(y’2)) :=(pNP\S)ax-NP\S(>NP\S)

In the relativisation case the non-associativity prevented also quantification out of relative
clauses; similarly here it correctly prevents the quantification out of coordinate structures
according to which would exist for following:®

(93)*A man walks or John sings ~ 3z((man’z) A (... V ...))
For verb phrase conjunction we can have:
(94) and - Azydz((z’z) A (y’ 2)) := (NP\S)aNP\S(NP\S)

This correctly prevents the wide scope conjunction in (95), which is the classic pitfall of a
deletion analysis.

(95)+A man walks and sings = 3z... A 3z...
But what about (96)?
(96) Every woman walks or sings - Vz... V Vz...

Partee and Rooth (1983) claim no wide scope “or” reading, but my judgement, in accordance
with Hendriks (1990), is that it exists. More clear is that (97) does have a reading in which
disjunction takes scope over the embedding verb.

(97) John claims every woman walks or sings

Accordingly, it will be assumed that a type is required for a verb phrase disjunctive structure
which enables the coordinator to take scope at any superordinate sentence level. Moortgat’s
exponentiator achieves this:

(98) or -Azyrz((z'z)V (2’y)) := (NP\S)YNP\S)ff SH(NP\S)

Quantified and definite noun phrases can both be coordinated and can be coordinated
with each other. A shared typeis S/(NP\S)since NP = S/(NP\S)and NP{tS = S/(NP\S).
Subject coordination can be based on this type, but there are complications with agreement.
For conjunction, the generalisation suggests itself that conjoining subjects of any agreement

yields a plural coordinate structure:!°

?Montague's PTQ fails to capture this constraint, as noted by Hendriks 1990 who cites Paul Dekker p.c.

9This cannot be the whole story: compare every man and every boy walks/*walk and a man and a boy
walk/*walks. Since we currently make no distinction between the types of these two quantifiers, no handle is
available here.)

22

Pt

-

 r— [el

'w—-”r—q—"-——'

EENRNERRNRNERREERNNGNSN

(99) Mary/the man/the women and John/the men/the woman walk/like them-
selves/*walks

Then the lexical assignment for subject conjunction is thus:

(100) and —Azyrz((z'2) A (y'2)) :=
where ¢ = (S/(3aNP(a)\5)) ¥/(NP(pD)\5)¥(S/(2aNP(a)\5))

(101) [a woman and the man] walk
(NP(sg(f))NS)/CN(sg(f)) CN{sg(f)) i
NP(sa(O)S '
aNP(a) 3aNP(NS, & NP

s JaNP(a) JaNP(a)\5

-3 z \E

S]

/Ty —_ —_—I
5/(3aNP(a)\5) ¢ 5/(3aNP(a)\5) A oE
S/(NP(p\S) NP(pl)\S e
.m !

For disjunction, it seems possible to say that subject disjuncts must be forms individually
able to reach agreement with the verb phrase, but which need not have identical agreement
with each other:

(102) a. Mary or Suzy walks/likes herself/*walk
b. John or Mary walks/*walk

c. the men or the women walk/like themselves/*walks

(103) or -Azyz((z'iz) Vv (2 Jy))

. = YaVd'((S/(NP(e)\S)) &{{S/(NP(a)\S)) V (S/(NP(a")\S))) 1 S¥(S/(NP(a")\S)))

5 Prolog Implementation and Illustrative Log

The basic idea of Prolog implementation for Cut-free ACG derivation search is discussed
at length in Moortgat (1988). Completeness relies on the correctness of the assumption
that Cut is eliminable, with respect to semantic as well as syntactic interpretation. For the
fairly extensive categorial logic employed here proof would be a considerable task. Within
the space of Cut-free derivations there is still a great deal of derivational equivalence; note
especially that decomposing independent slash types on the left in different orders, and
decomposing modal types on the left in different orders, are both factorial in their options.
Kbnig (1989) and Hepple (1990b) develop a notion of normal Cut-free ACG derivation which
involves a commitment to try decomposing types in certain orders; this method is employed
here and extended also to cover modals. Completeness of the implementation further rests
on the assumption that these normal derivations are fully representative. A final spead-up
is obtained by using also a generalisation of the notion of reachability in Kénig (1989).

23

- o g e

Prolog metavariables are used to represent individual variables in types, and variables
in lambda terms, and there are potential problems with scope and proof search requiring
different instantiations. The VL and 3R backward inferences are carried out by substituting
new Prolog variables for the quantified variables, YR and 3L by substituting new Prolog
constants. The procedure substituta/4 does not actually instanciate the quantified vari-
ables, so that alternative substitutions do not fail through an attempt to instanciate the
saem Prolog variable to two different values. This coding is due to Guy Barry. The same
device can be used for lambda reduction, but here use of metavariables for ob ject variables
causes another problem: in recognising redexes for normalisation, a variable would match
any redex scheme. Therefore aval/2 invokes numbervars/3 to freeze terms, and normalises
via explicit substitution of terms for constants.!!

Sentences 1—4 illustrate simple sentence structures; note that in the intensional trans-
lations names appear as constants standing for the individual they are assumed to rigidly
designate. Proper names and definite noun phrases are not treated as scoping elements,
though they could easily be given the same kind of Montague ‘quantifying in’ treatment as
other quantifier terms. 5-12 show agreement between demonstrative articles, subject noun,
and verb. Examples 13-16 show that the required agreement between a matrix subject rel-
ative clause and its antecedent is enforced; 17 shows object relativisation; 18-21 show the
agreement for an embedded subject relative clause, and 22 demonstrates the long-distance
nature of relativisation. Example 23 shows the islandhood of relative clauses with respect
to further left extraction.

Examples 24 and 25 show quantification, 26, the classic quantificational ambiguity. There
are three readings for 27: one with the existential construed at the lower clause, and two
others with the quantifiers alternating in scope at the matrix level. In a similar way, 28
has eight readings. Examples 29 and 30 demonstrate synonomy arising in the interaction
of relativisation and existential quantification. Example 31 shows that relative clauses are
ceilings to quantification as well as islands to relativisation: there is no reading with the
universal taking wide scope.

32-35 show singular reflexive agreement for gender; 36 shows boundedness of reflexivisa-
tion. 3740 show corresponding effects for plurals.

Example 41-45 show coordination, including singularity of a singular subject disjunc-
tions, and plurality of singular subject conjunctions. 46 has two readings, for matrix and
embedded coordination; 47 has the additional wide-scope ‘or’ reading where the embedded
disjunction is construed at the matrix level. 48 and 49 illustrate the same effect, this time
for embedded subject coordination as opposed to embedded verb phrase coordination.

Examples 50 and 51 show that relative clauses block wide scope of ‘or’ as well as ‘and’; 52-
57 demonstrate the ATB—CSC. 58 shows coordination of a quantified and a non-quantified
subject, and that the scope of the quantifier is correctly kept within that of the coordinator.
In 59, the quantifier outside the coordinate structure is correctly prevented from taking scope
within the conjunction; in 60 the wide scope and narrow scope coordinations have the same’
logical weight; in 62 there is the controversial wide scope ‘or’. 63 has one reading with the
coordination at the matrix level; with the coordination subordinate, the disjunction may be
at either sentence level; 64 shows several readings arising from the interaction of an additional

''Note that neither of these two ways of ‘getting away' with metalanguage variables for object language
ones would capture the blocking of scope by a new local binding of the same variable; luckily this situation
does nor arise here.

24

e, mwm O Ees v PR P R ey ey

E v veew meew yewew emw ey

L

s SN ENEREEREE=ERERAE

quantifier. Example 65 delivers two readings for disjoined indefinites in an embedded clause;
66-73 show agreement in interaction of reflexivisation and subject coordination.

Script started on Thu Dec 20 15:53:59 1990
ruulo2’ cat cg8.pl

% Get term simplifier

:= [evall.

1~ dynamic(symb_rec/1).

% Assignment and lexical assignment

1= op(500,xfx,:).
1= op(500,xfx,’:=’).

% Form-meaning link
:- op(450,xfx,-).
% Implications

:- op(400,xfx,/).
:- op(400,xfx,\).

% Conjunction and disjunction

:- op(400,xfx,8%).
1= op(400,xfx,+).

% Intensionality modal
:- op(400,2x,8).

% Exponentiator

:- op(400,£fx,~).

% Permutor

1= op(400,fx,>).

% Quantifiers

:- op(400,xfx,all).
:- op(400,xfx,xst).

25

% top(+Words,-X,+A) means that Words parses with meaning
% X of type A

top{(Words,X,A) :-
setof (Y,provel(Words,Y:4),Ys),
membar(X,Ys) .

provel(Words,X:4) :-
premises(Words,Config),
prove(Config,Y:A),
numbervars(Y,0,_),
eval(Y,X).

% premises(+Words,-Config) means that Words corresponds
% to configured type assignment statements Config

premises(Words,Config) :-
premises(Config, (J ,Words).

premises(Config,Config, []).

premises(Result,Config, (Word|Words]) :-
Word - X := A,
append(Config, [X:A],Configh),
premises(Result,ConfigA,Words).

% Element needing to be leftmost in brackets (relative
% pronoun)

premises(Result,Config, [Word |WordsiWords2]) :-
1b(Word - X := A),
append(Words1,Words2,WordsiWords2),
\+(Words? = 0O),
premises(Wordsi,Configl),
append(Config, [[X:AlConfig1]],ConfigAConfigl),
premises(Result,ConfigAConfigl,Words2).

% Element needing to be in brackets (coordinator)

premises(Result,ConfigiConfig2, [Word|Words3Words4]) :-
, b(Word - X := 4),
append(Words3,Words4,Words3Words4),
\+(Words3 = [1),
premises(Words3,Config3),
append(Configl,Config2,ConfigiConfig2),
\+(Contig2 =),

26

¢
P

EENERERNENINNECENINEGRER

append(Config2, (X:A|Config3],Config24Contigd),
mnvmnunncnuwwp.nnonuwmn>nonuwmwu.nonuwmpnonuwmw>nonuwmuv.
wnmswumwmmomﬁwn.nonuwmwnouuwmw>nopuwmm.:onmumv.

% subconfig(Config,RemConfig,P,SubConfig) means that RemConfig is the
% result of replating the non-trivial, but possibly improper,
% subconfiguration SubConfig in Config by P

subconfig(Gamma,P,P,Gamma) :-
\+(Gamma = [1).

subconfig(XYZ,XWZ,P,V) :-
append(X, [Y12],X¥2),
subconfig(Y,W,P,V),
appand(X, [W1Z] ,XWZ).

% Right rules
% \R

prove(Gamma, [1md,A,B] :X\Y) :-
prove([A:X|Gamma] ,B:Y).

4 /R

»

prove(Gamma, {imd,A,B]:Y/X) :-
append(Gamma, [A:X],GammaAX) ,
prove(GammaAX,B:Y).

% &R

prove(Gamma, [pair,A,B] :X&Y) :-
prove(Gamma,A:X), - .
prove(Gamma,B:Y).

h+R

prove(Gamma, [i,A]:X+.) :-
prove(Gamma,A:X).

prove(Gamma, (j,B]:.+¥) :-
prove(Gamma,B:Y). i

4 I\IR

prove(Gamma, {1md,A,B]: [X\Y]) :-
prove([[A:X|Gamma]],B:Y).

27

4 /IR

prova(Gamma, [1md,A,B]: [¥/X]) :-
append(Gamma, (A:X] ,GammaAX),
prove([GammaAX],B:Y).

4R

prove(Gamma, (1md,A, [app,4,B]] :X".) :-
prove(Gamma,B:X).

4 allR

prove(Gamma,X:V all A) :-
gen_symb(U),
substitute(U,V,A,A1),
prove(Gamma,X:A1).

% xstR

prove(Gamma,X:V xst A) :-
substitute(_,V,A,Al1),
prove(Gamma,X:A1).

% aR

prove(Gamma, (1md2,4,C,B] :a(X,Y,2)) :-
append ([A:X|Gamma], [C:2] ,XGammaZ),
prove(XGammaZ,B:Y).

% nR

prove(Gamma, [1md2,A,C,B] :n(X,Y,2)) :-
append ([A:X|Gamma] , [C:Z] ,XGammaZ),
prove([XGammaZz] ,B:Y).

/ Switch to left for Konig/Hepple processing

prove(Gamma,X:A) :-
subconfig(Gamma,LL,P,S1FUS2),
append(S1, {F:U|S2],S1FUS2),
reachable(A,U),
provel(LL,P,S1,F:U,S2,X:A).

provel(L,L,([J,A:X,0,4:X) :-
basic_type(X).

28 ¢

s SR EEEEREAEAERERREE

A \L

provel(LL,P,GammalDelta,A:Y\X,Gamma2,CZ) :-
append(Gammal,Delta,GammaiDaelta),
provae(Delta,B:Y),
provel(LL,P,Gammal, [app,4,B] :X,Gamma2,CZ) .

h /L

provel(LL,P,Gammal,A:X/Y,DeltaGamma2,CZ) :-
append(Delta,Gamma2,DeltaGamma2),
prove(Delta,B:Y),
provel(LL,P,Gammal, [app,A,B] :X,Gamma2,CZ) .

% &L

provel(LL,P,Gamma,4:Xk_,Delta,CZ) :=
append(Gamma, [[£st,A] :X|Delta]l,P),
prove(LL,CZ).

provel(LL,P,Gamma,A:_&Y,Delta,CZ) :-
append(Gamma, [{snd,A]:Y|Deltal,P),
prove(LL,CZ).

% alllL

provel(LL,P,Gamma,X:V all A,Delta,CZ) :-
substitute(_,V,A,Al),
provel(LL,P,Gamma,X:A1,Delta,CZ).

% xstL

vnocmmﬁrﬁ.v.nmaﬂw.xn< xst A,Delta,CZ) :-
gen_symb(U),
substituta(U,V,A,A1),
provel(LL,P,Gamma,X:A1,Delta,CZ).

%+l

provel(LL,P,Gamma,A:X+Y,Delta, [case,A,B,C,D,E]:2)

provel(LL,P,Gamma,B:X,Delta,C:2),
provel(LL,P,Gamma,D:Y,Delta,E:Z).

4 \L

29 it

provel(LL, (app,A,B]):X,Delta,A: [Y\X],(.C2Z) :-
prove(Delta,B:Y),
prove(LL,CZ).

% 0/IL

provel (LL, [app,A,B]:X,,A: [X/Y],Delta,CZ) :-
prove(Delta,B:Y),
. prove(LL,CZ).

4L

provel(LL,P,G1D1,A:X"Y,D2G2,CZ) :-
append(G1,D1,G1D1),
append(D2,G2,D2G2),
append(D1,[B:X}D2],D1BD2),
prove(D1BD2,C:Y),
append(G1t, [[app,A,(1md,B,C]]:YIG2],P),
prove(LL,CZ).

% #R

provel(LL,P,Gamma,A: #X,Delta,[up,B]: #Y) :-
append(Gamma, [(A: #X|Delta],P),
modal(LL),
prove(LL,B:Y).

% #L

provel(LL,P,Gamma,A: #X,Delta,CZ) :-
provel(LL,P,Gamma, [dn,A] :X,Delta,CZ).

% aL

provel(LL,P,G1D1,B:a(X,Y,2),D0262,C2Z) :-
append(G1,D1,G1D1),
append(D2,G2,D2G2),
prove(D1,A:X),
prove(D2,C:2),
appendn([G1, [[app2,B,A,C]:Y],G2],P),
prove(LL,CZ). . P

% nL

provel(LL, [app2,B,A,C}:Y,Gamma,B:n(X,Y,Z),Delta,CZ) :-
prove(Gamma,A:X),
prove(Delta,C:Z),

= R NENERF"TEFENFEF " ~"F

=.I--II.--I--.H--iﬂ~.x

prove(LL,CZ).
% >R

provel(LL,P,Gamma,X: (>A) ,Delta,Y: (®B)) :
append(Gamma, [X: (>A)|Delta],P),
rightexmodal(LL),
prove(LL,Y:B).

% >L

provel(LL,P,Gamma,X: (>A),Delta,CZ) :-
append(Gamma, [X:A|Delta] ,P),
prove(LL,C2Z).

% >P

provel(LL,P,Gamma,X: (>A), [YBIDelta] ,CZ) :-
append(Gamma, [YB,X:(>A) |Delta],P),
prove(LL,CZ).

append(0},L,L).

append([R1L1],L2, [HIL]) :-
append(L1,L2,L).

appendn([d,)

appendn({L1]|Ls],L) :-
append(L1,L2,L),
appendn(Ls,L2).

member (H, [H1_1).
member (X, [_IT]) :-
member (X,T):

% Konig reachability

reachable(X,Y) :-
\+ \+ reachablei(X,Y).

reachable1(X,X).
reachablel(X,Y/_) :-
reachablei(X,Y).
reachablel(X,_\Y) :-
reachablel(X,Y).
reachablei(X,(Y/_]) :-

31

1

reachablei(X,Y).
reachable1(X,[_\Y]) :-
reachablel(X,Y).
reachable1(X,a(_,Y,.)) :-
reachablei(X,Y).
reachablei(X,n(_,Y,.)) :-
reachablel(X,Y).
reachablel (X,8#Y) :-
reachablel(X,Y).
reachablel(#X,Y) :-
reachablel(X,Y).

reachablei(X,_"Y) :-
reachable1(X,Y).

reachablel(_,(>.)).

reachablel(>A,B) :-
reachablei(A,B).

reachable1(C,A+B) :-
reachablel1(C,A),
reachablel1(C,B).

reachable1(C,A&) :-
reachablel(C,4).

reachablel(C,_&B) :-
reachable1(C,B).

reachable1(C,_ all A) :-

reachable1(C,A).
reachablel(C,_ xst A) :-
reachable1(C,A).
modal([]).
modal(_: #.).
modal([HIT]) :-
modal(H),
modal(T).

rightexmodal((]).

rightexmodal(_:(>.)).

rightexmodal ([HIT]) :~
rightexmodal (H),
rightexmodal(T).

basic_type(s).

32

™

SO AN AR A O WO e e R A e e

basic_type(sp).

basic_type(np(.)).

basic_type(cn(_)).

symb_rec(0).

gen_symb(N1) :- retract(symb_rec(N)),
N1 is N+1,
assert(symb_rec(N1)).

% Barry substitution

substitute(Val,Var,InTerm,OutTerm) :=-
bagof (Term,Var~(Var=Val, Term=InTerm), (QutTerm]).

% lexical entries

a - [up,(1md,P, [Imd,q, [xst,X, [both, [app,P,X1, [app,q, [up,X111111]
:= #(G all ((((#np(sg(G)))-s))/en(sg(G)))). . -
bill = [up,bi11] . -
:= #np(sg(m)).
boy - boy
13 #en(sg(m)).
boys - boys
:= #en(pl).
claim - claim
:= #((np(pl)\s)/(#s)). -
claims - claim
:= #(0XG xst np(sg(G)))\s)/(#s)).
avery - [uwp,[ind,P,[1md,Qq, [a11,X, [imply, [2pp,P,X], [app.q, hnv X111111]
:= #(G 211 ((((#np(sg(G)))~s))/en(sg(®)))). .
girl - girl
:= #cn(sg(f)).
herself - fup, (1md,X,[1lnd,Y, [app, [2pp,X,Y],¥111]

#(np(sg(£))~(np(sg(£))\s)).

himself - [fup,[1md,X,[Ind,Y, {app, [app.X.¥],¥111]
:= #(np(sg(m))~(np(sg(m))\s)).
john ~ [up,john]
:= #np(sg(m)).
like - 1like
:= #((ap(pl)\s)/(A xst np(A))).
likes ~ 1like - .
1= #(((G xst np(sg(G)))\s)/(A xst np(A))).
loves - loves
:= #(((G xst np(sg(G)))\s)/(4 xst np(a))).
man - man

:= #cn(sg(m)). .

33

mary - fup.mary]

:= #np(sg(£)).
men = men

:= #cn(pl).
run - run

:= #(ap(pl)\s).
runs - run

:= 8((G xat np(sg(G)))\s).
sing - sing

:= #(ap(pl)\s).
sings - sing

:= #((G xst np(sg(G)))\s).
suzy - suzy

:= #np(sg(L)).
the - the

:= #(A all (ap(A)/cn(A))).
themselves - [up,[lmd,X,[lnd,Y, [app, nwvv u ,Y1,Y111]

- = #(ap(pl)~(ap(pl)\s)).

these - these
:= #(np(pl)/enlpl)).
think - think
:= #((ap(pl)\s)/(#s)).
thinks - think
;= #(((G xst np(sg(G)))\s)/(#s)). .
this - this
:= #(G all (np(sg(G))/cn(sg(G)))).
valk - walk
= #(ap(pli\s).
walks - walk .
:= #((G xst np(sg(G)))\s).
¥oman - woman
:= #cn(sg(f)).

% Sentence coordination

b(and - [up, [1md2,X,Y, [both,X,¥]]1]
:= #n(s,s,s)).

blor - [uvp, [1md2,X,Y, [either,X,Y1]]
:= #n(s,s,s)).

% Verdb phrase coordination
b(and

- [up, [1md2,X,Y, [1nd,Z, [both, [app,X,2], [app,¥,2]11]]
:= #(A all n(np(A)\s,np(A)\s,np(Ad\s))).

34

HEF R W R R W W E W W W W W owr Wy w oww e

s R RNERNNERNENEESNENSNESH

str(5, (this,man,wvalks],s).
str(6, [this,man,walk],s).
str(7, [this,men,walks],s).
str(8,[this,men,walk],s).
str(9, [these,man,walks],s).
str(10, [these,man,walk],s).
str(11, [these,men,valks],s).
str(12, (these,men,walk],s).

blor
- [up,[1md2,X,¥,[1nd,Z, [either, [app,Z, [up,X1], (app,Z, [up,¥]11111]
:= #(A all n(ap(A)\s,#{(np(A)\s))~s,np(A)\s))).

% Subject coordination

b(and
- [up,[1md2,X,Y, [imd,Z, [both, [app,X,Z], [app,Y,Z]111]]

:= #n(s/((A xst np(A))\s),s/(np(pl)\s),s/((A xst np(A))\s))).
str(13, [the,man,that,walks] ,np(.)).

str(14, [the,man,that,walk],np(_)).

b(or
- [up,[1md2,X,Y,[1nd,Z, [either, (app,Z, [up,[i,X111, (app.Z, Cup, [§,¥111111] str(15, [the,men, that,walks] ,np(_)). g
1= #(A all (A1 all n(s/(ap(A)\s),#(((s/(np(A)\s))+(s/(np(A1)\s))))"s,8/(ap(A1)\s))))). str(16, [the,men,that,wvalk],np(_)).
% ATBE ’ str(17, [the,man, that,suzy,likes],np()).
b(and - str(18, [the,man, that,mary,thinks,valks] ,np(_)).
- mcw.mHBan.N.<.HHBA.N.nvonr.mumv.N.Nu.mwvu.<.Nuuuuu :) str(19, (the,man, that,mary,thinks,valk] ,np(.)).
:= #(A all n((>np(A))\s, (>np(A))\s, (>np(A))\s))). - str(20, [the,men,that,mary,thinks,valks] ,np(_)).
str(21, (the,men, that,mary,thinks,valk] ,np(_)).
b(or .
- nﬁv.HHEQM.N.<.nav.mHEn.N.mownon.nwvv.x.Nu.mmvm.<.Nuuuuuu str(22, (the,man,that,mary,thinks,bill,clains, suzy,likes] ,np(_)).

1= #(A all n(Onp(A))\s,#((>np(A))\s), (G>np(A))\=))).
str(23, [the,man,that,mary,likes,the,voman, that,loves] ,np(_)).

% Relative pronoun
str(24, [a,man,walks],s).

str(25, [john,likes,a,man],s).

1b(that
- [up, [1md,X, [1md,Y,(1nd,Z, [both, [app,X, [up,Z]], [app,Y¥,2]11111] str(26, [every,man,loves,a,voman] ,s).
1= (# (A a1l ([(en(A)\en(A))/((>(#np(A)\SIIN). T str(27, [every,man,claims,a,voman,sings],s).

str(28, [john,claims,every,boy,thinks,a,voman,walks],s).

% test(N) tests ‘example N _
str(29, [a,man,that,valks,sings],s).

str(30, [a,man, that,sings,walks],s).

test(N) :-
str(N,Str,A),
nl, nl, write(N), tab(2), write(Str), wnnnmw.mm.awb.nrmd.Hmem.oqoﬂw.noﬂwb.mwumuu.mv.
grite(® => ?), write(A), write(’?’), nl,
cestI(Str A) . str(32, [john,likes,himsalf],s).
. str(33, [john,likes,herself],s).
test1(Str,A) :- : str(34, [mary,likes,himself],s).
top(Str.X.A), str(35, (mary,likes,herselt],s).

write(X), nl, fail.
str(36, [john,thinks,mary,likes,himsalf],s).

str(1, [mary,walks],s).

str(2, [mary,likes, john],s). str(37, [the,boys,like,themselves],s).
str(3, [(mary,loves,the,men],s). str(38, [the,boy,likes,themselves],s).
str(4,[bill,claims,the,man,thinks,the,voman,walks],s). . str(39, [the,boy,like, themselves],s).

str(40, [the,boys,think,mary,likes, themselvas],s).

35 36

E R FN N EEEDREERFRESSE®EI®N§EW

str(41,[john,walks,and,mary,sings],s).
str(42, [john,valks,or,sings],s).
str(43, [john,or,mary,walks],s).
str(44,[john,and,mary,walks],s).
str(45, [john,and,mary,valk],s).

str(46, (mary,thinks, john,walks,and,sings],s).
str(47, [mary,thinks, john,valks,or,sings],s).

str(48, [bill,thinks, john,and,mary,walk],s).
str(49, [bill,thinks, john,or,mary,walks],s).

str(50, [the,man,that,valks,and,runs,sings],s).
str(51,[the,man,that,valks,or,runs,sings],s).

str(52, [the,man,that, john,sings,and,mary,likes] ,np(sg(m))).
str(53, [the,man,that, john,likes,and,mary,sings] ,ap(sg(m))).
str(54, [the,man,that, john,likes,and,mary,loves],np(sg(m))).: -
str(55, [the,man,that,john,sings,or,mary,likes] ,np(sg(m))). - _
str(56, [the,man,that, john,likes,or,mary,sings] ,np(sg(m))).
str(57, [the,man,that, john,likes,or,mary,laves] ,np(sg(m})).

str(58, [a,woman,or,john,valks],s).
str(59, [a,woman,walks,and,sings],s) .
str(60, [a,woman,walks,or,sings],s).
str(61, [every,uoman,walks,and,sings],s).
str(62, [every,woman,walks,or,sings],s).

str(63, [john,claims,mary,valks,or,sings],s).
str(64,[john,claims,every,voman,walks,or,sings],s).
str(65, [john,thinks,a,man,or,a,voman,sings],s).

atr(66, [mary,or,suzy,likes,herself],s).
str(67, [(mary,or,suzy,likes,themselves],s).
str(68, [mary,or,suzy,liks,herself],s).
str(69, [mary,or,suzy,like,themselves],s).
str(70, [john,and,bill,likes,himself],s).
str(71, [john,and,bill,likes,themselves],s).
str(72, [john,2nd,bill,like,himself],s).
str(73,[john,and,mary,like, themselves],s).
ruulo2) cat eval.pl

% eval(+Term,-NF) lambda-converts a lambda term Term to its normal
% form NF. The terms may be freely generated by n-ary operators

37

% which form the heads of lists with their 1list of operands as tail.
% The operators include app which takes two terms as operands, and
% lmd vhich takes a variable and a term.

eval(X,NF) :-
numbervars(X,0,_),
evall(X,NF).

evall(Term,NF) :-
contract(Term, Terml), !,
evall(Terml,NF).

evall(Term,Term) .

contract([app, [1md,A,B],C],D) :-
subst(C,A,B,D).

contract([app2, (1md2,4,8,C],D,E] ,F) :~"
subst(D,A,C,G), -~

subst(E,B,G,F). KRR

LTI -

contract([fst, [pair,4,_1],A).
contract([snd, [pair,_,B]],B).

contract([case,[i,A],B,C,_,_],F) :-
subst(4,B,C,F).

contract([case,[j,A),_,_,D,E],F) :-
subst(A,D,E,F).

contract([dn, [up,A]],A).

contract ((H|T], [HIT1]) :-
contractlist(T,T1).

contractlist([T[Ts],[T1!Ts]) :-
contract(T,T1).

contractlist([TITs], [TITs1]) :-
contractlist(Ts,Ts1).

subst(A,B,B,A). REL~

subst(_,_,C,C) :- atom(C).
subst(_,_,C,C) :- C = *$VAR’().

subst(A,B, (HITs], [H1ITs1]) :-
subst(A,B,H,H1),

38

subst(A,B,Ts,Tsl).
ruulo2) prolog

Quintus Prolog Release 2.5 (Sun-4, SunOS 4.1)
Copyright (C) 1990, Quintus Computer Systems, Inc.
1310 Villa Street, Mountain View, California (415) 965-7700

All rights reserved.

| ?- compile(cg8).

[compiling /users.lot/morrill/Dyana/Progs/cg8.pl...]
[consulting /users.lot/morrill/Dyana/Progs/eval.pl...]
[eval.pl consultad 0.117 sec 2,244 bytes]

(cg8.pl compiled 7.500 sec 22,400 bytes]

yeos

|"?- test().

1 [mary,walks] => s?
[app. [dn,walk],mary]

2 [mary,likes,john] => s?
[app, [app, [dn,1like], john] ,mary]

3 mswww.wo<mm~drm.ambu => g?
fapp, [app, [dn,loves], [app, [dn,thel , [dn,men]]] ,mary]

4 [bill,claims,the,man,thinks,the,woman,walks} => s?
(app, (app, [dn,clain], (up, [2pp, [app, [dn, think], [up, [app, [dn,walk], (app,
[dn,the], (dn,wvoman]]]]], [app, [dn,the], [dn,man]]1]11],bill]

5 [(this,man,walks] => s?
[app, [dn,walk], [app, [dn,this], [dn,man]]]

6 [this,man,walk] => s?
7 nﬁuwunsou.anWuu => g?

8 [this,men,walk] => s?

39

9 [these,man,walks] => s?
10 [these,man,walk] => s?
11 ([these,men,walks] => s?

12 [these,men,walk] => s?
[app, [dn,walk], (app, [dn,these], [dn,men]]]

13 [the,man,that,walks] => np(_477)?
[app, [dn,the], [1nd,C, [both, [app, [dn,valk],c], [app, [dn,man],C]]1]

14 [the,man,that,walk] => np(_477)?
15 [(the,men,that,valks] => np(_477)7?

16 [the,men,that,walk] => np(_477)?
Capp, [dn,the], [1nd,C, [both, [app, [dn,walk],C], [app, [dn,men] ,C]]]]

17 [the,man,that,suzy,likes] => np(_479)7
fapp, [dn,thel, [1nd,C, [both, (app, [app, [dn,1ike],C], (dn,suzyl], (app, [dn,man],C13]]

18 [the,man,that,mary,thinks,walks] => np(_481)7?
(app, [dn, the], [1nd,C, [both, [app, [app, [dn,think], (up, (app, [dn,walk],c]]],maryl,
fapp, [dn,man],c1]]] i

19 [the,man,that,mary,thinks,walk] => np(_481)7
20 (the,men,that,mary,thinks,walks] => np(_481)7

21 [the,men,that,mary,thinks,walk] => np(_481)7?
hmvv.mab.ﬁnmu.nwaa.n.ﬁvon#.nmvn.mwvv.ﬁab.drwnwu.mcv.muvm.man.umpwu.nuuu.amn<u.
(app, [dn,men],c]1]]]

40

22 hnum.Bwu.ann.Emuq.nwwuwm.uwww.nwmwuh.mﬁNq,HWWmmu => np{_487)7?
(app, [dn,the], [1md,C, [both, [app, [app, [dn, think] +[up, [2pp, [app, (dn,clainm],
fup, (app, [app, [dn,1ikel,C], [dn,suzy]1]],bi11]]] +mary], (app, [dn,man] ,C]]]]

23 mdwo.amb.«wun.Bmﬂw.HMWmm.dum.noawb.dwmn.uoqmuu => np(_487)7

24 [a,man,walks] => g? -
[xst,C, [both, [app, [dn,man],C], [app, [dn,walk],C]]]

25 [john,likes,a,man] => g?
[xst,C, [both, [app, [dn,man],C], [app, [app, [dn, Like] ,CJ,john]]]

26 [every,man,loves,a,woman] => s?

ﬁwww.o.nwsﬁpw.mmvw.nmu.ambu.ou.mnud.n.nvOdn.nmwn.mau.uoBmuu.nu.
[app, [app, [dn,lcves],61,€]1]11 .

nnuﬂ.n.mwonw.nwvv.mau.noﬂwhu.nu.meH.n.hwEva.nmvv~nnb.smbu.nu.
Capp, [app, [dn,loves],c],G111]]

27 ﬁmqmﬂw.Hmu.npwwnu_w.nnﬂwn.mwnmmu => g7
ﬁmpw.n.mwawww.ﬂwvv.mnn.amuu.nu.nmwv.mmmv.ﬁnb.npwwsu.mﬁu.mnmﬂ,n.ﬁwonw.
[app, [dn,woman], 6], [app, [dn,sing] ,G]113,¢1]]
hwup.n.ﬁwava.mwwv.ﬁnu.Smuu.nu.hnmﬂ.m.hWOnv.hmvm.mab_uoawnu.nu.
[app, [app, [dn,claim], [up, [app, [dn,sing] ,6]1],C1111]
[xst,C, [both, [app, [dn,woman] ,C], [all,G, [imply, [app, [dn,man],6],
[app, [app, [dn,clain], [up, [app, [dn,sing],c117,61111]

28 muoub.nwwwsw‘mqoﬂw.cow.nwwan.m.uoswb.anWmu = g7
mwww.o.mwavww.mwvv.mab.uowu.nu.mmvm.mwuv.mnb.nwwwau.m:v.mmvv.hmvv.n&b.nanwu.
ncv.mxua.n.thdw.nmwv.mah.nonuu.Ou.mwwv.mnu.unwwu.nuuuuu.nuuu.uorbuuu

mmww.n.mwawww.mwuv.mab.ccwu.nu.mwvv.mwmv.mnh.nanwnu.ﬁcn_ﬁaun.n.ﬁwonw.mmmv.
[dn,voman],G], [app, [app, [dn, think], [up, [app, [dn,walk],G]]] +€11111, johnl1]
ﬁmpw.n.mwavww.hwvv.ﬁab.vowu.nu.muud.n.Hwonw.ﬁwmv.mnu.uoamuu.nu‘ﬁwvv.mwvw.
mnb.nwwwsu.mcv.nwbv.nmbv.nnb.nnwswu.mﬁv.ﬁmmv.hnh.umHWu.nuuu_nuuu.qosbuuuuu
Capp. [app, [dn,clain], [up, (all,C, [imply, [app, [dn,boyl,c], [app, (app, [dn,think] ,
n:v.Huud.n.ﬁuonw.nmvv.mnb.noewhu.nu.ﬁwuv.nnu.unkwu.nuuuuu.nuuuuu.uarbu
Capp, [app. [dn, clain] , [up, [al1,C, [imply, [app, [dn.boy],C], [xst,G, [both, [app,
[dn,woman],G], [2pp, [app, [dn, think], lup, [app, [dn,walk],6111,61313111, john)
mmvv.ﬁmvv.hnb.nwwwaa.muv.nnuﬂ.o.ndonv.nwmv.ﬁnh.uuawhu.nu.ﬁaww.n.ﬁmavw%.ﬁmnw.
Hnn.uowu.nu.mwvu.ﬁmvv.mab.nnwbxu.mcv.humﬁ.hnn.qu#u.nuuu.muuuuuuu.uuwha
ﬁxmn.n.hwonv.ﬁwvv.nab.coambu.au.mmww.o.mwnnww.ﬁmvn.nnn.wowu.nu.hwvh.mwwﬂ.
mas.nwwwau.mcv.nmvv.mmvv.mAb.nswbwu.m:n.ﬁwuw.muu.nwpwu.nuuu.nuuu.uarhuuu_u

41

nxmn.n.haonw.mwvw.ﬁuh.uoamnu.ou.mmmv.nmvw.nnb.nwmwﬂu.ﬁnv.muww.n.hwavww.mwvw.

[dn,beyl,61, [app, [app, [dn, think], {up, Capp, [dn,walx],c]]1,61111] ,john]]1]

29 mw.Bwh\nwwn.uunu.uwnmmu => g?
{xst,C, [both, [both, (app, [dn,walk],C], (app, [dn,man],C11, Capp, [dn,sing],c11]

30 nw.umn.dwwn.umnmu.uwpwuu => g?
{xst,C, [both, [both, [app, [dn,sing],C], {app, [dn,man], €11, (app, [dn,walk],c]]]

31 n».ﬂhh.nrwn.Hmwmu.aquw.qoamu.mwumuu => §?
[xst,c, [both, [both, [all,T], (imply, [app, [dn,woman],], Capp, [app,
mﬂb.HnWou.uu.nuuu.ﬁmwﬁ.mnb.ﬂnuu.nuu.mwum.nnn.uwnmu.nuuu

32 (john,likes,himself] => g?
Capp, [app, [dn,1ike], john] , john]

33 [john,likes,herself] => s?
34 [mary,likes,himself] => s?

35 [mary,likes,herself] => s?
Hmvv.nwvu.mau.wwwou.smhwu.smnwu

36 muown.nuwbwu.Bmﬂ%.wwwom.uwsmmwmu => s?

37 mﬂum.vowu.wao.nwmamowcmmu => g?
Capp, [app, [dn,1ika], [app, [dn,the], (dn,boys111, [app, [dn, the], fdn,boys111

38 [the,boy,likes,themselves] => s?
39 [the,boy,like,themselves] => s?

40 ﬁnrn.wawm.nwwuw_ﬁwﬂw_wwwmm.nwmsmmpqmmu => 5?7

42

\

= = ms ms GE S W N E N

41 [john,walks,and,mary,sings] => s?
(both, (app, [dn,valk], john], (app, [dn,sing],mary]]

42 [john,walks,or,sings] => s?
[either, (app, [dn,walk], john], (app, [dr,sing],john]]

43 [john,or,mary,walks] => s? -
(either, [app, [dn,walk], john], [app, [dn,walk] ,maryl]

44 [john,and,mary,valks] => s?

45 Eog.ga.smﬂw.um_wwu a> s?
[both, (app, [dn,walk], john], [app, [dn,walk] ,mary]]

46 [mary,thinks,john,walks,and,sings] => s? '
(app, [app, [dn,think], [up, [both, [app, [dn,walk], john], [app, [dn, sing],john]11],mary]
(both, Capp, [app, [dn, think], [up, [app, [dn,walk], johnl1],mary], (app, [dn,sing] ,maryl]

47 ﬁEme.nE..PwuL,og.um.._ku.ou..uwbmmu a> g?
Capp, [app, [dn,think], (up, [either, [app, [dn,walk] .john], [app, [dn,sing], john]1]],mary]
[either, (app, [app, [dn,think], [up, [app, [dn,walk], john]]] mary],
lapp. [app, [dn, think] , [up, [app, [dn,sing], john]]] ,maryl]
leither, [app, [app, [dn, think] , (up, [app, [dn,walk],john]]1,mary], [app, [dn,sing] ,mary]]

48 [bill,thinks,john,and,mary,walk] => s?
[app, (app, [dn, think], [up, (both, [app, [dn,walk],john], [app, [dn,walk] ,mary]11],bill]
&

49 [bill,thinks, john,or,mary,walks] => 57
Capp, [app, [dn, think], [up, [either, [app, [dn,walk],john], [app, [dn,walk] ,mary]]]],bill]
[either, (app, (app, [dn, think], [up, [app, [dn, valk] ,john]]],bill],

Capp. [app, [dn, think], [up, [app, [dn,walk] ,mary]1],bil1]]

50 naro.ag.nrwn.um;u.wﬂn.gu.uwum& => g? = .
[app, [dn,sing], [(app, [dn,the], [1md,C, [both, [both, [app, [dn,walk],C],
(app, [dn,run],C]], [app. [dn,man], 11112

51 mn:m.smb.nwmn.cmHWm.ou.gm.w“_..nmw”_ => g7

43

(app, [dn,singl, (app, [dn, the] , [imd,C, [both, [either, (app, [dn,walk] .8\.
{app, [dn,run},C1], [app, [dn,man] ,c]]1]]

52 hnrm.u_wb.nwwn.uog.mwumm.gn.aﬂw.wwwgu => np(sg(m))?
53 mnno.smb.dwmn.uog.wwwmu.wna.smhw.uwbmuu => np(sg(m))?

54 hnrm.ﬂmb.nuwﬂ_uowb.wwwmm.mhn.suﬁw‘wcdmmu => np(sg(m))?
(app. [dn, the], [1nd,C, [both, (both, (2pp, [app, [dn,1like] ,C] ,john],
(2pp, [app, [dn,loves] ,C],mary]], [app, [da,man],c]11]

58 mnwo.sub.dwmu.uog.uwumu.on.auﬂwrpwwouu_ => np(sg(m))?
56 ndrm.amb.nuwd.uog.wwwmw.ou..am.q.mmnwuu => np(sg(m))?

57 nwe.amh.duwﬂ.u.uth.u..wmm.ou..aE.wg«nuu => np(sg(m))?
[app, [dn,the], [1md,C, [both, [either, [app, [app, [dn,like] ,C],john],
Capp, [app, [dn,loves],C],mary]], [app, [dn,man],c]11]]

58 mm.uosuh.o?u.owb.uwpwuu => 57
(either, [xst,G, [both, {app, [dn,voman] ,G], [app, [dn,wa1k],G]11], [app, (dn,walk] »johnl]

59 mu.coBmu.umeu.mbn.wwummu = s? .
(xst,C, [both, [app, [dn,woman] ,C] » Dboth, [app, [dn,walk],c], [app, [dn,sing],c]111

60 ﬁm.noaun.umuww.on.up,um& => 57
leither,[xst,I, [both, [2pp, [dn,woman] ,I], [app, (dn,walx],1]3],
[xst,I,(both, [app, [dn,weman] ,I], [app, [dn,sing], 11713
[xst,C, [both, [app, [dn, voman] ,C], [either, (app, (dn,¥alx],c], [app, [dn,sing] ,c]1]]

61 mo<ouu__,.uoamb.uwwwu. and,sings] => g7
{all,c, (imply, [app, [dn,woman],C] » [both, [app, [dn,valk],c], (app, fdn,sing],€11]] 22

62 ?403..naawn.uwu.wm.nﬂ»mwumuu => g7
mwf. +C. [imply, (app, [dn,woman] ,c] s [either, [app, [dn,walk],c], (app, n&.?mu..:m“_ ,C1111
leither, [al1,1, (imply, [app, [dn,woman] , 1] » Capp, [dn,walx], 1117, .

44

|

i

m (all,I, (imply, [2pp, [dn,woman],I], {app, [dn,sing], 11131

leither, [app, [app, [dn,clain] , [up, [app, [dn,walk] »mary]]], john],
[=pp. [app, [dn,claim] , [up, [app, [dn,sing] ,mary]]1],john]]
[either, [app, [2pp, [dn,claim], (up, [app, [dn,walk] ,mary]]] »jenn], [app, [dn,sing], john]]

64 [john,claims,every,voman,walks ,or,sings] => s?
[all,c, [imply, [app, [dn,woman],C], (app, [app, [dn,claim], [up, [eithar, [app,
ldn,walk],c], [app. [dn,sing] 1111, john]]]
(a11,¢, [imply, [app, [dn,woman] ,C], [sither, Lapp. [app, [dn,claim], [up, [app,
(dn,walk],c11],john], [app, [2pp, [dn,clain], (up. (app, [dn,sing],c1]],john]11]
{app, [app, [dn,clain], [up, [all,C, {imply, [app, [dn,woman] ,C], [either, [app,
[dn,=a1x],C], [app, [dn,sing] ,c11111] +john]
[app. [app, [dn,claim], [up, [sither, [all,I, (imply, [app, [dn,woman],I], [app,
[dn,walk],1]1], [al1,I, [imply, (2pp, [dn,woman] ,I], [app, ldn,singl 1117111, joha]
[either, (all,G, [imply, [app, [dn,voman] ,G] , fapp, [2pp, [dn,clain], [up, [app,
[dn,walk],6]1}] . johnl]] » Lapp, [dn,sing], john]]
[either, [all,T, [imply, [app, [dn,woman] 211, [app, [2pp, [dn,claim] , [up, [app,)
_ [dn,walk], 1111, johnl1], (211,1, [imply, (app, [dn,woman], 11, [app, [app,
ldn,clain], [up, (app, [dn,sing] 1111, john]1]]
Leither, [app, [app, [dn,claim], lup, [al1,G, [imply, [app, [dn,woman] ,G] , [app,
(dn,w21k],G]1111, jobn] , [2pp, [dn,sing] , johnl]
(either, [app, [app, [dn,clain], {up,[al1,TI, [imply, [app, [dn,woman] ,T] , [app,
(dn,%alk],11111],john], (app, [app, [dn,claim], (up, [a11,T, [imply, [app,
[dn,voman], 1], [app, [dn,sing], 111111, johnl]

63 [john,claims,mary,walks,or, sings] => g7
“ Lapp. [app, [dn,clainm], [up, [either, [app, [dn,walk] »maryl, [app, [dn,sing] ,mary]1]], john]

65 Eog.ﬁﬁbﬁ.w.sw:.on.m.uoum.n.mwsmuu => g7 .

[app, [app, [dn, think], [up, (either, [xst,G, [both, [app, [dn,man],6], [app, [dn ,singl,c1]1],
[xst,L, [both, [app, [dn, voman] ,L] , [app:, (dn,sing],1]11111],john]

[either, (app, [app, [dn,think] , (up,([xst,G, [both, lapp, [dn,man] G, (app, [dn,sing],c11111,

_john], [app, [app, [dn, think], [up, [xst,L, [both, (app, [dn,woman] L], [app, [dn,sing],L1711],jc

66 hEWHw.OH.mﬁNw.H;mm.nmﬂmm“_.uu => s§?
[either, [app, (app, [dn,1like] ,mary] »mary], [app, (app, [dn,lika] , [dn,suzyl], (dn,suzy]]1]

67 [mary,or,suzy,likes,themselves] => s?

68 [mary,or,suzy,like, harself] => s?

45

ge———TT————— — e -

b

69 mEme.on.ucnw.wwwm.gmsum:muu => g7
70 Eog.gn.vwww.wu..wmu.rwsuownu a> g7
71 D.og.mbn.uwwu..pwwou.nwmamopqouu => g?
72 Eog.gn.GMHH.waa.rMﬂumwﬁu_ => g?

73 _U.og.wnm.amhw.H;o.aw!._mawqmau => g?
[both, fapp, [app, [dn,like] »john], john], [app, [app, [dn,like] »mary] ,mary]]

| ?- -2z
ruulo2y -Z
script done on Thu Dec 20 16:05:12 1990

6 Comments on Coordination, by Guy Barry

A claim ofter made in favour of flexible categorial grammars is their ability to deal with a
large proportion of coordination phenomena by means of a single principle, usually assumed
to be as follows:

(104) Two (or more) strings may be coordinated to give a string of type X iff each has
type X. g

For the purposes of this discussion we shall treat the two directions of implication in (104)
as two separate hypotheses, (105) and (106):

(103) If two (or more) strings can be given the same type X, then they can be coordinated
to give a string of type X.

(106) If two (or Bo_“mv strings can be coordinated to give a string of type X, then each
can be given type X.

We shall assume (106) to be correct, so that for instance we posit some shared type for the
canjuncts in (107): - -

(107) John is [lucky] and [a rogue].

However, in the framework of the Lambek calculus, (105) appears to be too general; as
we shall see in the examples below, there are many cases where it is possible to give a

46

| |
RENNENNIvENmN=nNns

wE T

~SNNE

’

——

e,

A/C = AMB/C, A/B,B = A, B,A\B = A4,VZ.A=> ;GS teoesa man
Then this is a categorial derivation of the de-re interpretation of a man

came tn:
believes a man came in
VP/s vX.X/(X\np) . vP i
(sVVP)/((s¥'F)\np) ?,..ézuumw
uc_ﬁu
ba

VP

i tructure
The use of vr on the embedded verb turns around the usual function argument struc
m -
(using C as the translation of came in):

Azt Az§[z1(C(2))(22)]
»v rwkmmrmw‘iuo.?m@amz

Hence the result for the embedded sentence is a function over the embedder:

4 GQUAXr (C()) Xrm))]
N ergea s e]

Applied to the sentence embedder (using B as the translation of believes):

Az5[GQ(A=[ApAy[B(2)(1)(C(2))(z2)])]

Az3[GQ(Az[B(C(2))(z2)))] 3 o
M_w hwnﬂw“Emmn that allowed this derivation was the value-raising sequent. It is derivable
e

i t follow
in the Lambek calculus, which is a calculus BE.U?..EM E«EEMH M: nwmou HHHM M_men %aﬂw
from the intuitive understanding of the nwﬁmﬂ.z..uﬂ nauhmnﬂqﬁ.n : MH? ok
to change the system to make this value-raising sequent unden

i claim an emergent account, for
i eaning of the connectives. Thus one can . ¢ :
o adas M_n categorisation is necessitated to obtain the basic facts and it turns ou

B e-ambiguity simply follows from

that this is a sufficiently powerful categorisation that scop
the meaning of the connectives.

8 References

ickeri £ ituency in Categorial Grammar’, in
d Pickering: 1990, ‘Dependency and Consti . .]
WHHW Munw w”_um zom..E. Glyn (eds.) Studies in Categorial Grammar, Edinburgh Working
wwwﬁ,u in Cognitive Science, volume 5.
Benthem, Johan: 1983, The semantics of Variety in Categorial Grammar, Report
yan 1 .]

i i University. Also in W. Buszkowski el
, Department of Mathematics, Simon Fraser Univer: A Jusz ;
.Mw.wwmh.umvwmmm_ Categorial Grammar, Volume 25, Linguistic & Literary Studies in Eastern

Europe, John Benjamins, Amsterdam /Philadelphia. .
van Benthem, Johan: 1986, ‘Categorial Grammar’, in Essays in Logical Semantics, Volume

56

8, Studies in Linguistics and Philosophy, D. Reidel, Dordrecht, pp. 123-150.

van Benthem, Johan:1987, ‘Categorial Grammar and Type Theory’, Prepublication Seres
87-07, Institute for Language, Logic and Information, University of Amsterdam.

Buszkowski, W.: 1986, ‘Generative Capacity of Non-Associative Lambek Calculus’, Polish
Academy (approx. reference).
Dosen, K.: 1989, ‘Modal Logic as Metalogic’, Research paper (approx. reference).

Emms, Martin: 1990, ‘Polymorphic Quantifiers’, in Barry, Guy and Morrill, Glyn (eds.)
Studies in Categorial Grammar, Edinburgh Working Papers in Cognitive Science, vol-
umeAmsterdam Colloquium.

Gazdar, G.: 1981, ‘Unbounded dependencies and coordinate structure’, Linguistic Inquiry,
12, 155-184.

Gazdar, G., Klein, E., Pullum, G. and Sag, IL: 1985, ‘Generalized Phrase Structure Gram-
mar’, London: Basil Blackwell.

Girard, Jean-Yves: 1987, ‘Linear Logic’, Theoretical Computer Science 50, 1-102.
Girard, Lafont, and Taylor: 1989, ‘Proofs and Types’, Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, Cambridge.

Hendriks, Herman: 1990, ‘Flexible Montague Grammar’, in Deliverable R1.2.A of DYANA
Dynamic Interpretation of Natural Language, ESPRIT Basic Research Action BR3175.

Hepple, Mark: 1990a, ‘Normal form theorem proving for the Lambek calculus’, in Karl-
gren, H. (ed.), Proceedings of COLING 1990.

Hepple, Mark: 1990b, ‘Word Order, Binding and Extraction in Categorial Grammar’,
PhD thesis, Centre for Cognitive Science, University of Edinburgh. (approx. reference).
Hepple, Mark and Glyn Morsill: 1989, 'Parsing and Derivational Equivalence’, Proceedings
of the Fourth Conference of the European Chapter of the Associstion for Computational
Linguistics.

Kénig, E.: 1989, ‘Parsing as natural deduction’, Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

Lambek, J.: 1958, ‘The mathematics of sentence structure’, American Mathematical
Monthly 85, 154-170.

Lambek, J.: 1961, ‘On the calculus of syntactic types’, in R. Jakobson (ed.), Studies of
Language and its Mathematical Aspects, American Mathematjcal Society, pp. 166-178.

Lewin, L: 1990, ‘An algorithm for quantifier scoping’, Technical Report, Dept of Artificial

Intelligence, University of Edinburgh.

‘3 Moortgat, Michael: 1990, “The Quaatification Calculus: Questions of Axiomatisation’,
G in Deliverable R1.2.A of DYANA Dynamic Interpretation of Natural Language, ESPRIT
: Dasic Research Action BR3175,

§ Morrill, Glyn: 1988, ‘Extraction and Coordination in Phrase Structure Grammar and

Categorial Grammar’, PhD Thesis, Centre for Cognitive Science, University of Edinburgh.

57

Morrill, Glyn: 1989, ‘Intensionality, Boundedness, and Modal Logic’, Research Paper
EUCCS/RP-32, Centre for Cognitive Science, University of Edinburgh.

Morrill, Glyn: 1990a, ‘Grammar and Logical Types’, in Barry, Guy and Morrill, Glyn
(eds.) Studies in Categorial Grammar, Edinburgh Working Papers in Cognitive Science,
volumeAmsterdam Colloquium.

Morrill, Glyn: 1990b, ‘Intensionality and Boundedness’, to appear in Linguistics and
Philosophy.

Morrill, Glyn, Leslie, Neil, Hepple, Mark and Barry, Guy: 1990, ‘Categorial Deductions
and Structural Operations’, in Barry, Guy and Morrill, Glyn (eds.) Studies in Categorial
Grammar, Edinburgh Working Papers in Cognitive Science, volume

Oehrle, Richard T.:1988, ‘Multi-Dimensional Compositional Functions as a Basis for
Grammatical Analysis’, in R. Qehrle, E. Bach and D. Wheeler (eds.) Categorial Grammars
and Natural Language Struciures, D, Reidel, Dordrecht, pp. 349-389.

Oehrle and Zhang: 1989, ms. University of Tuscon. (approx. reference).

Partee, Barbara and Mats Rooth: 1983, ‘Generalized conjunction and type ambiguity’, in
R. Bauerle, C. Schwarze and A. von Stechow (eds.), Meaning, Use, and Interpretation of
Language, Volume 6, Linguistic Analysis, de Gruyter, Berlin, pp. 53-95.

Pollard and Sag: 1989, ‘An information-based approach ...’ CSLI. (approx. reference).
Prijatelj, Andreja: 1989, ‘Intensional Lambek Calculi: Theory and Application’, Pre-
publication Series 89-06, Institute for Language, Logic and Information, University of
Amsterdam.

58

