
PRO1

Mid-course Summary

Glyn Morrill

Definition

PRO1 is an initial course in programming (in C++).

A definition: Programming is the design of virtual machines.

Danger: Machines that don’t work properly do harm.

Moral: Program well.

Features of good programming

I Time efficiency (time is money)
I Space efficiency (memory is cheap, but must be handled)
I Transparency (understandability)
I Elegance (beauty is truth)
I Concision/parsimony (good, for brief: twice good)
I Complementarity of code and documentation (comment

what the code leaves unsaid)

Program scheme

// P12345

#include <iostream>

using namespace std;

// Pre: (Input ... awaits s.t. ...)

// Post: (Output ... printed s.t. ...)

int main() {

instruction1
... // (at least one comment)

instructionn
}

Basic data types: constant expressions

int integer: 0, 1, -1, 2, -2, 3, . . .

float real: 0.0, 0.0000001, -1.0, 3.1415927, . . .

double real: 3.141592653589793, . . .

bool Boolean: true ({∅}), false ({}) symbolic and numeric

char character: ’a’, ’b’, . . . , ’z’, . . . symbolic and numeric

(string string: "", "a", "aa", "aab", . . .)

Basic data types: operators

int + (plus), - (minus), * (product), / (quotient), % (remainder)

(x / 0, x % 0 undefined: execution error)

float, double + (plus), - (minus), * (product), / (division)

(x / 0.0 undefined: execution error)

bool not (·{∅}), and (∩), or (∪)

char +, - (on numeric values), . . .

Comparisons (decreasing order of recommendation)

Even handed

I < (monotone simple) <= (monotone dipthong)
I > (antitone simple) >= (antitone dipthong)

Uneven handed

I == (equality)
I != (nonequality)

Expressions (decreasing precedence)

Unary:
I numerical signs: +, -;
I boolean negation: not !.

Binary:
I multiplicatives: *, /, %;
I additives: +, -;
I inequations: <, <=, >, >=;
I equations: ==, !=;
I boolean conjunction: and &&;
I boolean disjunction: or ||.

Left association for binary operators of the same precedence.

Smart binary boolean evaluation: {∅} || . . . = {∅}; {} && . . . = {}

Recommendation: put spaces before and after binary operators

Declare and initialise variables with minimal scope

Compilers might warn ‘variable declared out of scope’.

int m;

double sum, min, max;

cin >> m >> sum;

min = max = sum;

for (int i = 1, i < m, ++i) {

double x;

cin > x;

sum += x;

if (x < min) min = x;

else if (max < x) max = x;

}

int avg = sum / m;

Statements

I cin >>, cout << (note direction of arrows)
I assignment: Variable = Expression (“becomes”)
I conditional: if BoolExp . . . (else . . .)
I while (BoolExp) ...

I for (int i = IntExp; BoolExp; i = IntExp(i)) {
...
}

I which abbreviates int i = IntExp;
while BoolExp {
...
i = IntExp(i);
}

