CHAPTER FOUR

ENRICHING CATEGORIAL GRAMMAR

Chapter three has introduced categorial grammar as formulated on the
foundations of type theory and substructural logic presented in chapter
two. As logic formalisms, the Lambek calculi attract mathematical in-
terest in their own right. In terms of application to natural language
grammar however, their mathematical elegance can seem to imply un-
suitability: surely not many facets of natural language can be construed
in such simple structures? Indeed we do not get far at all before it is
apparent that extensions to the basic systems are required.

In fact, the tendency in linguistics was to regard the Lambek calculi
as being already one of many possible augmentations of AB categorial
grammar, two other traditions of which are categorial grammar with
combinators (see e.g. Steedman 1987 and Szabolcsi 1987) and catego-
rial grammar with unification (see e.g. Uszkoreit 1986; Pollard and Sag
1987, 1993; Zeevat, Klein and Calder 1987 and Bouma 1993). But on
the present view, classical categorial grammar is no more than a sug-
gestive fractional notation which discovered its algebraic foundations in
residuation and cancellation under product with the Lambek calculi.
When we generalise categorial grammar we wish to respect these foun-
dations. This is what is done in what we may call the logical tradition
of categorial grammar, where basic Lambek calculus with division and
product operators is enriched with additional operators to increase its
expressivity.

1. MULTIMODAL SYSTEMS

One way of obtaining a richer system than is given by the connectives
of either the non-associative calculus NL or the associative calculus L
is by combining two (or more) families of these connectives: of different
kinds — non-associative and associative (for attempts see Oehrle and
Zhang 1989, Morrill 1990c), or of the same kind — non-associative and
non-associative or associative and associative (see Moortgat and Mor-
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rill 1991). We refer to such logics as hybrid, or multimodal, including
multiple modes of prosodic adjunction.! In the case of double non-
associativity for example, the categorial formulas are generated by two
families of operators, say \;, /i, v and \,, /,, -» and are (prosodically) in-
terpreted in a ‘bimodal groupoid’ algebra (L, +;,+,) closed under two
binary operations. Each family is interpreted by residuation with respect
to its associated mode of adjunction.

(1) D(A4B) = {si+isz|s1 € D(A) Asy € D(B)}
D(B/iA) = {s|Vs' € D(A),s+is' € D(B)}
D(A\;B) = {s|Vs' € D(A),s'+;s € D(B)}

(2) D(A~+B) = {si+rs2]s1 € D(A) Asz € D(B)}
(B/r ) = {s|Vs' € D(A),s+,s' € D(B)}

D(A\,B) = {s|Vs' € D(A),s'+,s € D(B)}
Thus each family respects the residuation laws:

(8) A=C/iB dF A4/B=C HE B=A\C
A=C/.B dF A.B=C HE B= A\C

The Gentzen-style sequent calculus is like that for NL in that config-
urations have a binary bracketing (i.e. binary tree) structure in relation
to which inference is regulated. But the brackets (mother nodes) are
each of one of two ‘colours’ — [ or » — and operators are controlled
according to their kind.

(4) a. . I'=4 A4l = B .
A=A All=B
b. I'=A AB]=C (A, T)= B
\iL —— - \R
A[(lF,A\lB)] = C I'= A\lB
c. I'=4 AB=C (T',A) = B
Al(B/ AT = C I = B/iA

IIn the sense that algebraic models can be seen as defining particular kinds of
ternary accessibility relations, with categorial connectives being diadic modal opera-
tors (Dirk Roorda, p.c.), the term modal in multimodal can also be seen as obtaining
as in modal logic.
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d. F[(,A,B)]:CL r = A A:BR
. {
F[AlB] = (lF,A) = A4B

e. =>4 AB=C (-A4,T) = B
AT, A\, B)] = C I = A\,B

f. T=4 AB]=C . (-I'yA) = B
AlB/, AT = C" I'=B/,A"

g. TA4,B))=C . I =4 A=B
I[A,B] = C (T,A) = A,B

Such a system characterises, for instance, headed binary constituent
structure, each mother node being understood as marked for having ei-
ther its left (/) subconstituent or right (r) subconstituent as head. One
instance of such structures is provided by metrical trees (Liberman and
Prince 1977) and Moortgat and Morrill (1991) exemplify application to
prosodic stress assignment in modelling rhythmic patterns of speech. Al-
ternatively the devices could be applied to projection of head-dependent
structure, without subjectivity to the traditional correlation of heads
with categorial functors, which is questionable in relation to determin-
ers, adjectives, modifiers, and so on.

For a system combining two modes of adjunction each of which is asso-
ciative, i.e. one based on an algebra (L, +;, +,) such that s1+;(s2+;s3) =
(s1+152)+1s3 and s1+,(s2+rs3) = (s1+r82)+r53 (so (L, +;) and (L, +,)
are semigroups), the logical rules are just the same, but structural rules
of association are added:

(5) T[GA1, (1A2,A3))] = AA L[ A1, (A2, Ag))] = AA
T(GAL A2 A = A T[((-An A, Ag)] = A

Gentzen-style sequent calculus for a doubly associative system can also
be given representing equivalence classes of configurations by n + 2-ary
bracketing (Moortgat and Morrill 1991).

In the case of mixing L and INL, the categorial language generated
by associative operators \ (“under”), / (“over”), - and non-associative
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operators which we shall henceforth notate > (“to”), < (“from”), °
is to be interpreted in an algebra (L,+,(.,.)) where + and (.,.) are
binary operators and s1+(s2+s3) = (s1+s2)+s3, i.e. + (but not (.,.))
is required to be associative (so (L,+) is a semigroup and (L, (.,.)) a
groupoid). Interpretation is again by residuation with respect to the
associated adjunction.

(6) D(A-B) = {si+s2]s1 € D(A) A sy € D(B)}
D(BJA) = {s|Vs' € D(A),s+s' € D(B)}
D(A\B) = {s|Vs' € D(A),s'+s € D(B)}

(7) D(4°B) = {(s1.52)ls1 € D(4) A sy € D(B))
D(B<A) = {s|Vs' € D(A),(s,s') € D(B)}
D(A>B) = {s|Vs' € D(A),(s',s) € D(B)}

Gentzen sequent calculus for this partially associative system is as
follows. The binary tree structured antecedent configurations are brack-
eted with {.,.} indicating the associative adjunction and (.,.) the non-
associative.

(8) a. id I'=A A[A]l=B
A=A Cut
ATl = B
b. T'= A4 A[B]:C\ {A,T}= B
1. _
AT, A\B}] = C I'= A\B
c. I'= A A[B]:CL {F,A}:BR
A{B/A T} = C I'= B/A
d. F[{A,B}]:CL r =4 A=2B
I[A-B] = C {I'A} = A-B
e. =>4 AB=C (A,T)= B
>L —>R
A[(l', A>B)] = C I'=> A>B
f. T=4 AB]=C (T'A) = B
<L —<R

Al(B<A )] = C I' = B<A
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g. F[(A,B)]:CL rs4 A=8H
I['[A°B] = C (T,A) = A°B

h.  T'[{A, {A2As}}] = A
F[{{AL Az}, Az} = A

Aqy

The structural rule (8h) represents associativity for the associative mode
of adjunction. We could alternatively represent equivalence classes of
bracketings under associativity by flat sequences (cf. Morrill 1990c¢).

In general we may introduce multimodal logics with any number n
of families {-;, /i, \i}, 1 < i < n, of multiplicative type-constructors,
interpreted by residuation in a multigroupoid (L, {+}ieq1,....n}):

(9) D(AB) = {si+sa]s1 € D(A) A sy € D(B)}
D(B/iA) = {s|Vs' € D(A),s+;s' € D(B)}
D(A\B) = {svs' € D(4),s'+s € D(B))

For example phonological theory has identified a number of prosodic
units; Nespor and Vogel (1986) asserts a prosodic hierarchy compris-
ing syllable, foot, phonological word, clitic group, phonological phrase,
intonational phrase, and phonological utterance. In order to recognise
such structure we may introduce a mode of prosodic adjunction, with an
associated family of multiplicatives, for each prosodic unit. Each family
will respect the residuation laws:

(10) A=C/;B 3 AsB=C HE B=A\,C

Where we identify the mode of prosodic combination in question by
subscripting sequent bracketing, the Gentzen sequent logic is as follows
for each mode.

(11) a. id I'=A A[A]l=B
A=A Cut
ATl = B
b. I'=A AB]=C . A4,T)= B

AT, A\B)] = C " [ = A\,B
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c. I'=4 AB= C/ (;T,4) = B/
iL /i
Al;B/iAT)] = C I' = B/;A
d. F[(iA,B)]:CL r= A4 A:BR
I[A4-B] = C (T,A) = 4B

In addition there are structural rules corresponding to structural axioms
such as associativity on the multigroupoid. When such axioms relate
different adjunctions, we refer to them as linking rules. We shall see
in section 3 how linking rules enable formulation of a multimodal logic
of discontinuity; before that we introduce the notion of labelling, which
supplies a form of presentation related to the PTQ-style presentation of
chapter one.

2. LABELLED DEDUCTION

In the sequent calculus for categorial grammar as we have used it so far,
prosodic operations are represented by the linear and hierarchical or-
ganisation of configurations. Semantic operations, as we have seen, can
be represented by labelling antecedent formulas with variables, and la-
belling succedent formulas with semantic terms over those variables, but
prosodic operations were left implicit. In what follows we will present
discontinuity operators for which implicit prosodic interpretation by or-
ganisation of antecedents into configurations is not so natural, because
word order is not always given by the left to right yield of the structures.
The situation will be ameliorated by labelling prosodics, like semantics,
explicitly. This practice falls within Gabbay’s (1991) general discipline
of labelled deduction, the slogan of which is to “bring semantics back into
syntax”. What that will mean for grammar is PTQ-style prosodic and
semantic labelling of rules of formation. We will also present in section 4
modal operators for which labelling provides a convenient proof format.
A prosodically labelled sequent has the form:

(12) a1: A1, evyant Ay = oz A
No prosodic variable a; may occur more than once in the antecedent

which is thus a functional assignment of categorial types to prosodic
variables, and « is a prosodic term over the variables ay,...,a,. Such



ENRICHING CATEGORIAL GRAMMAR 93

a sequent states that applying the prosodic operation represented by «
to any objects in Ay, ..., A, (according to the labelling) yields an object
in A. When semantic labelling is also included, we have statements of
formation as in chapter one:

(13) a1 — 212 Ay, ooyt — 2t Ay => a — ¢: A

Order of antecedents is now unimportant: as noted in chapter one, va-
lidity is preserved under permutation (and contraction and weakening).
In our labelling, we maintain the convention that antecedent formulas
are labelled with prosodic and semantic variables. Other versions of la-
belling involve labelling antecedent formulas with prosodic and semantic
terms in general. We keep to the stricter discipline here in order that
the antecedents in the theorems ay — x1: Ay, ...,an, — 2 Ay = a— ¢: A
just show to what categories the prosodic and semantic operations «
and ¢ apply in a Montagovian rule of formation with input categories
Aq,..., A, and output category A. Pattern-matching against antecedent
semantic terms would constitute essential use of logical form in the way
which removes the guarantee of convertibility of a PTQ-style grammar
into an EFL-style one. In the logical setting, the analogue is that the
‘bringing of semantics into syntax’ would not be a transparent reflection
of the model theory (though of course it might be valid). We advo-
cate the same transparency with respect to the prosodic dimension as
for the semantic dimension, so that antecedent prosodic terms are also
restricted to variables.

For a given model theory each labelled sequent either is or is not valid,
and we would like a labelled proof theory generating exactly the validi-
ties. For the Lambek calculi we can obtain a labelled deductive system
(LDS) fairly directly from the usual Gentzen-style sequent formulation.
The process is really just one of compiling configuration structure into
the succedent prosodic term. Henceforth we allow the distinguished oc-
currence notation [.] to apply to terms as well as configurations. Work-
ing for the moment with just prosodic labelling, we obtain the following
for NL:

(14) a. . l'sa:d aA A= ﬁ[a]:Bﬂ
—_— Cut
a:A=a A I''A = pgla]:B
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b. T=aA b:B,A:>'y[b]:C’\ INa:A= (a—i—'y):B\
L R
I,d: A\B,A = y[(a+d)]:C I' = ~: A\B
c. T=a:Ad bbB,A=Ab:C . INa:A= ('y—I—a):B/R
I,d:B/A, A = ~[(d+«)]: C I'=>~v:B/A

d. a:A,b:B,A:>'y[(a—|—b)]:CL 'sa:A A= 3B
d: A-B,A = ~[d]: C A = (a+5): A-B

A derivation of lifting, for example, is as follows.
(15) a:A=>a:A b:B=0B .
a: A, d: A\B = (a+d): B
a:A = a: B/(A\B)

The difference between associative and non-associative labelling lies in
an understanding that + in the labels of the former, but not the latter,
is associative. Thus in an LDS for L there is the following structural
rule.

(16) T = af(a1+(a2tas))]: A
A

I'= af((a1taz)+a3)]: A
Then for example composition in L is derived thus:
(17) a:A=>a:A bB=biB .
:C=eaC aAdA\B = (a+d): B
c:C,e:C\A,d: A\B = ((c—l—e)—I—d):BA
c:C,e:C\A,d: A\B = (c+(e+d)): B
e:C\A,d: A\B = (e+d):C\B

When we in addition label for semantics, a sequent has the form
ay —x1: A1, oo, an — Tt Ay = a — @i A, no prosodic or semantic vari-
able is associated with more than one category, « is a prosodic term
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over variables ay,...,a, and ¢ is a semantic term over (free) variables
Z1,...,%n. The prosodically and semantically labelled calculus is as fol-
lows; in -L the [.] distinguished occurrence notation is extended to [., .]
indicating two distinguished occurrences.

18) a.
(18) id
a—rv:A=>a—-x:A

b. IP'=>a-¢:A4 a-x:A A= Bla] - ¢[z]:B
I, A = fla] - ¢[¢]: B

c. T=a-¢:A b-yBA=~0b-xy:C

I'd—w A\B, A = y[(a+d)] - x[(w ¢)]:C

Cut

\L

d. T,a-2:4A= (a+y) - : B
I'= v - Azy: A\B

\R

e. I'>a—-¢:A b-y:B,A= ] —¢y:C
Tod— w BJ/A A = ol(dta)] - pl(w )i C

/L

f. T,a-2:A= (y+a) —¢:B
I'=~-Azy:B/A

/R

g. a-x:Ab—y:BA 27[(a—|—b)]7x[x,y]:CL
d-w:A-B,A = v[d] - x[mw, mw]: C

h. I'sa-¢:A A=pF-y:B
LA = (at0) (6 0) AB

With semantics a subject lifting derivation becomes the following.
(19) a —&:N = a—-2:N c¢—-2S = c— 25
a—a:N,b—y:N\S = (a+b) — (y ):S
a-x:N = a—Ay(y z):S/(N\S)

\L
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We shall now use labelling to present a Fitch-style natural deduc-
tion format for categorial derivations (see Morrill 1993) which is typo-
graphically friendly in that derivations of reasonable complexity can be
represented in full down the page, whereas sequent proofs and labelled
Prawitz-style natural deduction quickly exhaust space across the page.
Fitch-style natural deduction is serial, i.e. linearly structured, whereas
Prawitz-style is parallel, i.e. tree structured. The former represents con-
ditional reasoning by ‘smart’ block structure which indicates the scope
of hypothetical subderivations.

For labelled Fitch-style categorial derivation, there are lexical assign-
ment, subderivation hypothesis, and term label equation rules thus:

(20) a. n. a—¢:A for any lexical entry

o —¢""A =nifa=d & ¢=¢'
The lexical assignment rule allows introduction of a lexical declaration
at any stage in a derivation. The subderivation rule allows commence-
ment of a subderivation with one or more hypotheses, at one level of
embedding down, and the label equation rule allows rewriting of labels
under equality. As usual there are two rules for each operator: a rule of
elimination (corresponding to the Gentzen-style left rule) showing how
to use a formula with that operator as principal connective, and a rule
of introduction (corresponding to the Gentzen-style right rule) show-
ing how to prove a formula with that operator as principal connective.
Logical rules for the categorial connectives are as follows.
(21) a. n. a-¢:A
m. y—x:A\B
(@r) - E\nm

b. n. a—-xz: A H
m. | (a+vy) —¥: B  unique a as indicated
y—Azp: AAB T\ n,m

(22) a. n. a-¢:A
m. y—x:B/A
(v+a) - (x ¢):B E/ n,m
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1. a—-x:N

2. | b—y:N\S H

3. | (a+b) — (y 2):S E\ 1,2
4. a-Ay(y =):S/(N\S) 1/2,3

FIGURE 4.1. Derivation of lifting in labelled non-associative calculus

b. n. a—-xz: A H
m. | (y+a) —¥: B  unique a as indicated
y—Azyp:B/A I/ n,m

(23) a. n. ~-x:A-B
m. a—x: A H
m+1. |[b—y:B H
p- d[(a+b)] —wlz,y]: D  unique a and b as indicated

6[7] 7“[7T1X7 FZX]:D E- n7m7m+17p
b. n. a-¢:A
m. B-y:B
(a+5) — (¢, ¥):A-B T -n,m
The previous lifting theorem is now derived as in Figure 4.1
A Fitch-style labelled calculus for the associative Lambek calculus L

can be obtained from that for the non-associative calculus by adding a
prosodic label equation applying to arbitrary subterms in a derivation:

(24) ((a1+a2)+as) = (a1+(aztas))

Alternatively, the associative Lambek calculus can be given by dropping
parentheses in prosodic labels (using in effect n-ary +). Fitch-style this
gives the following:
(25) a. n. a-¢:A
m. y—x:A\B
at+y - (x ¢):B E\ n,m
b. n. a—-xz: A H

m. |a+y —¥: B  unique a as indicated
v —Azp: AAB I\ n,m
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d - w:VP/PP
e —u:PP/N
c—z:N H

e+c — (u z): PP E/ 2,3
d4+et+c— (w (u 2)): VP E/ 1,4
d4+e — Az(w (u 2)): VP/N 1/3,5

S O Wb =

FIGURE 4.2. Derivation of composition in labelled associative calculus

(26) c. n. a—-¢:A4
m. y—-x:B/A
y+a - (x ¢):B E/n,m
d. n. a—-x: A H

m. | y+a —¥: B  unique a as indicated

vy —Azyp: B/A 1/ n,m

(27) e. n. ~—-x:A-B
a—x: A H
H
dla+b] —wlz,y]: D  unique a and b as indicated
6[7] 7“[7T1X7 FZX]:D E- n7m7m+17p

f. n. a-¢:4
m. B-y:B
a+p - (6,¥):A-B 1. n,m
This allows derivation of e.g. composition theorems not valid in the non-
associative case; see Figure 4.2.
We have already seen relativisation examples such as (28).

(28) which John talked about

The relativisation can be derived as shown in Figure 4.3 in Fitch-style
natural deduction L without parentheses.

Any multimodal system can be given a Fitch-style presentation as
follows with each connective correlated with its adjunction constructor
in the labels. First there are always the lexical assignment, subderivation
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1. which — AxAyrz[(y z) A (z 2)]: (CN\CN)/(S/N)

2. John —j:N

3. talked - talk: (N\S)/PP

4. about — about: PP/N

5. a-x:N H

6. about+a — (about z): PP 4,5 E/
7. talked+about+a — (talk (about x)): N\S 3,6 E/
8. John+talked+about+a — ((talk (about x)) j): S 2, 7 E\
9.  John+talked+about — Ax((talk (about z)) j):S/N 5,81/
1

0. which+John+talked+ about —

(AzAyAz[(y z) A (z z)] Az((talk (about z)) j)):CN\CN 1,9 E/
11.  which+John+talked+about —
AyAz[(y 2) A ((talk (about z)) j)]: CN\CN =10

FIGURE 4.3. Derivation of ‘which John talked about’

hypothesis, and term label equations:

(29) a. n. a—¢:A for any lexical entry

b. n.

n-+m.

c. n. a—¢:A
o' —¢"A =nifa=ad &¢=¢

Then there are logical rules with each connective associated with its ad-

junction in the labels:
(30) a. n. a-¢:A
m. v - x:A\;B
(a+i7) - (x ¢): B E\; n,m

b. n. a—-xz: A H
m. | (a+;y) —¥: B unique a as indicated
v = Axp: A\;B  I\; n,m

(31) a. n. a-¢:A
m. y—x:B/;A
(v+ia) - (x ¢): B E/; n,m
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b. n. a—-xz: A H
m. | (y+ia) —¢¥: B unique a as indicated
y—Azyp:B/; A 1/, nym

(32) a. n. v - x:A-B
m. a—1x:A H
m—+1. |b-y:B H
d[(a+ib)] — wlz,y]: D unique a and b as indicated
8[v] — wlmix, max]: D Eisnmm+1,p
b. n. a-¢:A
m. §-y:B

(a 26) - (¢7’¢)AZB IZ n,m
Label equations are to be added according to the algebras of interpre-
tation.
Furthermore any multimodal system has a prosodically and semanti-
cally labelled Gentzen-style LDS presentation as follows, together with
suitable label structural rules.

33) a.
(33) 1d
a—rv:A=>a—-x:A

b. I'=a-¢:A a-2:A A= Gla] - ¢[z]:B
I, A = fla] - ¢[¢]: B

c. T=a-¢:A b-yBA=~0b-xy:C

I d—w: A\;B,A = v[(a+id)] - x[(w ¢)]:C

Cut

\Li

d. T,a-2:A= (a+;y) - ¢: B
I' =~y - Azy: A\,B

7

e. I'>a—-¢:A b-y:B,A= ] —¢y:C
I,d—w:B/; A, A = ~y[(d+ia)] - ¥[(w ¢)]: C

/il
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f. T,a-2z:A= (y+sa) - ¢: B
I'=~-Aey:B/; A

7

g a-x:Ab—y:B A= y[(a+:b)] - x[z, y]: C .
d-w:A;B,A = y[d] - x[miw, maw]: C '

h. I'sa-¢:A A=pF-y:B
I,A = (a+if) — (6, 0): AB

It is primarily in terms of such Fitch-style and Gentzen-style labelling
that the subsequent sections present discontinuity and modal operators.

3. DISCONTINUITY OPERATORS

Consider the following paradigm of ‘quantifier floating’ (see Smith and
Wilson 1979, p.61).

(34) a.  All the children might have been shouting at once.
b. The children all might have been shouting at once.
c.  The children might all have been shouting at once.
d. The children might have all been shouting at once.
e.  The children might have been all shouting at once

One characterisation might treat ‘all’ as both a prenominal determiner
(which may also occur with object nominals, etc.), and a verbal modifier
which can occur within the auxiliary group. But for the purpose of
exemplification let us take this paradigm at face value and consider
how the (floating) quantifier ‘all’ may precede the subject, or appear
anywhere within the auxiliary verb sequence. In order to capture such
a generalisation we may define a ‘non-directional” division such that %
represents a functor into B capable of combining with its argument A
to both the left and the right:?
(35) D(%) {s|Vs' € D(A),s'+s € D(B) As+s’ € D(B)}
= D(A\B)N D(B/A)

2The possibility of such a type-constructor has been part of the categorial folklore
for a long time. Its type mapping would naturally be T(%) = T(B)T(A).
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We assume an associative context. Ordered natural deduction rules are
as follows.

(36) :

i

The elimination rules are straightforward. Indexed overline over I' signi-
fies discharge of the sequence of assumptions I' so that the introduction
rule states that where there is a proof of B from I' plus A at the left
periphery, and such a proof from I' plus A at the right periphery, then
% is proved from I' alone.

Where we evade some details of the semantics of plurals and defi-
nites, the distributional facts in (34) are captured by assignment of ‘all’

to %g—@% Thus (34a) is obtained as follows by direct forward appli-

cation to the lifted subject, and (34b) is obtained similarly, by direct
backward application of ‘all’ to ‘the boys’.

(38) all the children . might have ...
N N\S .
[ L/Il\
S/ms) S/MNS)” - (N\S)/(N\S) ALY
S/(N\S) ‘ N\S
S /E

The derivation for (34c) is as follows, and that for (34d-e) is similar.
The associativity assumed means that the subject together with some
auxiliary verbs has type S/(N\S).
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(39) the children might . all have ...
N\S
(N\S)/(NAS) -
N NAS -
S m \
S/(N\S) S b
S/(N\S) S N\S/E

This case of quantifier floating shows how an apparently puzzling
distribution can receive a quite simple characterisation in the right tech-
nical setting. In what follows we shall consider a range of discontinuous
constructions: particle verbs, discontinuous idioms and other discon-
tinuous functors, quantifier-scoping, pied-piping, gapping, and object-
antecedent reflexivisation. Discontinuity refers to phenomena wherein
signs differ markedly in their prosodic and semantic structures. There is
no precise pre-theoretic definition, and it is not our pretence to provide
a comprehensive account of the instances cited. However, we do intend
to show how each is rendered amenable in its basic form.

The directional divisions of standard categorial grammar signify func-
tors that adjoin to the left or right of their arguments. Moortgat (1988b),
following Bach (1981, 1984), considers the idea of operators B1A for
functors that wrap themselves around an argument of category A to
form a B, and (in our notation) Al B for functors that infix themselves
in an argument of category A to form a B. Assuming an associative
context, Moortgat observes that for each operator two variants can be
conceived: existential and universal. Leaving the semantic dimension
aside, we interpret now in a monoid (L*, +,€), i.e. a semigroup (L*,+)
together with an element € € L* satisfying s+¢ = e+s = s (an iden-
tity element). Formulas will be interpreted as subsets of I = L* — {e},
but the identity element will be appropriate in order that peripheral-
ity is accommodated as an instance of discontinuity. Interpretation in
L* would commit us to € € D(A/A), D(A\A) since € would always sat-
isfy the residuation condition that it adjoins to any element in D(A)
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on the right/left to give an element in D(A). Then assignment of e.g.
‘extremely’ to (CN/CN)/(CN/CN) for such examples as ‘the extremely
deaf man’ would also permit *‘the extremely man’; see Morrill (1990b).
Defining interpretation in L = L* — {¢} circumvents this problem.

(40) Existential
D(Bt3A) = {s]|3s1,82 € L*, [s = s1+s2A
Vs' € D(A), s1+5 +s2 € D(B)]}
Universal
D(BtyA) = {s|Vs1,s82 € L*, [s=s1+s2 =
Vs' € D(A), s1+5 +s2 € D(B)]}

For example (N\S)t3lN would be the lexical category of discontinuous
functors such as particle verbs (‘rings . up’) and discontinuous idioms like
¢ gives . the cold shoulder’, which wrap around their objects to form verb
phrases and which convey a meaning as a whole not attributable to the
component word meanings. Note that there is a specific point at which
interpolation is required. By way of further example, ST3N would be
the category of a sentence containing at some point a nominal gap, e.g.
‘Mary met . yesterday’, ‘Mary met .”, and ‘. walks’, so that a relative
pronoun category (CN\CN)/(St3N) for ‘that’ would generate each of
‘that Mary met yesterday’, ‘that Mary met’, and ‘that walks’. It is less
apparent what application there might be for universal wrap, but such
a functor would circumscribe its argument admitting all interpolation
points. Evidently use of 1y instead of 13 for discontinuous idioms and
so on would permit incorrect word order such as **Mary gave the John
cold shoulder’

For infixation the two possibilities in a unimodal associative setting
are:

(41) Existential
D(Al3B) = {s|Vs' € D(A),3s1,s2 € L*, [s' = s1+s2A
s1+s'+s3 € D(B)]}
Universal
D(AlyB) = {s|Vs' € D(A),Vs1,s83 € L*, [§' = s1+52 =
s1+s'+s3 € D(B)]}

By way of example here, Sneg|ySpos would be the category of a freely
floating negation particle, if there really were such an element. Existen-
tial infixation is reminiscent of quantifying-in if we think of a quantifier
phrase as wanting to infix itself in a sentence lacking a nominal, at the
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position of the missing nominal. Thus a quantifier phrase like ‘every
man’ might have type (St3N)|3S, (cf. Moortgat 1991) but we would
need to ensure that the two existentials were effectively referring to the
same point of interpolation, an issue we consider shortly.

Inspecting the possibilities of ordered sequent presentation, of the
eight possible rules of inference (use and proof for each of four division
operators), only T3R and |yL are expressible:

(42) a.  Ty1,A,Ty = B
—— 3R
Iy, Ty = BfgA

b. Iy, ;= A AL B, Ay = C
AlarlaA\l/VBaF%AZ = C

LvL

This is the partial logic of Moortgat (1988b). A left ordered sequent
rule for t5 cannot be formulated: if we ask how the sequent (43) might
be proved, it is apparent that we lack a handle on the prosodic object
in Bf3A4 and the point around which it wraps.

(43) Ty, B13A4,Ty = C

Such a rule is needed however for a complete logic. In relation to this
Moortgat (1991) observes that labelled deduction seems promising, and
possibilities are considered in Versmissen (1991) which involve mark-
ing of insertion points. Yet the interpretations in (40) and (41) in a
unimodal monoid algebra (L*,+,¢) do not make reference to prosodic
objects marked with insertion points.

In Moortgat (1991) a discontinuity ‘substring’ product is proposed,
again implicitly assuming just a semigroup algebra for interpretation:3

(44) D(A®B) = {s1+s2+5]|s1+s) € D(A) A sy € D(B)}

As for the discontinuity divisions, ordered sequent presentation cannot
express rules of both use and proof: only ®R can be represented:

45) I',I'sy=A A=28B
Fl,A,FQ = AGB

oR

3The version given is actually just the existential case of two possibilities, exis-
tential and universal, as before. No rules for the universal version can be expressed
in ordered sequent calculus.
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Even using labelling, the problem for ®L remains and is the same as
that before: there is no proper management of separation points.*

Tension between finding a proof theory with rules of both use and
proof, and a model theory for linguistically useful discontinuity opera-
tors to which it corresponds, is addressed in Morrill and Solias (1993)
by using a bimodal prosodic algebra (L*,+, {.,.}, €) where (L*,+,¢) is a
monoid and (L*,{.,.}) is a free groupoid, involving a ‘tupling’ operation
{.,.) introduced in Solias (1992). The significance of such an operation
is that its parts are recoverable (by projection functions 1 and 2), en-
abling a definition of wrapping and infixation in terms of + and (., .)
in which {.,.) remembers separation points, in contrast to the attempts
in terms of associative 4+ which do not. Use of the tuple operation col-
lapses the former distinction between existential and universal in (40)
and (41): both cases become ‘there exists exactly one’. This is because
tuples express a unique insertion point: tupling guarantees the unicity of
decomposition. Existential and universal wrappers collapse into a single
wrapper and existential and universal infixers collapse into a single in-
fixer. The system is a three family multimodal one, with interpretation
by residuation with respect to +, {.,.) and a wrapping adjunction W
defined by s1Wsy = 1s1+s9+257.

Note that the tuple prosodic operation is not simply that of a groupoid,
but that of a free groupoid, since its components must be recoverable
for the wrapping adjunction to be defined. But this raises a problem,
because while the non-associative calculus with product is complete for
interpretation by residuation in groupoids, it is not complete in free
groupoids (see Venema 1993b). So the multimodal calculus based on
tupling would be incomplete.?

The solution we propose here is one which departs from the unimodal
proposals of Moortgat (1988b, 1991) and the bimodal proposals of Solias
(1992) and Morrill and Solias (1993) in respect of the status of the
wrapping adjunction. Instead of being defined, it is introduced from the
start as a primitive operation W in a trimodal algebra of interpretation
(L*,+,(.,.), W,e). (L*,+,¢€) is a monoid and (L*,(.,.)) and (L*, W)

groupoids, and the significant properties of the wrapping adjunction are

4See Hepple (1993) for an attempt to give full logic for Moortgat interpretations
via a complex system of labelling.

5 There are also certain questions as to the definability of s; Wss when s; is not a
tuple element, and to discrimination according to ‘prosodic sort’ (tuple or non-tuple),
rather than soley according to categorial type.
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specified by the linking rule (s1, s3)Wsy = s1+s3+s3.°

To formulate discontinuity we have a community comprising three
families of multiplicatives: the usual associative ‘surface’ operators, ‘split-
point’ non-associative operators, and discontinuity operators. The cat-
egory formulas F are defined in terms of a set .A of atomic category
formulas thus:

(46) F=A| FF | F\F | F|F | FoF | F>F | F<F | FOF | FIF

| F4F

Spelt out in full the prosodic interpretation by residuation with respect
to each adjunction is as follows:

(47) D(A-B) = {si+sa|s1 € D(A) Asy € D(B)}
D(A\B) = {s|Vs' € D(A),s'+s € D(B)}
D(BJA) = {s|Vs' € D(A),s+s € D(B)}

(48) D(4°B) = {(s1,52)|s1 € D(A) A sy € D(B)}
D(A>B) = {s|Vs' € D(A),(s',s) € D(B)}
D(B<A) = {s|Vs' € D(A),(s,s') € D(B)}

(49) D(A®B) = {s1Wss|s; € D(A) A sy € D(B)}
D(ALB) = {s|Vs' € D(A),s'Ws € D(B)}
D(BtA) = {s|Vs' € D(A),sWs' € D(B)}

Since this is interpretation by residuation in a multigroupoid, proof rules
can be provided in the standard formats. In particular it now becomes
possible to present rules of both use and proof in the prosodically la-
belled sequent formats (see Morrill 1993 for the ordered sequent format).
The full set of labelled Gentzen-style sequent rules are as follows.

50) a.
(50) 1d
a—rv:A=>a—-x:A

b. T=a-¢:A4 a-2:A4,A= Fla] - ¢Y[z]:B
I'A = Blo] - ¢[¢]: B

Cut

8This both removes questions about the partiality of W, which is defined as a total
function, and replaces the problematic free groupoid under (., .} by an unproblematic
groupoid under (.,.). On the other hand the prosodic algebra becomes more abstract,
with prosodic forms no longer all corresponding to just strings or split strings.
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(51) a.

(52) a.

CHAPTER FOUR

Ir's>a-¢:4 b—y:B,A= y[b - x[y:C

L
Td B A = slatd)] lm oC
la—2:A= (at+y) - ¢: B

\R
I'= v - Azy: A\B

Ir's>a-¢A b-—y:B A= b —Yy:C

L
Td w BIA A = lldra)] el o0

Ta—2:A= (y+a) - ¢: B
I'= v - Azy: B/A

a—2:Ab -y B,A = y[(a+b)] - x[z,y]: C .
d-w:A-B,A = y[d] - x[mw, maw]: C

F'=sa-¢:A A=p-y:B
A = (a+p8) - (¢, ¥): A-B

' a-¢:A4 bfy:B,A:>'y[b]fx[y]:C'>
Fod wASB, A = Al d)] - xl(w 9O

la-2z:A=(a,y) - ¢: B
>R
=~ Azyp: A>B

r'=a-¢:4 bfy:B,A:>'y[b]f1/;[y]:C<
Dod - w: B<A, A = l(da)] - vl(w )i C

la-2z:A= (v,a)-¢: B
I'= v - dzy: B<A

a— l‘:A,b* y:BaA = 7[(a7b)] B X[x,y]:C L
¢ —z:A°B, A = v[c] - x[m1z, m2z2]: C




(53) a.

f.
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F'=sa-¢:A A=p-y:B
IA = (o, 8) — (¢, ¢): A°B

Ir's>a-¢:4 b—y:B, A= ~[b— x[y]:
Fd w AL A = A(ald)] - x[(w )]

CiL
C
I'a—-2:A= (aW~) -¥:B

=~y - Azy: AlB

Ir's>a-¢A b—y:B,A=~[b] -9y
I d—w: BTA, A = y[(dWa)] - ¢[(w ¢)]:

C
~
C
Ia—-xz:A= (yWa) -9¥:B
=~y - Az¢: BtA

TR

a—-2:Ab—-y:B,A = y[(aWb)] - x[z,y]:C
d—-w:AOB, A = y[d] - x[mw, Taw]: C

oL

F'=sa-¢:A A=p-y:B

LA (@W5)— (6 0) A0
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There are label structural rules for associativity, adjunction identity,
and the split-wrap linking rule:

(54) a.

I' = of((a1taz)+as)] - (/):AA

I'= a[(a1+(a2+a3))] - q/)A

T = af(e+3)] - 94 ['= af(f+e)] - A
I'=aff]—¢: 4 I'=saff]—¢: 4

I = of((a1, a2)Was)] - qS:ASW

I' = of((ar14asz)+az)] — ¢: A
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Alternatively, since there is only one associative adjunction, its as-
sociativity can be represented by omitting parentheses for the relevant
term constructor.

If the relative pronoun ‘that’ is assigned a category (CN\CN)/(STN),
both peripheral and medial relativisation is generated; thus ‘that Mary
met yesterday’ can be derived via the following (leaving semantics aside):

(55) a:N = a:N  b:N, e:N\S, d: (N\S)\(N\S) = b+e+d:S .
b:N, ¢: (N\S)/N, d: (N\S)\(N\S), a:N = b+c+a+d:S aw
b: N, e: (N\S)/N, d: (N\S)\(N\S), N = (b+c,d)Wa:S
b:N, ¢: (N\S)/N, d: (N\S)\(N\S) = (b+¢,d):STN

This gives the prosodic form that+(Mary+met, yesterday), where the
extraction domain is marked off, and partitioned at the extraction site.
We shall later see a similar domain effect relating to prosodic phrasing
and islandhood of relative clauses and other domains. The partitioning
at the extraction site is also interesting, in relation to ‘‘wanna’ contrac-
tion’ phenomena showing that phonological processes are interrupted at
extraction sites. Nevertheless later chapters pursue an alternative line
on relativisation, one offering greater sensitivity with respect to island
phenomena.

We now give the Fitch-style proof theory. The operation for 4+ has the
only associative constructor, and we represent it omitting parentheses.
There are the following prosodic term label equations:

(56) (2, V)WB) = a+5+y

a+e€e = eta =«

The lexical assignment, subderivation hypotheses, and term rewriting
rules are as usual:

(57) a. n. «a—¢: A for any lexical entry

b. n. H

n -+ m.

c. n. a—¢:A
o —¢""A =nifa=d & ¢=¢'
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The logical rules are as follows.
(58) a. n. a-—¢:A
m. y—x:A\B
at+y - (x ¢):B E\ n,m
b. n. a—x: A H

m. |a+y —¥: B  unique a as indicated

v —Azp: AAB I\ n,m

(59) a. n. a-¢:A
m. y—x:B/A
y+a - (x ¢):B E/n,m

b. n. a—-xz: A H
m. | y+a —¥: B  unique a as indicated

vy —Azyp: B/A 1/ n,m

(60) a. n. ~—x:A-B
m. a—-x:A H
m+1. |b—y:B H
dla+b] — wlz,y]: D  unique a and b as indicated
6[7] 7“[7T1X7 FZX]:D E-. n7m7m+17p
b. n. a-¢:A
m. B-y:B
a+8 - (6,¥):A-B T -n,m
(61) a. n. a-¢:A
m. v-x:A>B

(a,v) - (x ¢): B E>n,m

b. n. |a—-z:A H
m. | (a,5) —¢¥: B  unique a as indicated

vy =i A>B 1> n,m
(62) a. n. a-¢:A
m. v-x:B<A
(1:0) = (x ¢): B E<n,m
b. n. a—-xz: A H

m. | (y,a) —¢¥: B unique a as indicated
v = Az: B<A I< n,m
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(63) a. n. v - X;AoB
a—x: A H
H
d[(a,b)] — wlz,y]: D unique a and b as indicated
y] —wlmix, max]: D Een,m,m+1,p

((/),1/;);1403 Ie n,m

(64) a. n. a-¢:A
m. v-x:AlB
(aWy) - (x ¢):B Elnm
b. n. a—-xz: A H

m. | (aWx) —¢:B  unique a as indicated
v = Az AlLB Il n,m

(65) a. n. a-¢:A
m. v-x:BTA
(YWa) - (x ¢):B Etn,m
b. n. a—x: A H

m. | (yWa) — ¢: B unique a as indicated
v — Azy: BTA It n,m

(66) a. n. v - x:AOB
m. a—x: A H
m+ 1 b-—y:B H
p- I[(aWb)] — wlz,y]: D  unique a and b as indicated
6[v] — wlmix, max]: D E® n,m,m+1,p
b. n. a—-¢:A
m. §-y:B

(aW3) - (¢,¢¥): A®B 1o n,m

The examples in the next subsections are derived using this format.
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rang+John+up — (phone j): N\S =
Mary+rang+John+up — ((phone j) m):S 3,5 E\

1. (rang, up) — phone: (N\S)tN

2. John —j:N

3. Mary —m:N

4. ((rang, up)W . John) — (phone j): N\S 1, 2 Et
5.

6.

FIGURE 4.4. Derivation of ‘Mary rang John up’

(gave, the+cold+shoulder) — give-tes: (N\S)TN
John —j: N
Mary — m:N

((gave, the—+cold+shoulder)W John) — (give-tes j):N\S 1, 2 Ef
gave+John+the+ cold+shoulder — (give-tes j): N\S =
Mary+gave+John+the+ cold+shoulder —

((give-tes j) m): S 3,5 E\

[ N R

FIGURE 4.5. Derivation of ‘Mary gave John the cold shoulder’

3.1. Discontinuous Functors

Consider the following.

(67) a. Mary rang John up.
b.  Mary gave John the cold shoulder.
c.  Mary both/either/neither walks and/or/nor talks.

Each case involves a discontinuous functor shown in italics. The example
‘Mary rang John up’ is derived as shown in Figure 4.4. The particle verb
has a complex lexical form constructed out of the splitting adjunction,
and its lexical type is that of a wrapping functor. After combination by
wrapping application with the object at line 3, prosodic evaluation gives
the discontinuous word order.

A discontinuous idiom construction such as ‘Mary gave John the cold
shoulder’ is treated in exactly the same way; see Figure 4.5.
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1. Mary —m:N
(neither, nor) — AxAyiz—[(z 2) V (y z)]
:((NAS)/(N\S))T(NAS)

3. walks — walk: N\S

4. talks — talk: N\S

5.  neither+walks+nor — 2,3 ET
ApAz-{(walk 2) V(5 )] (N\S)/(N\S)

6. neither+walks+nor+talks — 4,5 E/
Az—[(walk z) V (talk z)]: N\S

7. Mary+neither4+walks+nor+talks — 1, 6 E\

—[(walk m) V (talk m)]: S

FIGURE 4.6. Derivation of ‘Mary neither walks nor talks’

Discontinuous coordination particles can be treated as functors which
combine with their left conjunct by wrap, and then their right by regular
division, as shown in Figure 4.6. Here and henceforth we sometimes
allow ourselves the liberty of performing label manipulations implicitly
within derivation steps.

3.2. Quantifier Raising

In Moortgat (1990a) a binary “binder” operator which we write here as }
is defined for which the rule of use is essentially quantifying-in, so that a
Montagovian treatment of quantifier-scoping is achieved by assignment
of a quantifier phrase like ‘something’ to NS, and assignment of de-
terminers like ‘every’ to (N{}S)/CN. As we already noted, in Moortgat
(1991) it is suggested that a category such as Af}B might be definable
(in our notation) as (BTA)|lB, but Moortgat observed that this defin-
ability does not hold for the unimodal interpretation given, for which
furthermore, the logic is problematic in ways we have already considered.
Moortgat’s intuitions, however, are fully realised in the present trimodal
formulation. The category (STN)]S is a suitable category for a quanti-
fier phrase such as ‘everything’ or ‘some man’, characterising sentential
quantifier scope, and quantificational ambiguity. Consider first ‘Every
man walks’ as in Figure 4.7. The generation up to line 5 of ‘every man’
with the standard semantics, and type (STN)|S is straightforward. In
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every — AxAyVz[(z z) = (v 2)]: ((STN)IS)/CN

man — man: CN

walks — walk: N\S

every+man — (AzAyvz[(z z) = (v z)] man): (STN){S E/ 1, 2
every+man — AyVz[(man z) — (y 2)]: (STN)|S =4
a—x:N H
a+walks — (walk x):S E\ 3, 6
e+a+walks — (walk x):S =

((€, walks)Wa) — (walk x):S =

(€, walks) — Axz(walk z): STN 16,9
((e, walks)W every+man) —

(AyVz[(man z) — (y z)] Az(walk z)):S El 5, 10
e+every+man+walks — Vz[(man z) — (walk z)]:S =11
every+man+walks — Vz[(man z) — (walk 2)]:S =12

— = © 00~ O T W —
I i it

— =
[UCR )

FIGURE 4.7. Derivation of ‘Every man walks’

lines 7 to 9 a sentence is constructed on the basis of the nominal @ — =
hypothesised at line 6. Prosodic equations are used to show that the
prosodics can be expressed in a form in which W is the main construc-
tor, and in which a is its right hand operand. The left hand operand is
a split string term in which «a is to be interpolated. Now because the
wrap connective is the divisional residuation with respect to the right
hand operand of W, this split string term is derivable at line 10 as of the
wrap type STN, by If. Since ‘every man’ is an infix functor over STN,
it can apply by EJl (line 11), and on prosodic evaluation interpolates
itself at the position in which the hypothesised nominal was used in the
subderivational sentence. Thus the quantifier phrase binds semantically
a semantic variable for the position in which it occurs prosodically.

There can be no deviance from this pattern, that is, a quantifier phrase
cannot bind the wrong position, for there can be no way that the last
line of the relevant subderivation can have the form required for I, i.e.
(aWa) — ¢ where a — z is the hypothesis, without «a being a split string
marking the interpolation position for the prosodics that corresponds
to semantics ¢ in terms of z: the equations do not allow anything else.
So when a quantifier phrase infixes itself, it will semantically bind the
position it occupies prosodically.



116 CHAPTER FOUR

1. John —j:N

2. likes — like: (N\S)/N

3. everything — AaVy(x y): (STN)IS

4. a—x:N H

5. likesta — (like z): N\S 2,4 E/

6. John+likes+a — ((like z) j):S 1,5 E\

7. John+likes+a+e — ((like z) j):S =

8. ((John+likes, e)Wa) — ((like #) j): S =7

9. (John+likes,€) — Ax((like ) j): STN 4,8 11

10.  ((John+likes, )W everything) — 3,9E]
(AzYy(z y) Az ((like ) j)): S

11.  John—+likes+everything — Vy((like y) j):S =10

FIGURE 4.8. Derivation of ‘John likes everything’

The derivation in Figure 4.8 shows the object position binding of
‘John likes everything’.

The next two derivations we consider will deliver the subject wide
scope and object wide scope readings of ‘Everyone loves something’. The
first is these is given in Figure 4.9. A nominal hypothesis for the subject
is made at line 4, and another subderivation hypothesis for the object
at line 5. Since subderivations are last in first out, the subject position
is bound last, that is the subject wide scope reading is obtained. The
sentence already with the object quantifier phrase is obtained at line 11
just like ‘John likes everything’ in the previous example, but the subject
is a hypothetical variable not a lexical form, and we have worked nested
one level down.

In Figure 4.10 the hypothesis of the wider scope subderivation is used
in object position, so that the object wide scope reading is obtained.

In the examples so far the quantifier is peripheral in the sentence and
(in associative calculus) a category (S/N)\S could have been used for
a quantifier phrase to appear in object position and S/(N\S) for the
quantifier phrase to appear in subject position. But further assignments
still would be required for a quantifier phrase to appear in sentence-
medial positions. Some generality with respect to the latter can be
achieved by assuming second-order polymorphic categories (see Emms
1990), but two assignments, one forward-looking and another backward
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1. everyone — A\azVz[(person z) — (z z)]: (STN)|S

2. loves — love: (N\S)/N

3. something — AzJw[(thing w) A (x w)]: (STN)|S

4. b—y:N H

5. a—x:N H

6. loves+a — (love x): N\S E/ 2,5

7. b+loves+a — ((love z) y): S E\ 4,6

8. ((b+loves,e)Wa) — ((love z) y): S =7

9. (b+loves, €) — Az((love z) y): STN It 5, 8

10. | ((b+loves, €)W something) — EL 3,9
(AzJw[(thing w) A (z w)] Az((love ) y)):S

11. b+loves+something — =10
Jw[(thing w) A ((love w) y)]: S

12. | ((¢, loves+something)Wb) — =11
Jw[(thing w) A ((love w) y)]: S

13. (e, loves+something) — It 4, 12

AyJw[(thing w) A ((love w) y)]: STN
14.  everyone+loves+something — E] 3,13

Vz[(person z) — Jw[(thing w) A ((love w) 2)]]: S

FIGURE 4.9. Subject wide scope derivation of ‘Everyone loves something’

looking are nevertheless uniformly required by all quantifiers. The single
assignment we have given allows appearance in all N positions without
further ado, and allows all the relative quantifier scopings at S nodes.
Thus for the example ‘John believes someone walks’, the derivation in
Figure 4.11 gives the narrow scope, non-specific, quantifier reading, but
that in Figure 4.12, the wide scope, specific reading, which involves the
quantifier raising to the superordinate sentence, in which it is medial.

3.3. Pied-Piping

Pied-piping refers to relativisation in which a fronted relative pronoun
draws along with it additional material from its extraction site. Compare
(68a) and (68b), which are paraphrases.

(68) a. (a girl) John knows the brother of
b.  (a girl) the brother of whom John knows



118 CHAPTER FOUR

1. everyone — A\azVz[(person z) — (z z)]: (STN)|S

2. loves — love: (N\S)/N

3. something — AzJw[(thing w) A (x w)]: (STN)|S

4. a—x:N H

5. b-y:N H

6. loves+a — (love x): N\S E/ 2,4

7. b+loves+a — ((love z) y): S E\ 5,6

8. ((€, loves+a)Wb) — ((love z) y): S =

9. (€, loves+a) — Ay((love z) y): STN It 5,8

10. | ((e, loves+a)W everyone) — EL 1,9
(AzVz[(person z) = (z 2)] Ay((love z) y)):S

11. | everyone+loves+a — Vz[(person z) — ((love z) z)]:S =10

12. | ((everyone+loves,e)Wa) — =11
Vz[(person z) — ((love z) 2)]: S

13.  (everyone+loves,e) — It 4,12

AzVz[(person z) — ((love z) z)]: STN
14.  everyone+loves+something — E] 3,13

Jw[(thing w) AVz[(person z) — ((love w) 2)]]:S

FIGURE 4.10. Object wide scope derivation for ‘Everyone loves something’

1. John —j:N

2. believes — believe: (N\S)/S

3. someone — AxJy(x y): (STN)IS

4. walks — walk: N\S

5. a—x:N H

6. a+walks — (walk x):S E\ 4,5
7. ((€, walks)Wa) — (walk x):S =6

8. (& walks) — Az(walk z): STN I1t5,7
9.  someone+walks — Jy(walk y): S E| 3,8
10.  believes+someone+walks — (believe Jy(walk y)): N\S E/ 2,9
11.  John+believes+someone+ walks — E\ 1, 10

((believe Jy(walk y)) j):S

FIGURE 4.11. Derivation of non-specific ‘John believes someone walks’
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John — j: N

believes — believe: (N\S)/S

someone — AxJy(x y): (STN)LS

walks — walk: N\S
a—x:N H
a+walks — (walk z): S E\ 4,5
believes+a+walks — (believe (walk #)):N\S E/ 2,6
John+believes+a+walks — E\ 7,1
((believe (walk #)) j):S
((John+believes, walks)Wa) — =8
((believe (walk #)) j):S

10.  (John+believes, walks) — 15,9

Az((believe (walk z)) j): STN
11.  John+believes+someone+walks — EJ 3, 10
Jy((believe (walk y)) j): S

0 =1 O O = W N —

Ne)

FIGURE 4.12. Derivation for specific ‘John believes someone walks’

Historically, pied-piping has played a crucial role in the promotion of

feature percolation and phrase structural approaches (Gazdar, Klein,

Pullum and Sag 1985; Pollard and Sag 1987, 1993). Pollard (1988, p.412)

for example regards it as exposing a critical inadequacy of categorial

grammar:

(69) “Evidently, there is no principled analysis of pied piping in an ex-

tended categorial framework like Steedman’s without the addition
of a feature-passing mechanism for unbounded dependencies.”

On the phrase structural view, a relative pronoun introduces information
which may percolate up normal constituent structure to endow larger
phrases with the relativisation property of occurring fronted and binding
a gap of the same category as the entire fronted constituent. Instances in
which there is no pied-piping are, convincingly, obtained as the special
case where the fronted constituent comprises only the relative pronoun.
That is, a single categorisation covers both pied-piping cases such as
(70a) and non-pied-piping cases such as (70b).
(70) a. (the contract) the loss of which after so much wrangling John

would finally have to pay for
b.  (the contract) which John talked about
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1. about — about: PP/N
2. which — AzAyAz w[(z w) A (y (2 w))]:
(PPIN)L(R/(S/PP)
3. John —ji:N
4. talked — talk: (N\S)/PP
5. a—x:N H
6. about+a — (about z): PP 1,5E/
7. about+a+e — (about xz): PP =6
8. ((about,e)Wa) — (about z): PP =
9.  (about,e) — Az(about z): PPN 5, 8 11
10.  ((about, €)W which) - 2,9 E}
(AzAyAzdw[(z w) A (y (z w))] Az(about z))]:
R/(S/PP)
11.  about+which — =10
AyAzAw[(z w) A (y (about w)):R/(S/PP)
12. a—x:PP H
13. | talked+a — (talk z):N\S 4,12 E/
14. | John+talked+a — ((talk z) j):S 3, 13 E\
15.  John-+talked — Ax((talk ) j):S/PP 12,141/
16.  about+which+John+talked — 11, 15 E/
(AyAzAw[(z w) A (y (about w)) Ax((talk 2) j)): R
17.  about+which+John+talked — =16

AzAw[(z w) A ((talk (about w)) j)|: R

FIGURE 4.13. Derivation of ‘about which John talked’

In Moortgat (1991) a three-place operator is considered which is like
ANYB, except that quantifying-in changes the category of the context ex-
pression. Morrill (1992b) shows that this enables capture of pied-piping.
It follows from the nature of the present proposals that (B1C)|A repre-
sents the context-changing complicity desired between the discontinuity
operators. As a result, the treatment of Morrill (1992b) can be presented
in these terms.

As afirst example, note how in Figure 4.13 the pied-piping assignment
generates ‘about which John talked” with the same semantics as ‘which
John talked about’, considered earlier. We make use of an abbreviation
R for CN\CN. This example is potentially manageable in any categorial
grammar with composition, by assignment of type (PP/N)\(R/(S/PP))
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to the relative pronoun. Such assignments are an obvious possibility
in the light of Szabolsci (1987) for example, who discusses pied-piping
of reflexives, such as to render them direct functors over verbs. Such
an assignment must be additional to the regular one, a situation to be
improved upon if possible. Nevertheless, a naive account is reasonably
obtained by assuming types R/(S/N), and additional restricted second-
order quantified types such as V2X € {N, PP}((X/N)\(R/(S/X))) for
relative pronouns which pied-pipe (e.g. ‘which’ but not ‘that’). In view
of these possibilities then it is unclear why Pollard’s objection is voiced
so strongly.

In fact the respect in which a naive Szabolsci-style treatment is truly
unsatisfactory, while phrase structural percolation copes naturally, ap-
pears not to have been identified by Pollard. The crucial cases are those
like (70a) where the relative pronoun is medial in the pied-piped mate-
rial. Given only basic categorial tools it would need to be arranged by a
lexical assignment additional to those above that ‘after so much wran-
gling’ modifies ‘loss’. For unclear reasons, it is not easy to find highly ac-
ceptable examples of the crucially problematic medial pied-piping cases,

but see e.g. (71).

(71) (a statue) for the transport of which by rail John would have to
pay $10,000

In other cases the pied-piped constituent occupies subject position:

(72) a. (a supermarket) the opening of which by the queen/in June

was heralded a moving and historical occasion
b. (a woman) the painting of whom by Matisse fetched a fortune

c.  (aboy) the yelling of whom outside could be heard throughout
the sermon

If in reality there were no such cases, which would be to say that
pied-piping noun phrases always occur right-peripherally in the fronted
constituent, a rudimentary treatment like that deriving from Szabolcsi
would suffice for categorial grammar. Furthermore all existing phrase
structure accounts would be erroneous in that none predict such right-
peripherality. Thus for phrase structural approaches there would be “no
principled analysis of pied piping” possible without the addition of di-
rectional constraints on feature inheritance. However, since we judge the
examples in the text to be acceptable, we do not regard this implication
as going through.
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Our treatment of medial and peripheral pied-piping, in terms of infix-
ing and wrapping, reduces the latter to the former in just the same way
as phrase structure grammar feature percolation. There is the deriva-
tion in Figure 4.14 for ‘the loss of which after so much wrangling John
would finally have to pay for’, given the relative pronoun assignment
at line 4. In addition, this same assignment generates non pied-piping
cases, such as ‘which John talked about’. Lines 5 to 9 in Figure 4.15
show that the regular relative pronoun category is derivable from the
nominal pied-piping one because (e,¢) € D(NTN). Thus prepositional
pied-piping, nominal pied-piping, and no-pied-piping examples are all
obtained by assignment to just the following two types:

(73) (NTN)J(R/(S/N))
(PPIN)L(R/(S/PP))

If T(PP) can be assumed equal to T(N) the typed semantic terms are
the same in each case, so all the examples considered are obtained by a
single restricted second-order quantification assignment as in (74).
(74) which -  Axdyrzdw[(z w) A (y (z w))]
VZX € {N, PPH(XTN)L(R/(S/X)))

For pied-piping of constituents of different semantic types, a more so-
phisticated polymorphism and lambda calculus typing is required, an
issue we shall not go into. Our final observation here is that since the
relative pronoun ‘that’ cannot pied-pipe it should be assigned the regular
type:

(75) that —  AzdyAz[(y z) Az z)] :  (CN\CN)/(S/N)

The matter of characterising relativisation, in particular non-peripherality,
is resumed and extended in chapters seven and eight.

3.4. Gapping

We have seen in chapter three how categorial grammar provides possi-
bilities for ‘non-constituent’ coordination. These constructions are less
amenable to the phrase structure and feature percolation approach be-
cause of their inconsistency with constituent structure. We consider
next a coordination construction which is highly problematic from all
perspectives, gapping. It is entirely unclear how feature percolation
could engage such a construction; but as we shall see the discontinuity
apparatus already presented succeeds in doing so.



1. the — Axwy(zx y): N/CN
2. loss — loss: CN
3. of - of: (CN\CN)/N
4. which — AxdyAzAdw[(z w) A (y (¢ w))]:
(NTN)L(R/(5/N))
5. asmw — asmw: CN\CN
6. John —j:N
7. wfhtpf — wihtpf: (N\S)/N
8. a—x:N
9. of+a — (of x): CN\CN
10. | loss+of+a — ((of z) loss): CN
11. | losstof +a+asmw — (asmw ((of z) loss)): CN
12. the+loss+of +a+asmw —
ty((asmw ((of x) loss)) y): N
13. | (the+loss+of, asmw)Wa —
ty((asmw ((of x) loss)) y): N
14.  (the+loss+of , asmw) —
Azey((asmw ((of z) loss)) y): NTN
15.  the+loss+of +which+asmw —
AyAzAw[(z w) A (y wu((asmw ((of w) loss)) u))]:
R/(S/N)
16. a—x:N
17. | wihtpf+a — (wihtpf z): N\S
18. | John+wfhtpf+a — ((wfhtpf z) j):S
19.  John+wfhtpf — Az ((wfhtpf z) j):S/N
20. the+loss+of +which+asmw+John+wfhipf —
AzAw[(z w) A ((wlhtpf (u((asmw ((of w) loss)) u)) j)]:
R
FIGURE 4.14.

ENRICHING CATEGORIAL GRAMMAR

John would finally have to pay for (wthtpf)’

The kind of example considered is:

(76) John studies logic and Charles, phonetics.

123

E/ 3,8
E\ 2,9
E\ 5, 10
B/ 1,11

=12
I 8,13

El4, 14

E/ 7,16
E\ 6, 17
1/ 16, 18
E/ 15, 19

Derivation of ‘the loss of which after so much wrangling (asmw)

The proposal to be presented here is that of Morrill and Solias (1993).

Discussion is presented by reference to such a minimal example gapping

a transitive verb TV. The construction is characterised by the absence
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1. which —
AeAANC(= 0) A (y (i 0))]: (NENJAR/ (S/N))

2. John —j:N

3. talked — talk: (N\S)/PP

4. about — about: PP/N

5. a—xz:N H

6. (e,6)Wa — 2:N =

7. (&€ — Az NN It 5,6

8. ((e, )W which) - El 1,7
(AzAyAzdw[(z w) A (y (z w))] Azz):R/(S/N)

9. which — AyAzdw[(z w) A (y w)]: R/(S/N)

10. |a - x:N H

11. | about+a — (about z): PP E/ 4, 10

12. | talked+about+a — (talk (about #)): N\S E/ 3,11

13. | John+talked+about+a — ((talk (about x)) j):S  E\ 2, 12

14.  John+talked+about — I/ 10, 13
Az((talk (about z)) j):S/N

15.  which+John+ talked+about — E/9, 14

AzAw[(z w) A ((talk (about w)) j)|: R

FIGURE 4.15. Derivation of ‘which John talked about’ from pied-piping relative
pronoun assignment

in the right hand conjunct of a verbal element, the understood seman-
tics of which is provided by a corresponding verbal element in the left
hand conjunct. Clearly, instanciations of a coordinator category schema
(X\X)/X will not generate gapping. However, the prosodic character of
gapping, with a verbal element missing medially after the coordinator,
is marked with respect to that of left node raising coordination reduc-
tion with an elided verbal element left-peripheral after the coordinator
(‘“John saw Bill today and Mary yesterday’). Accordingly, gapping will
be triggered by a distinct coordinator assignment.

The phenomenon receives categorial attention in Steedman (1990).
The approach of Steedman aims to reduce gapping to constituent co-
ordination; furthermore it aims to do this using just (a version of) the
standard division operators of categorial grammar. This involves special
treatment of both the right and the left conjunct.

With respect to the right hand conjunct, the initial problem is to give
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a categorisation at all. Steedman does this by reference to a constituent
formed by the subject and object with the coordinator. This constituent
is essentially TV\S but with a feature both blocking ordinary applica-
tion, and licensing coordination with a left hand conjunct of the same
category. The blocking is necessary because ‘and Charles, phonetics’ is
clearly not of category TV\S: ‘Studies and Charles, phonetics’ is not a
sentence. Now, with respect to the left hand conjunct, Steedman in-
vokes a special syntactic and semantic decomposition of ‘John studies
logic” analysed as S, into TV and TV\S. There is then constituent coor-
dination between TV\S and TV\S. Finally the coordinate structure of
category TV\S combines with the TV to give S.

Although this treatment addresses the two problems that any account
of gapping must solve, categorisation of the right hand conjunct and ac-
cess to the verbal semantics in the left hand conjunct, it attempts to do
so within a narrow conception of categorial grammar (only division op-
erators) that necessitates invocation of distinctly contrived mechanisms.
The radical reconstruals of grammar implicated by this analysis are not
necessary given the general framework including discontinuity operators
we have set out.

Within the context of categorial grammar we have established, the
right hand conjunct is characterisable as STTV.” It remains to access
the understood verbal semantics from the sentence that is the left hand
conjunct. In order to recover from the left hand side the information we
miss on the right hand side, we would like to say that this information,
the category and semantics of the verb, is made available to the coordi-
nator when it combines with the left conjunct. In accordance with the
spirit of Steedman’s proposal, we can observe that the left hand conjunct
contains a part with the category STV of the right hand constituent,
but it is discontinuous, being interpolated by TV. But this is precisely
what is expressed by the discontinuous product category (STTV)®TV.
Furthermore, an element of such a category has as its semantics a pair
the second projection of which is the semantics of the TV, making the
verb semantics accessible. Consequently gapping is generated by assign-
ment of ‘and’ to the category (((STTV)@TV)\S)/(STTV) with semantics
AzAy[(m1y may) A (x may)]; see Figure 4.16.

A slightly different treatment is proposed in Solias (1992, 1993), where

“This is not the only possibility; a structural modality (see chapter seven) could

be used: S/ATV.
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I N

oo =1 O Ot

11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

CHAPTER FOUR

John —j: N
studies — study: TV
logic — logic: N
and — Az Ay[(m1y may) A (2 my)]:
(((STTV)OTVI\S)/(STTV)
Charles — e: N
phonetics — phonetics: N
a—x:TV
a+phonetics — (x phonetics): N\S
Charlest+a+phonetics — ((x phonetics) ¢): S
((Charles, phonetics)Wa) — ((x phonetics) ¢): S
(Charles, phonetics) — Az((x phonetics) ¢): STTV
a—x:TV
a+logic — (x logic): N\S
John+a+logic — ((x logic) j):S

((John, logic)Wa) — ((x logic) j): S
(John, logic) — Ax((x logic) j): STTV
((John, logic)W studies) —

(Az((x logic) j), study): (STTV)eTV
John+studies+logic —

(Az((x logic) j), study): (STTV)eTV
and+(Charles, phonetics) —

Ay[(my m2y) A ((r2y phonetics) ¢)]: ((STTV)@TV)\S

John+studies+logic+and+( Charles, phonetics) —
(Ay[(m1y may) A ((m2y phonetics) ¢)]

(Az((x logic) j),study)): S
John+studies+logic+and+( Charles, phonetics) —
[((study logic) j) A ((study phonetics) ¢)]: S

& o

,TE/
, 8 B\
9

10 It

ot

Lom

12 B/
13 B\
14

12, 15 It
2,16 1o

—_

17

4,11 E/
18, 19 E\

=20

FIGURE 4.16. Derivation of ‘John studies logic and Charles, phonetics’

the coordinator is assigned gapping type (77) (but with a tupling i.e. free
groupoid, rather than groupoid, understanding of the splitting product).

(77) ((N-N)@TV)\S)/(NeN)

The Morrill and Solias type is ‘more reactive’ than the Solias type in that
the former entails the latter, but not vice-versa, because NeN = S1TV
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but not the reverse (the reader is invited to check such results). In fact
these are not the only possibilities; the following two types, also entailed
by the Morrill and Solias type (but not by the Solias type) are also
suitable; they do not stand in an entailment relation to each other.
(78) a.  ((NeN)®TV)\S)/(S1TV)
b.  (((STTV)OTV)\S)/(N°N)

Thus a range of options are made available.

For generalisation of discontinuity to multiple cases, with a view to
multiple gapping data (‘John put beer in the freezer and Fred, wine’)
see Solias (1993), and see Morrill (1993) for generalisation of the discon-
tinuity proposal here.

3.5. Object-Antecedent Reflexivisation

We turn finally to object-oriented reflexives (the less problematic subject-
oriented reflexives are considered in the next chapter). Consider the
following paradigm:

(79) a. John shows Mary the book.
b. John shows Mary herself.
c. *John shows herself Mary.

Although perhaps a little strange (79b) is acceptable (we could think
of John showing Mary pictures or photos of various people including
herself), whereas (79¢) is not. In order for reflexivisation to occur in the
semantics, it is necessary for a reflexive to combine with, and reflexivise,
a predicate, before the predicate applies to the antecedent: the other way
round, the antecedent semantics is not accessible for duplication. The
facts in (79) are thus precisely the opposite of those expected if surface
form is generated by concatenation of the ditransitive verb first with
its adjacent reflexive-antecedent complement, and then with its remote
reflexive complement. This observation has been taken to motivate a
‘head-wrapping’ analysis of such verbs (see e.g. Dowty 1979) in which
they combine with the surface-form remote complement first, and then
‘head-wrap’ around the other complement. Here however we are able
to avoid such a global reconsideration of ditransitive verbs in response
to the specific demands of object-antecedent reflexivisation, and instead
instigate the desired combinatorics through the reflexive assignment. Let
us assume assignment of a ditransitive such as ‘show’ as shown in (80b).
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John —j: N

shows — Ax((show mx) max): (N\S)/(N-N)

hersel] — Aed(e (1 9): (N\S)/(N-N)) > (N\S)1N)

Mary — m: N

(shows, herself) — (AzAy(x (y,y)) Az((show mix) max)): 2,3 E>
(N\S)IN

(shows, herself) — Ay((show y) y): (N\S)TN =
((shows, herself )W Mary) — (Ay((show y) y) m): N\S 4,6 E1
shows+Mary+herself — ((show m) m): N\S =
John+shows+ Mary+herself — (((show m) m) j): S 1, 8 E\

[ B N

O oo -1 >

FIGURE 4.17. Derivation of ‘John showed Mary herself’

This may be considered the lexical assignment, or a consequence of a
lexical assignment (80a) with which it is mutually derivable.

(80) a. shows - show
((N\S)/N/N)
b. shows -  Ax((show miz) mox)
(N\S)/(N-N)

Now an object-oriented reflexive can be assigned a category as shown in
line 3 of Figure 4.17: i.e. a splitting functor mapping ditransitives into
wrapping transitives. This triggers the order of combination required for
a compositional analysis, while the acceptable word order rather than
the unacceptable **John shows herself Mary’ is generated because the
result of applying the reflexive is a wrapping functor.

This instance of object-antecedent reflexivisation is a ‘non-pied-piping’
example in that the reflexive is an immediate complement of the verb.
The examples (81) are more problematic, especially (81c) which involves
medial ‘pied-piping’, for exactly the same reasons as the relativisation
pied-piping examples.

(81) a. Bill shows Mary to herself.

b. Bill shows Mary a picture of herself.
c. Bill shows Mary a picture of herself taken in Paris.

However just as for the relativisation, nominal and prepositional pied-
piping, with no pied-piping obtained as a special case of the former, can
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all be obtained by just the assignment (82).

(82) herself —  AzAyAz(y (7, (x 2)))
V2X € {N, PPHXTN)L(((N\S)/(N-X))>((N\S)TN))

A further assignment for subject-antecedent reflexivisation will be seen
in the next chapter. Note that distinct treatments of the subject-
antecedent and object-antecedent cases is motivated by the different
prosodic realisations in such languages as Dutch, Icelandic, and Norwe-
gian.

4. DOMAIN MODALITIES

The proposals of the previous sections address one particular limita-
tion in the expressivity of basic categorial grammar: that with respect
to discontinuity. This section turns to another such limitation: that
with respect to domains. Various grammatical phenomena characterise
domains with certain properties. The most conspicuous hypothesis of
domains is that implicated by constituent structure in traditional gram-
matical treatments. Associative Lambek calculus induces no such struc-
ture; non-associative does. However, constituent structure is not the
only notion of domain conducive to characterisation, and nor is it al-
ways conducive: in relation to certain ‘bracketing paradoxes’ the no-
tion is quite counterproductive. In this respect the ‘constituent-free’
associative Lambek calculus seems to offer an interesting alternative to
‘constituent-based’ grammar, but it remains to reintroduce domains as
and when they are required. The move towards this is the concern of
this section; there is further consideration in chapters five, seven and
eight.

In Morrill (1989a, 1990b) it is proposed to extend categorial grammar
by adding modal category formulas. Such modality provides one way of
formalising domains in grammar; in particular, these works have been
concerned with semantic domains of intensionality, i.e. domains of ele-
ments which share the point of reference (possible world) at which they
are semantically evaluated. This application is propounded in the next
chapter. Here we consider technicalities of modal categorial grammar in
general.

The categorial language is modalised by including modal operators: if
A is a category formula, A and & A are category formulas. Interpretation
is relativised Kripke-style to points in a set I on which an accessibility
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relation R is defined. Excluding the semantic dimension for the time
being, a category formula A now has an interpretation as a set D(A)? of
prosodic objects relative to each point i in I. (Alternatively viewed, each
category formula has a single absolute interpretation as a set of pairings
of points and prosodic objects.) Where an interpretation function maps
atomic category formulas to sets of prosodic objects for each ¢, modal
formulas are interpreted as follows, where i Rj signifies that ¢ is accessible
from j.
(83) D(A)! = {s|Vj,iRj — s € D(A)/}
D(CA)Y = {s|3j,iRiAs € D(A)Y}

The interpretation of formulas obtained by other connectives is fixed
point-wise:
(84) D(A-B) {s1+s2]s1 € D(A)" As2 € D(B)'}
D(B/A)Z' = {s|vs' € D(A)f, s+s5 € D(B)Z}
D(A\B)' {s|Vs" € D(A)",s'+s € D(B)"}

Various modal logics are obtained by setting conditions on the accessi-
bility relation R, such as iRi (reflexivity), iRjAjRk—iRk (transitivity),
and iRj—jRi (symmetry). In the modal logic K there are no conditions;
in T reflexivity is added; in S4 reflexivity and transitivity are imposed;
and in S5 symmetry is also required. Sequent logic for the K universal
modality is given by the following rule where (as for ! in chapter two) T
denotes sequences Ay, ..., A, of -ed formulas:

8)I'= A4
K
I'= A

A sequent in modal logic is read as stating that at every index, if the
antecedent holds, then the succedent also holds. A sequent for which
this is indeed the case is valid. A rule such as (85) is read as stating that
if the premise is valid, then the conclusion is valid, i.e. that if at every
point the succedent of the premise follows from its antecedent, then at
every point the succedent of the conclusion follows from its antecedent.
Gentzen-style sequent calculus rules for the universal and existential
modalities of S4 are as follows.
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(86) a. I'1,A Iy = BL =4
Iry,A,I's = B =4

R

b. TI1,4,T,= OB oL I'= A4
I, A I, = OB I =04

Giving Gentzen-style sequent logic for S5 is problematic, but we will see
shortly how a certain kind of labelling provides for a formulation.

To gain a feel for modal logic in sequent calculus, observe that in S4
(and 85), OA (‘A is possible’) is a consequence of A (‘A is the case’),
which is a consequence of A (‘A is necessary’), but that in general A is
not a consequence of GA, and A is not a consequence of A. The rule of
use for simply involves removing the box, for example:

(87) N=N.
N=N S=S°5§
N =N N, N\S =S
N, (N\\S)/N, N = SL
N, (N\\S)/N, N =S
N, ((N\S)/N), N =S

The rule of proof is more restricted. In essence, inference to A requires
universally modalised (‘necessitated’) assumptions. Suppose that some
functor takes as argument S. For elements to occur within such an ar-
gumental domain their categories must yield universally modalised as-
sumptions; this may be assured by adding an outermost box to each
original lexical category.
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(88) S=S N:>N\L
N, N\S = SL N, ((N\S)/N), N = SR
N, N\S =S N, ((N\S)/N), N =S
N, (N\S)/S, N, ((N\S)/N), N = S .
N; (N\S)/5), N, (N\AS)/N), N = 8

Consider now a relative pronoun category which is a functor over S/N.
Analysis of a subject and transitive verb as this argument type is thus:

89) N=N N,N\S=S L
N, (N\S)/N, N =S
N, ((N\S)/N),N =S
N, ((N\S)/N) = S/N

However, if the pronoun is meant to bind a position in an embedded
modal domain, the derivation fails:

(90) R
N, N\S = S N, (N\S)/N), N = §

N, (N\S)/S, N, ((N\S)/N), N =S .
N, ((N\S)/5), N, ((N\S)/N), N = S
N, ((N\S)/5), N, ((N\5)/N) = S/N

The problem is that the conditionalised N fails to allow inference to S.
For this to be allowed, we need N, i.e. the relative pronoun should be a
functor over S/N if it is to allow relativisation from the S domain. In
this way, binding elements are sensitised to modal domains.

By way of example with respect to existential modality, suppose that
a relative pronoun is a functor over S/ON. Then it will not be able to
bind the argument position of a functor over N:
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O ——<"
ON=N N, N\S=S .

N, (N\S)/N, ON = §
N, (N\S)/N = S/ON

To be eligible for binding, such argument positions must be governed by
functors over ON:

(92) N=N S= S\L
ON = ON N,N\S:SL
N, (N\S)/ON, ON = S
N, (N\S)/ON = S/ON

(Note that ordinary lexical arguments can occupy diamond argument
positions since A yields &A.) Then with a binder a functor over a
diamond type, in a language like English where prepositions can be
stranded we may categorise them PP/ON, while in languages without
preposition stranding they would be PP/N.

So far we have considered just the prosodic dimension of interpre-
tation of modal category formulas. We shall give two kinds of over-
all interpretation, these differing with respect to the semantic dimen-
sion. The essential step in giving a semantic dimension is to define a
type map. In the first, semantically inactive, kind of modality, this is
T(A) =T(CA) =T(A). Then:

(93) D(A) = {{s,m)|Vj,iRj — (s,m) € D(A)'}

D(QA) = {(s,m)[3j,iRj A(s,m) € D(A)7}

In the semantically active version, T(A4) = I=T(A4) and T(CA) =
IxT(A), i.e. the semantic value of an object in A is a function from
indices into semantic values for A, and the semantic value of an object
in ©A is a pairing of an index and a semantic value for A.



134 CHAPTER FOUR

(94) D(A)! = {{s,m)|Vj,iRj — {s,m(j)) € D(A)j}
D(QAY = {{s,{J,m))|iRj A {(s,m) € D(A)7}
For the modal logic S5, interpretation is particularly simple: because

the accessibility relation is universal we can ignore it and just quantify
over the set of points. For the semantically active case:

(95) D(A)" = {{s,;m)|¥j, (s, m(j)) € D(A)7}
D(GA) = {{s,(4,m))|(s,m) € D(A)’}
And for the semantically inactive case:
(96) D(A) = {{s,m)|Vj,(s,m) € D(A)"}
D(CA) = {{s,m)[3j,(s,m) € D(A)}

The S5 formulation is particularly attractive in its simplicity, yet as
mentioned above presenting sequent logic for S5 is difficult. We there-
fore consider here how schematic possible world annotation can be used
in the presentation of modal logic (see e.g. Wallen 1990, Mints 1992);
this can be seen as a kind of labelled deduction. Hollenberg (1992)
shows this formulation of modal categorial grammar for S4, in a format
simply adaptable to K and other model logics, as described by Wallen
(1990). For S5 the annotation is very simple. Each formula in a sequent
is labelled with an index variable (p,q,...): AP refers to the category
formula A at index p. Theorems are those derivable sequents with all
formulas coindexed. Where we include now explicit prosodic labelling,
the axiom scheme becomes:

(97) ———————id

a: AP = a: AP

The S5 labelled Gentzen-style rules are:

(98) I'ya: AP = B: B¢ I = a: AP
L —R,nopinT
Ia:A” = 3: BY ' = a: A4

By way of example we have the following derivation of the modal axiom
T corresponding to reflexivity of accessibility:
(99) a: A = a: AP

—L

a: AP = a: AP

But the condition on R blocks the converse:
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(100)a: AP = a: AP
T " ¥R
a: AP = a: AP

There is also the derivation (101) of the modal axiom 4 corresponding
to transitivity of the accessibility relation.

(101) a: AP = a: AP

e e B

a: A" = a: AP

—— R

a: A" = a: AY

— R

a: A" = a: A"
Other rules are labelled with indices as follows:
(102)a. T = a: AP b: BP, A = 4[b]: C1

T, d: A\B?, A = v[(a+d)]: C?

\L

b. T,a: AP = (a+~): BP R
T = : A\ B

(103)a. T = a: AP b:BP, A = 4[b]: C?
T,d: B/A? /A = ~[(d+a«)]: C?

/L

b. T,a: AP = (y+a): BP
T = v B/AP

Thus we have:

(104)BY = BY A7 = A?
A/B%,B? = AqL
A/B%, B" = A1 L
(A/B)",B" = At
(A/B)",B" = A’“R

L

But, for instance, (105) is invalid in virtue of the condition on R.
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(105)B" = B" A" = A"
A/B",B" = A"

L

(A/By B = A
(A/B)",B" = A

/L

Modal calculus is applied to extraction constraints in chapter eight,
and to intensionality in the next chapter, where its interaction with
quantifier and reflexive binding is addressed. With this introduction to
enriched categorial grammar we conclude our initial technical consider-
ations, and move on to the refinement of Montague grammar for which
the way has been paved.



