Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentín

Department of Computer Science Universitat Politècnica de Catalunya morrill@cs.upc.edu & oriol.valentin@gmail.com

> BGSMath Course Class 9

Displacement calculus with additives DA

- Displacement calculus with additives DA
- Parsing as deduction

- Displacement calculus with additives DA
- Parsing as deduction
- Spurious ambiguity

- Displacement calculus with additives DA
- Parsing as deduction
- Spurious ambiguity
- Focusing

Displacement calculus $\bf D$ is an intuitionistic sublinear logic which is a conservative extension of Lambek calculus $\bf L$, but $\bf D$ is not *just* an extension of $\bf L$ because it requires a whole new machinery to deal with semantically unitary expressions which are separated in more than one piece.

Displacement calculus $\bf D$ is an intuitionistic sublinear logic which is a conservative extension of Lambek calculus $\bf L$, but $\bf D$ is not *just* an extension of $\bf L$ because it requires a whole new machinery to deal with semantically unitary expressions which are separated in more than one piece.

It is necessary to check that focusing works under these conditions.

Displacement calculus $\bf D$ is an intuitionistic sublinear logic which is a conservative extension of Lambek calculus $\bf L$, but $\bf D$ is not *just* an extension of $\bf L$ because it requires a whole new machinery to deal with semantically unitary expressions which are separated in more than one piece.

It is necessary to check that focusing works under these conditions.

DA is displacement calculus extended with additives (for polymorphism).

Parsing as deduction

Parsing as deduction

In type logical categorial grammar, grammaticality is reduced to theoremhood in a sublinear logic: a string is grammatical if and only if an associated sequent is a theorem. It follows that parsing is deduction.

Spurious ambiguity

Spurious ambiguity

A major challenge to the efficiency of parsing/theorem-proving is the existence of proofs differing only in inessential rule reorderings: *spurious ambiguity*.

Spurious ambiguity

A major challenge to the efficiency of parsing/theorem-proving is the existence of proofs differing only in inessential rule reorderings: *spurious ambiguity*.

For example

$$\frac{N\Rightarrow N \qquad S\Rightarrow S}{N,N\backslash S\Rightarrow S} \setminus L$$

$$\frac{N\Rightarrow N \qquad N,N\backslash S\Rightarrow S}{N,N\backslash S\geqslant S} \setminus L$$

$$\frac{N\Rightarrow N \qquad N,N\backslash S\Rightarrow S}{N,N\backslash S\geqslant S} \setminus L$$

$$\frac{N,N\backslash S\Rightarrow S}{N,N\backslash S\Rightarrow N\backslash S} \setminus R$$

$$\frac{N,N\backslash S\Rightarrow S}{N,N\backslash S\Rightarrow N} \setminus R$$

$$\frac{N,N\backslash S\Rightarrow N}{N,N\backslash S\Rightarrow N} \setminus R$$

$$\frac{N,N\backslash S\Rightarrow N} \setminus R$$

$$\frac{N,N\backslash S\Rightarrow N}{N,N\backslash S\Rightarrow N} \setminus R$$

$$\frac{N,N\backslash S\Rightarrow N}{N,N\backslash$$

► Definition of **DA**

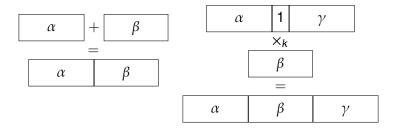
- Definition of DA
- Definition of DA_{foc} (weakly focalised) and DA_{Foc} (strongly focalised) displacement calculus with additives

- Definition of DA
- Definition of DA_{foc} (weakly focalised) and DA_{Foc} (strongly focalised) displacement calculus with additives
- Structure of the reasoning of completeness

- Definition of DA
- Definition of DA_{foc} (weakly focalised) and DA_{Foc} (strongly focalised) displacement calculus with additives
- Structure of the reasoning of completeness
- Proof of completeness

Definition of **DA**

Displacement calculus is a logic of discontinuous strings — strings punctuated by a *separator* 1 and subject to operations of append and plug:



append
$$+: L_i, L_i \rightarrow L_{i+i}$$

$$plug \times_k : L_{i+1}, L_i \to L_{i+j}$$

Definition of types of **DA**

```
\mathcal{F}_i ::= \mathcal{F}_{i+i}/\mathcal{F}_i
      \mathcal{F}_i ::= \mathcal{F}_i \backslash \mathcal{F}_{i+i}
  \mathcal{F}_{i+i} ::= \mathcal{F}_i \bullet \mathcal{F}_i
     \mathcal{F}_0 ::= 1
 \mathcal{F}_{i+1} ::= \mathcal{F}_{i+i} \uparrow_k \mathcal{F}_i 1 \le k \le i+1
      \mathcal{F}_i ::= \mathcal{F}_{i+1} \downarrow_k \mathcal{F}_{i+i} \quad 1 \leq k \leq i+1
   \mathcal{F}_{i+i} ::= \mathcal{F}_{i+1} \odot_k \mathcal{F}_i \quad 1 \leq k \leq i+1
     \mathcal{F}_1 ::= J
      \mathcal{F}_i ::= \mathcal{F}_i \& \mathcal{F}_i
       \mathcal{F}_i ::= \mathcal{F}_i \oplus \mathcal{F}_i
Sort s(A) = the i s.t. A \in \mathcal{F}_i
For example, where s(N) = s(S) = 0,
s((S\uparrow_1 N)\uparrow_2 N) = s((S\uparrow_1 N)\uparrow_1 N) = 2
```

Interpretation of multiplicative types

```
 \begin{split} & [[C/B]] &= \{s_1 | \forall s_2 \in [[B]], s_1 + s_2 \in [[C]]\} \\ & [[A \setminus C]] &= \{s_2 | \forall s_1 \in [[A]], s_1 + s_2 \in [[C]]\} \\ & [[A \bullet B]] &= \{s_1 + s_2 | s_1 \in [[A]] \& s_2 \in [[B]]\} \\ & [[I]] &= \{0\} \end{split}   \begin{aligned} & [[C \uparrow_k B]] &= \{s_1 | \forall s_2 \in [[B]], s_1 \times_k s_2 \in [[C]]\} \\ & [[A \downarrow_k C]] &= \{s_2 | \forall s_1 \in [[A]], s_1 \times_k s_2 \in [[C]]\} \\ & [[A \odot_k B]] &= \{s_1 \times_k s_2 | s_1 \in [[A]] \& s_2 \in [[B]]\} \\ & [[J]] &= \{1\} \end{aligned}
```

Definition of configurations and sequents of **DA**

Configurations
$$O ::= \Lambda \mid \mathcal{T}, O$$

$$\mathcal{T} ::= 1 \mid \mathcal{F}_0 \mid \mathcal{F}_{i>0} \{ \underbrace{O : \ldots : O}_{iO's} \}$$

For example, there is the configuration $(S \uparrow_1 N) \uparrow_2 N\{N, 1 : S \uparrow_1 N\{S\}\}, 1, N, 1$

Where a type A of sort i > 0 includes $\alpha_0 + 1 + \alpha_1 + \dots + \alpha_{i-1} + 1 + \alpha_i$ and $\beta_1 \in \Delta_1, \dots, \beta_i \in \Delta_i$, $A\{\Delta_1 : \dots : \Delta_i\}$ contains $\alpha_0 + \beta_1 + \alpha_1 + \dots + \alpha_{i-1} + \beta_i + \alpha_i$.

Sort
$$s(O) = |O|_1$$

For example $s((S \uparrow_1 N) \uparrow_2 N\{N, 1 : S \uparrow_1 N\{S\}\}, 1, N, 1) = 3$

Sequents
$$\Sigma ::= O \Rightarrow A$$
 s.t. $s(O) = s(A)$

Figure of a type

The figure \overrightarrow{A} of a type A is defined by:

$$\overrightarrow{A} = \begin{cases} A & \text{if } s(A) = 0\\ A\{1 : \dots : 1\} & \text{if } s(A) > 0\\ s(A) \text{ 1'S} \end{cases}$$

Fold

Where Γ is a configuration of sort i and $\Delta_1, \ldots, \Delta_i$ are configurations, the fold $\Gamma \otimes \langle \Delta_1 : \ldots : \Delta_i \rangle$ is the result of replacing the successive 1's in Γ by $\Delta_1, \ldots, \Delta_i$ respectively.

Metalinguistic wrap

Where Δ is a configuration of sort i > 0 and Γ is a configuration, the kth metalinguistic wrap $\Delta \mid_k \Gamma$, $1 \le k \le i$, is given by

$$\Delta \mid_{k} \Gamma =_{df} \Delta \otimes \langle \underbrace{1 : \ldots : 1}_{k-1 \text{ 1's}} : \Gamma : \underbrace{1 : \ldots : 1}_{i-k \text{ 1's}} \rangle$$

I.e. $\Delta \mid_k \Gamma$ is the configuration resulting from replacing by Γ the kth separator in Δ .

Rules of **DA**

The rules of the displacement calculus with additives are as follows, where $\Delta(\Gamma)$ abbreviates $\Delta_0(\Gamma \otimes \langle \Delta_1 : \ldots : \Delta_i \rangle)$:

$$\frac{}{P \Rightarrow P} \text{ id} \qquad \frac{\Gamma \Rightarrow A \qquad \Delta \langle \overrightarrow{A} \rangle \Rightarrow B}{\Delta \langle \Gamma \rangle \Rightarrow B} \text{ Cut}$$

$$\frac{\Gamma \Rightarrow B \quad \Delta \langle \overrightarrow{C} \rangle \Rightarrow D}{\Delta \langle \overrightarrow{C} / \overrightarrow{B}, \Gamma \rangle \Rightarrow D} / L \quad \frac{\Gamma, \overrightarrow{B} \Rightarrow C}{\Gamma \Rightarrow C / B} / R$$

$$\frac{\Gamma \Rightarrow A \quad \Delta \langle \overrightarrow{C} \rangle \Rightarrow D}{\Delta \langle \Gamma, \overrightarrow{A} \backslash \overrightarrow{C} \rangle \Rightarrow D} \backslash L \quad \frac{\overrightarrow{A}, \Gamma \Rightarrow C}{\Gamma \Rightarrow A \backslash C} \backslash R$$

$$\frac{\Delta \langle \overrightarrow{A}, \overrightarrow{B} \rangle \Rightarrow D}{\Delta \langle \overrightarrow{A} \bullet \overrightarrow{B} \rangle \Rightarrow D} \bullet L \quad \frac{\Gamma_1 \Rightarrow A \quad \Gamma_2 \Rightarrow B}{\Gamma_1, \Gamma_2 \Rightarrow A \bullet B} \bullet R$$

$$\frac{\Delta \langle \overrightarrow{A} \rangle \Rightarrow A}{\Delta \langle \overrightarrow{I} \rangle \Rightarrow A} I L \quad \overline{\Lambda \Rightarrow I} R$$

$$\frac{\Gamma \Rightarrow B \quad \Delta \langle \overrightarrow{C} \rangle \Rightarrow D}{\Delta \langle \overrightarrow{C} \uparrow_{k} \overrightarrow{B} |_{k} \Gamma \rangle \Rightarrow D} \uparrow_{k} L \qquad \frac{\Gamma |_{k} \overrightarrow{B} \Rightarrow C}{\Gamma \Rightarrow C \uparrow_{k} B} \uparrow_{k} R$$

$$\frac{\Gamma \Rightarrow A \quad \Delta \langle \overrightarrow{C} \rangle \Rightarrow D}{\Delta \langle \Gamma |_{k} \overrightarrow{A} \downarrow_{k} \overrightarrow{C} \rangle \Rightarrow D} \downarrow_{k} L \qquad \frac{\overrightarrow{A} |_{k} \Gamma \Rightarrow C}{\Gamma \Rightarrow A \downarrow_{k} C} \downarrow_{k} R$$

$$\frac{\Delta \langle \overrightarrow{A} |_{k} \overrightarrow{B} \rangle \Rightarrow D}{\Delta \langle \overrightarrow{A} \odot_{k} \overrightarrow{B} \rangle \Rightarrow D} \odot_{k} L \qquad \frac{\Gamma_{1} \Rightarrow A \qquad \Gamma_{2} \Rightarrow B}{\Gamma_{1} |_{k} \Gamma_{2} \Rightarrow A \odot_{k} B} \odot_{k} R$$

$$\frac{\Delta \langle 1 \rangle \Rightarrow A}{\Delta \langle \overrightarrow{J} \rangle \Rightarrow A} JL \qquad \frac{\Gamma_{1} \Rightarrow J}{\Gamma_{2} \Rightarrow J} JR$$

$$\begin{split} \frac{\Gamma(\overrightarrow{A}) \Rightarrow C}{\Gamma(\overrightarrow{A} \& \overrightarrow{B}) \Rightarrow C} \& L_1 & \frac{\Gamma(\overrightarrow{B}) \Rightarrow C}{\Gamma(\overrightarrow{A} \& \overrightarrow{B}) \Rightarrow C} \& L_2 \\ & \frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \& B} \& R \\ & \frac{\Gamma(\overrightarrow{A}) \Rightarrow C \quad \Gamma(\overrightarrow{B}) \Rightarrow C}{\Gamma(\overrightarrow{A} \oplus \overrightarrow{B}) \Rightarrow C} \oplus L \\ & \frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \oplus B} \oplus R_1 & \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \oplus B} \oplus R_2 \end{split}$$

Definition of weakly focalised **DA**, **DA**_{foc}

Where atomic types are partitioned into those with positive (At⁺) and negative (At⁻) bias, situated (input •/output °) polar types are classified into positive and negative according as their rules is not or is invertible respectively as follows:

```
Pos. out., neg. in. P,M ::= At^+ \mid A \bullet B \mid I \mid A \odot_k B \mid J \mid A \oplus B
Pos. in., neg. out. Q,N ::= At^- \mid C/B \mid A \setminus C \mid C \uparrow_k B \mid A \downarrow_k C \mid A \& B
```

Rules of **DA_{foc}**

A sequent is either unfocused and as before, or else focused and has exactly one type boxed.

$$\frac{\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{W} A}{\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{W} A} \text{ foc } \frac{\Delta \Longrightarrow_{W} P}{\Delta \Longrightarrow_{W} P} \text{ foc}$$

Identity group

$$\overrightarrow{\overrightarrow{P}} \Longrightarrow_{w} \boxed{P}$$
 id, if $P \in \mathsf{At}^{+}$

$$\overrightarrow{\overrightarrow{P}} \Longrightarrow_{W} \overrightarrow{P} \text{ id, if } P \in \mathsf{At}^{+} \qquad \overrightarrow{\square} \Longrightarrow_{W} Q \text{ id, if } Q \in \mathsf{At}^{-}$$

$$\frac{\Gamma \Longrightarrow_{w} \boxed{P} \qquad \Delta \langle \overrightarrow{P} \rangle \Longrightarrow_{w} C \diamond \text{ foc}}{\Delta \langle \Gamma \rangle \Longrightarrow_{w} C \diamond \text{ foc}} p\text{-}Cut_{1}$$

$$\frac{\Gamma {\Longrightarrow_{\mathit{W}}} P \quad \Delta \langle \overrightarrow{P} \rangle {\Longrightarrow_{\mathit{W}}} C \diamond \mathsf{foc}}{\Delta \langle \Gamma \rangle {\Longrightarrow_{\mathit{W}}} C \diamond \mathsf{foc}} p\text{-}\mathit{Cut}_1 \qquad \frac{\Gamma {\Longrightarrow_{\mathit{W}}} N \diamond \mathsf{foc} \quad \Delta \langle \overrightarrow{N} \rangle {\Longrightarrow_{\mathit{W}}} C}{\Delta \langle \Gamma \rangle {\Longrightarrow_{\mathit{W}}} C \diamond \mathsf{foc}} p\text{-}\mathit{Cut}_2$$

$$\frac{\Gamma \Longrightarrow_{\mathsf{w}} P \diamond \mathsf{foc} \qquad \Delta \langle \overrightarrow{P} \rangle \Longrightarrow_{\mathsf{w}} C}{\Delta \langle \Gamma \rangle \Longrightarrow_{\mathsf{w}} C \diamond \mathsf{foc}} n\text{-}Cut$$

$$\frac{\Gamma {\Longrightarrow_{\mathit{W}}} P \lozenge \mathsf{foc} \quad \Delta \langle \overrightarrow{P} \rangle {\Longrightarrow_{\mathit{W}}} C}{\Delta \langle \Gamma \rangle {\Longrightarrow_{\mathit{W}}} C \lozenge \mathsf{foc}} \, n\text{-}Cut_1 \qquad \frac{\Gamma {\Longrightarrow_{\mathit{W}}} N \quad \Delta \langle \overrightarrow{N} \rangle {\Longrightarrow_{\mathit{W}}} C \lozenge \mathsf{foc}}{\Delta \langle \Gamma \rangle {\Longrightarrow_{\mathit{W}}} C \lozenge \mathsf{foc}} \, n\text{-}Cut_2$$

Logical rules of **DA**_{foc}

The focalised logical rules are as follows including Curry-Howard categorial semantic labelling.

Asynchronous multiplicative rules

$$\frac{\overrightarrow{A}:x,\Gamma\Rightarrow C:\chi}{\Gamma\Rightarrow A\backslash C:\lambda x\chi}\backslash R \qquad \frac{\Gamma,\overrightarrow{B}:y\Rightarrow C:\chi}{\Gamma\Rightarrow C/B:\lambda y\chi}/R$$

$$\frac{\Delta\langle\overrightarrow{A}:x,\overrightarrow{B}:y\rangle\Rightarrow D:\omega}{\Delta\langle\overrightarrow{A}\bullet\overrightarrow{B}:z\rangle\Rightarrow D:\omega\langle\pi_1z/x,\pi_2z/y\rangle} \bullet L \qquad \frac{\Delta\langle\Lambda\rangle\Rightarrow A:\phi}{\Delta\langle\overrightarrow{I}:x\rangle\Rightarrow A:\phi} \downarrow L$$

$$\frac{\overrightarrow{A}:x|_k\Gamma\Rightarrow C:\chi}{\Gamma\Rightarrow A|_kC:\lambda x\chi}\downarrow_k R \qquad \frac{\Gamma|_k\overrightarrow{B}:y\Rightarrow C:\chi}{\Gamma\Rightarrow C\uparrow_kB:\lambda y\chi}\uparrow_k R$$

$$\frac{\Delta\langle\overrightarrow{A}:x|_k\overrightarrow{B}:y\rangle\Rightarrow D:\omega}{\Delta\langle\overrightarrow{A}\circ_k\overrightarrow{B}:z\rangle\Rightarrow D:\omega\langle\pi_1z/x,\pi_2z/y\rangle} \circ_k L \qquad \frac{\Delta\langle 1\rangle\Rightarrow A:\phi}{\Delta\langle\overrightarrow{J}:x\rangle\Rightarrow A:\phi} JL$$

Asynchronous additive rules

$$\frac{\Gamma \Rightarrow A \colon \phi \qquad \Gamma \Rightarrow B \colon \psi}{\Gamma \Rightarrow A \& B \colon (\phi, \psi)} \& R$$

$$\frac{\Gamma(\overrightarrow{A} \colon x) \Rightarrow C \colon \chi_1 \qquad \Gamma(\overrightarrow{B} \colon y) \Rightarrow C \colon \chi_2}{\Gamma(\overrightarrow{A} \mapsto \overrightarrow{B} \colon z) \Rightarrow C \colon z \rightarrow x . \chi_1; y . \chi_2} \oplus L$$

Left synchronous continuous multiplicative rules

$$\frac{\Gamma \Rightarrow P : \phi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle \Gamma, P \setminus Q : y \rangle \Rightarrow D : \omega \{(y \phi)/z\}} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \phi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle \Gamma, N \setminus Q : y \rangle \Rightarrow D : \omega \{(y \phi)/z\}} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \phi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle \Gamma, N \setminus Q : y \rangle \Rightarrow D : \omega \{(y \phi)/z\}} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \phi \qquad \Delta \langle M : z \rangle \Rightarrow D : \omega}{\Delta \langle \Gamma, N \setminus M : y \rangle \Rightarrow D : \omega \{(y \phi)/z\}} \setminus L$$

$$\frac{\Gamma \Rightarrow P : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega} \setminus L$$

$$\frac{\Gamma \Rightarrow N : \psi \qquad \Delta \langle Q : z \rangle \Rightarrow D : \omega}{\Delta \langle Q : z \rangle \Rightarrow D : \omega}$$

Left synchronous discontinuous multiplicative rules

Left synchronous additive rules

$$\begin{array}{c} \Gamma(\overrightarrow{Q} : x \rangle \Rightarrow C : \chi \\ \hline \\ \overrightarrow{\Gamma(Q\&B)} : z \rangle \Rightarrow C : \chi \{\pi_1 z / x\} \end{array} & \underbrace{\Gamma(\overrightarrow{M} : x) \Rightarrow C : \chi}_{} \&L_1 \\ \hline \\ \Gamma(\overrightarrow{Q\&B} : z \rangle \Rightarrow C : \chi \{\pi_1 z / x\} \end{array} & \underbrace{\Gamma(\overrightarrow{M}\&B)}_{} : z \rangle \Rightarrow C : \chi \{\pi_1 z / x\} \\ \hline \\ \overrightarrow{\Gamma(A\&Q)} : z \rangle \Rightarrow C : \chi \{\pi_2 z / y\} & \underbrace{L_2}_{} \\ \hline \\ \Gamma(\overrightarrow{A\&M} : z \rangle \Rightarrow C : \chi \{\pi_2 z / y\} \end{aligned} & \underbrace{L_2}_{}$$

Right synchronous continuous multiplicative rules

$$\frac{\Gamma_{1} \Rightarrow \boxed{\Gamma_{1}} : \phi \qquad \Gamma_{2} \Rightarrow \boxed{P_{2}} : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{P_{1} \bullet P_{2}} : (\phi, \psi)} \bullet R \qquad \frac{\Gamma_{1} \Rightarrow \boxed{P} : \phi \qquad \Gamma_{2} \Rightarrow N : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{P \bullet N} : (\phi, \psi)} \bullet R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{P} : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{N \bullet P} : (\phi, \psi)} \bullet R \qquad \frac{\Gamma_{1} \Rightarrow N_{1} : \phi \qquad \Gamma_{2} \Rightarrow N_{2} : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{N_{1} \bullet N_{2}} : (\phi, \psi)} \bullet R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{N_{2}} : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{N_{1} \bullet N_{2}} : (\phi, \psi)} \bullet R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow N_{2} : \psi}{\Gamma_{1}, \Gamma_{2} \Rightarrow \boxed{N_{1} \bullet N_{2}} : (\phi, \psi)} \bullet R$$

Right synchronous discontinuous multiplicative rules

$$\frac{\Gamma_{1} \Rightarrow \boxed{P_{1}} : \phi \qquad \Gamma_{2} \Rightarrow \boxed{P_{2}} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{P_{1} \odot_{k} P_{2}} : (\phi, \psi)} \odot_{k} R \qquad \frac{\Gamma_{1} \Rightarrow \boxed{P} : \phi \qquad \Gamma_{2} \Rightarrow N : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{P \odot_{k} N} : (\phi, \psi)} \odot_{k} R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{P} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{N \odot_{k} P} : (\phi, \psi)} \odot_{k} R \qquad \frac{\Gamma_{1} \Rightarrow N_{1} : \phi \qquad \Gamma_{2} \Rightarrow N_{2} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{N_{1} \odot_{k} N_{2}} : (\phi, \psi)} \odot_{k} R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{N} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{N_{1} \odot_{k} N_{2}} : (\phi, \psi)} \odot_{k} R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{N} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{N_{1} \odot_{k} N_{2}} : (\phi, \psi)} \odot_{k} R$$

$$\frac{\Gamma_{1} \Rightarrow N : \phi \qquad \Gamma_{2} \Rightarrow \boxed{N} : \psi}{\Gamma_{1} \mid_{k} \Gamma_{2} \Rightarrow \boxed{N_{1} \odot_{k} N_{2}} : (\phi, \psi)} \odot_{k} R$$

Right synchronous additive rules

$$\frac{\Gamma \Rightarrow P : \phi}{\Gamma \Rightarrow P \oplus B} : \iota_1 \phi \oplus R_1 \qquad \frac{\Gamma \Rightarrow N : \phi}{\Gamma \Rightarrow N \oplus B} : \iota_1 \phi \oplus R_1$$

$$\frac{\Gamma \Rightarrow P : \psi}{\Gamma \Rightarrow A \oplus P} : \iota_2 \psi \oplus R_2 \qquad \frac{\Gamma \Rightarrow N : \psi}{\Gamma \Rightarrow A \oplus N} : \iota_2 \psi \oplus R_2$$

Definition of strongly focused **DA**, **DA**_{Foc}

DA_{Foc} has all the same rules as **DA**_{foc} but not the Cut rules.

In addition, the sequents of **DA**_{Foc} are restricted:

A **DA**_{Foc} sequent cannot contain both a focus and a complex negative type.

Consequently, proofs in **DA**_{Foc} run in alternating phrases of positive rule application and negative rule application.

Structure of the reasoning of completeness

- Lemma: Eta-expansion for DA_{foc}. Proof by a simple induction on the structure of types. Corollary: Eta-expansion for DA.
- 2. Theorem: Embedding of **DA** with Cut into **DA**_{foc} with Cuts (and Eta). Proof by induction on the length of **DA** proofs.
- 3. Theorem: Cut-elimination for \mathbf{DA}_{foc} . Proof by double induction on the size of the Cut formula and the depth of the top-most Cut. Corollary: Cut-elimination for \mathbf{DA} .
- 4. Theorem: embedding of **DA**_{foc} (without Cut) into **DA**_{Foc}.

Embedding of **DA** into **DA**_{foc}

Theorem 4.1 For any configuration Δ and type A, we have that if $\Delta \Rightarrow A$ then $\Delta \Longrightarrow_{w} A$.

Proof We proceed by induction on the length of **DA** proofs. For the non-axiomatic rules we apply the induction hypothesis (i.h.) for each premise of **DA** rules.

Identity axiom:

$$\frac{\overrightarrow{P} \Longrightarrow_{w} P}{\overrightarrow{P} \Longrightarrow_{w} P} \text{ foc } \frac{\overrightarrow{N} \Longrightarrow_{w} N}{\overrightarrow{N} \Longrightarrow_{w} N} \text{ foc}$$

- Cut rule: just apply n-Cut.
- Units

$$\frac{1}{\Lambda \Rightarrow I} IR \qquad \sim \qquad \frac{\Lambda \Longrightarrow_{w} I}{\Lambda \Longrightarrow_{w} I} foc$$

$$\frac{1}{1 \Rightarrow J} JR \qquad \sim \qquad \frac{1}{1 \Longrightarrow_{w} J} foc$$

Left unit rules apply as in the case of **DA**.

- Left discontinuous product: directly translates.
- Right discontinuous product. There are cases $P_1 \odot_k P_2$, $N_1 \odot_k N_2$, $N \odot_k P$ and $P \odot_k N$. We show one example:

$$\frac{\Delta \Rightarrow P \qquad \Gamma \Rightarrow N}{\Delta \mid_{k} \Gamma \Rightarrow P \odot_{k} N} \odot_{k} R \qquad \sim$$

$$\frac{\overrightarrow{P} \Longrightarrow_{w} P \qquad \overrightarrow{N} \Longrightarrow_{w} N}{\overrightarrow{N} \Longrightarrow_{w} N} \text{ foc}$$

$$\frac{\Delta \Longrightarrow_{w} P \qquad \overrightarrow{P} \mid_{k} \overrightarrow{N} \Rightarrow P \odot_{k} N}{\overrightarrow{P} \mid_{k} \overrightarrow{N} \Rightarrow P \odot_{k} N} \text{ n-Cut}_{2}$$

$$\frac{\Delta \mid_{k} \Gamma \Longrightarrow_{w} P \odot_{k} N}{\Delta \mid_{k} \Gamma \Longrightarrow_{w} P \odot_{k} N} \text{ foc}$$

- Left discontinuous \uparrow_k rule (the left rule for \downarrow_k is entirely similar). Like in the case for the right discontinuous product \odot_k rule, we only show one representative example:

$$\frac{\Gamma \Rightarrow P \qquad \Delta \langle \overrightarrow{N} \rangle \Rightarrow A}{\Delta \langle \overrightarrow{N} \uparrow_k \overrightarrow{P} |_k \Gamma \rangle \Rightarrow A} \uparrow_k L \qquad \sim$$

$$\frac{\overrightarrow{P} \Longrightarrow_w P \qquad \overrightarrow{N} \Longrightarrow_w N}{|\overrightarrow{N} \uparrow_k P|_k |_k |_{P} \Longrightarrow_w N} \uparrow_k L$$

$$\frac{\overrightarrow{P} \Longrightarrow_w P \qquad \Delta \langle \overrightarrow{N} \uparrow_k P|_k |_{R} |_{P} \Longrightarrow_w A}{|\overrightarrow{N} \uparrow_k P|_k |_{R} |_{R}$$

- Right discontinuous \uparrow_k rule (the right discontinuous rule for \downarrow_k is entirely similar):

$$\frac{\Delta|_{k}\overrightarrow{A}\Rightarrow B}{\Delta\Rightarrow B\uparrow_{k}A}\uparrow_{k}R \qquad \sim \qquad \frac{\Delta|_{k}\overrightarrow{A}\Longrightarrow_{w}B}{\Delta\Longrightarrow_{w}B\uparrow_{k}A}\uparrow_{k}R$$

- Product and implicative continuous rules. These follow the same pattern as the discontinuous case. We interchange the metalinguistic k-th intercalation $|_k$ with the metalinguistic concatenation ',', and we interchange \odot_k , \uparrow_k and \downarrow_k with \bullet , /, and \setminus respectively.

Concerning additives, conjunction Right translates directly and we consider then conjunction Left (disjunction is symmetric):

$$\frac{\Delta(\overrightarrow{P}) \Rightarrow C}{\Delta(\overrightarrow{P\&M}) \Rightarrow C} \& L \qquad \sim \qquad \underbrace{\frac{\overrightarrow{P} \Longrightarrow_{w} P}{\overrightarrow{P} \Longrightarrow_{w} P}}_{p \Leftrightarrow_{w} P} foc \qquad \qquad \underbrace{\frac{P\&M}{\Rightarrow_{w} P} \& L_{1}}_{p \&M \Longrightarrow_{w} P} foc \qquad \qquad \underbrace{\frac{P\&M}{\Rightarrow_{w} P} foc}_{\Delta(\overrightarrow{P}\&M) \Longrightarrow_{w} C} n\text{-}Cut\text{-}$$

П

Cut-elimination for **DA**_{foc}

We prove this by induction on the complexity (d, h) of top-most instances of Cut, where d is the size (number of connectives) appearing in the top-most Cut formula, and h is the depth of the top-most Cut.

Cut-elimination for **DA**_{foc}

We prove this by induction on the complexity (d, h) of top-most instances of Cut, where d is the size (number of connectives) appearing in the top-most Cut formula, and h is the depth of the top-most Cut.

There are four cases to consider: Cut with axiom in the minor premise, Cut with axiom in the major premise, principal Cuts, and permutation conversions.

Id cases

$$\frac{\overrightarrow{P} \Longrightarrow_{w} P \qquad \Delta \langle \overrightarrow{P} \rangle \Longrightarrow_{w} B \diamond \text{ foc}}{\Delta \langle \overrightarrow{P} \rangle \Longrightarrow_{w} B \diamond \text{ foc}} p\text{-}Cut_{1} \qquad \sim \qquad \Delta \langle \overrightarrow{P} \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

$$\frac{\Delta \Longrightarrow_{w} N \diamond \text{ foc} \qquad \overrightarrow{N} \Longrightarrow_{w} N}{\Delta \langle \overrightarrow{N} \rangle \Longrightarrow_{w} B \diamond \text{ foc}} p\text{-}Cut_{2} \qquad \sim \qquad \Delta \langle \overrightarrow{N} \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

foc cases

Principal cases

Principal cut of \uparrow_k :

$$\frac{\Delta|_{k}\overrightarrow{P_{1}}\Longrightarrow_{w}P_{2} \diamond \text{foc}}{\Delta \Longrightarrow_{w}P_{2} \uparrow_{k}P_{1} \diamond \text{foc}} \uparrow_{k}R \qquad \frac{\Gamma_{1}\Longrightarrow_{w}\boxed{P_{1}} \qquad \Gamma_{2}\langle \overrightarrow{P_{2}}\rangle \Longrightarrow_{w}A}{\Gamma_{2}\langle \boxed{P_{2} \uparrow_{k}P_{1}} |_{k}\Gamma_{1}\rangle \Longrightarrow_{w}A} \uparrow_{k}L}{\Gamma_{2}\langle \boxed{P_{2} \uparrow_{k}P_{1}} |_{k}\Gamma_{1}\rangle \Longrightarrow_{w}A} p\text{-}Cut_{2}}$$

$$\frac{\Gamma_{2}\langle \Delta|_{k}\Gamma_{1}\rangle \Longrightarrow_{w}A \diamond \text{foc}}{\gamma} \qquad \frac{\Delta|_{k}\overrightarrow{P_{1}}\Longrightarrow_{P_{2}} \diamond \text{foc}}{\Gamma_{2}\langle \Delta|_{k}\overrightarrow{P_{1}}\rangle \Longrightarrow_{w}A \diamond \text{foc}} n\text{-}Cut_{1}}{\Gamma_{2}\langle \Delta|_{k}\Gamma_{1}\rangle \Longrightarrow_{w}A \diamond \text{foc}} p\text{-}Cut_{1}}$$

The case of \downarrow_k is entirely similar to the \uparrow_k case.

Principal Cut of discontinuous product:

$$\frac{\Delta_{1} \Longrightarrow_{w} P \qquad \Delta_{2} \Longrightarrow_{w} N}{\Delta_{1}|_{k} \Delta_{2} \Longrightarrow_{w} P \odot_{k} N} \xrightarrow{\qquad \qquad \Gamma(\overrightarrow{P}|_{k} \overrightarrow{N}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} L}{\Gamma(\Delta_{1}|_{k} \Delta_{2}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} Cut_{1}}$$

$$\frac{\Delta_{1} \Longrightarrow_{w} P \qquad \Delta_{2} \Longrightarrow_{w} A \diamond \text{ foc}}{\Gamma(\Delta_{1}|_{k} \overrightarrow{N}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} Cut_{1}}{\Gamma(\Delta_{1}|_{k} \overrightarrow{N}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} Cut_{1}}$$

$$\frac{\Delta_{2} \Longrightarrow_{w} N \qquad \Gamma(\Delta_{1}|_{k} \overrightarrow{N}) \Longrightarrow_{w} A \diamond \text{ foc}}{\Gamma(\Delta_{1}|_{k} \overrightarrow{N}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} Cut_{1}}{\Gamma(\Delta_{1}|_{k} \Delta_{2}) \Longrightarrow_{w} A \diamond \text{ foc}} P_{k} Cut_{1}}$$

Principal Cut of additive conjunction:

$$\frac{\Delta \Longrightarrow_{w} Q \diamond \text{ foc} \qquad \Delta \Longrightarrow_{w} A \diamond \text{ foc}}{\Delta \Longrightarrow_{w} Q \& A \diamond \text{ foc}} \& R \qquad \frac{\Gamma \langle Q \rangle \Longrightarrow_{w} B}{\Gamma \langle Q \& A \rangle \Longrightarrow_{w} B} \& L$$

$$\Gamma \langle \Delta \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

$$\Delta \Longrightarrow_{w} Q \diamond \text{ foc} \qquad \Gamma \langle Q \rangle \Longrightarrow_{w} B$$

$$\Delta \Longrightarrow_{w} Q \diamond \text{ foc} \qquad \Gamma \langle Q \rangle \Longrightarrow_{w} B$$

$$\Gamma \langle \Delta \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

$$\Gamma \langle \Delta \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

$$\Gamma \langle \Delta \rangle \Longrightarrow_{w} B \diamond \text{ foc}$$

Principal Cut of additive conjunction, another case:

$$\frac{\Delta \Longrightarrow_{w} M \diamond \text{ foc} \qquad \Delta \Longrightarrow_{w} A \diamond \text{ foc}}{\Delta \Longrightarrow_{w} M \& A \diamond \text{ foc}} \& R \qquad \frac{\Gamma(\overrightarrow{M}) \Longrightarrow_{w} B}{\Gamma(\overleftarrow{M} \& A) \Longrightarrow_{w} B} \& L$$

$$\Gamma(\Delta) \Longrightarrow_{w} B \diamond \text{ foc}$$

$$\frac{\Delta \Longrightarrow_{w} M \diamond \text{ foc} \qquad \Gamma(\overrightarrow{M}) \Longrightarrow_{w} B}{\Gamma(\Delta) \Longrightarrow_{w} B \diamond \text{ foc}} n\text{-}Cut_{1}$$

Commutation conversions

Left commutative *p-Cut* conversions:

$$\frac{\Delta\langle \overrightarrow{Q} \rangle \Longrightarrow_{w} N}{\Delta\langle \overrightarrow{Q} \rangle \Longrightarrow_{w} N} foc \qquad \qquad \Gamma\langle \overrightarrow{N} \rangle \Longrightarrow_{w} C \qquad p\text{-}Cut_{2}$$

$$\frac{\Delta\langle \overrightarrow{Q} \rangle \Longrightarrow_{w} N}{\Gamma\langle \Delta\langle \overrightarrow{Q} \rangle \rangle \Longrightarrow_{w} C} p\text{-}Cut_{2}$$

$$\frac{\Delta\langle \overrightarrow{Q} \rangle \Longrightarrow_{w} N}{\Gamma\langle \Delta\langle \overrightarrow{Q} \rangle \rangle \Longrightarrow_{w} C} foc \qquad \qquad p\text{-}Cut_{2}$$

$$\frac{\Gamma\langle \Delta\langle \overrightarrow{Q} \rangle \rangle \Longrightarrow_{w} C}{\Gamma\langle \Delta\langle \overrightarrow{Q} \rangle \rangle \Longrightarrow_{w} C} foc \qquad \qquad foc \qquad \qquad$$

$$\frac{\Delta(\overrightarrow{A}|_{k}\overrightarrow{B}) \Longrightarrow_{w} P}{\Delta(\overrightarrow{A} \odot_{k} \overrightarrow{B}) \Longrightarrow_{w} P} \circ_{k} L} \qquad \Gamma(\overrightarrow{P}) \Longrightarrow_{w} C \diamond \text{ foc} \qquad p\text{-}Cut_{1}$$

$$\frac{\Delta(\overrightarrow{A}|_{k} \overrightarrow{B}) \Longrightarrow_{w} P}{\Delta(\overrightarrow{A}|_{k} \overrightarrow{B}) \Longrightarrow_{w} C} \circ \text{ foc} \qquad p\text{-}Cut_{1}$$

$$\frac{\Delta(\overrightarrow{A}|_{k} \overrightarrow{B}) \Longrightarrow_{w} P}{\Gamma(\overrightarrow{P}) \Longrightarrow_{w} C \diamond \text{ foc}} \qquad p\text{-}Cut_{1}$$

$$\frac{\Gamma(\Delta(\overrightarrow{A}|_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}}{\Gamma(\Delta(\overrightarrow{A} \odot_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}} \circ_{k} L$$

$$\frac{\Delta(\overrightarrow{A}|_{k}\overrightarrow{B}) \Longrightarrow_{w} N \diamond \text{ foc}}{\Delta(\overline{A} \circ_{k} \overrightarrow{B}) \Longrightarrow_{w} N \diamond \text{ foc}} \circ_{k} L} \frac{\Delta(\overrightarrow{A} \circ_{k} \overrightarrow{B}) \Longrightarrow_{w} N \diamond \text{ foc}}{\Gamma(\Delta(\overline{A} \circ_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}} \rho\text{-}Cut_{2}} \frac{\Delta(\overrightarrow{A}|_{k} \overrightarrow{B}) \Longrightarrow_{w} N \diamond \text{ foc}}{\Gamma(\Delta(\overline{A} \circ_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}} \rho\text{-}Cut_{2}} \frac{\Gamma(\Delta(\overline{A} \circ_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}}{\Gamma(\Delta(\overline{A} \circ_{k} \overrightarrow{B})) \Longrightarrow_{w} C \diamond \text{ foc}} \circ_{k} L}$$

$$\frac{\Gamma_{1} \Longrightarrow_{w} P_{1} \qquad \Gamma_{2} \langle \overrightarrow{N_{1}} \rangle \Longrightarrow_{w} N}{\Gamma_{2} \langle \overrightarrow{N_{1}} \rangle_{k} \Gamma_{1} \rangle \Longrightarrow_{w} N} \uparrow_{k} L}$$

$$\frac{\Gamma_{2} \langle \overrightarrow{N_{1}} \uparrow_{k} P_{1} |_{k} \Gamma_{1} \rangle \Longrightarrow_{w} N}{\Theta \langle \overrightarrow{N_{1}} \rangle_{k} \Gamma_{1} \rangle \Longrightarrow_{w} C} p\text{-}Cut_{2}$$

$$\frac{\Gamma_{1} \langle \overrightarrow{N_{1}} \rangle \Longrightarrow_{w} N}{\Theta \langle \overrightarrow{N_{1}} \rangle_{k} \Gamma_{1} \rangle \Longrightarrow_{w} C} p\text{-}Cut_{2}$$

$$\frac{\Gamma_{1} \Longrightarrow_{w} P_{1}}{\Theta \langle \Gamma_{2} \langle \overrightarrow{N_{1}} \uparrow_{k} P_{1} |_{k} \Gamma_{1} \rangle \rangle \Longrightarrow_{w} C} \uparrow_{k} L$$

$$\frac{\Gamma_{1} \Longrightarrow_{w} P_{1}}{\Theta \langle \Gamma_{2} \langle \overrightarrow{N_{1}} \uparrow_{k} P_{1} |_{k} \Gamma_{1} \rangle \rangle \Longrightarrow_{w} C} \uparrow_{k} L$$

Additive case:

$$\frac{\Gamma(\overrightarrow{A}) \Longrightarrow_{\mathbf{w}} P \qquad \Gamma(\overrightarrow{B}) \Longrightarrow_{\mathbf{w}} P}{\Gamma(\overrightarrow{A} \oplus \overrightarrow{B}) \Longrightarrow_{\mathbf{w}} P} \qquad \Delta(\overrightarrow{P}) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc} \qquad \rho\text{-}Cut_1}{\Delta(\Gamma(\overrightarrow{A} \oplus \overrightarrow{B})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}} \qquad \rho\text{-}Cut_1}$$

$$\frac{\Gamma(\overrightarrow{A}) \Longrightarrow_{\mathbf{w}} P \qquad \Delta(\overrightarrow{P}) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}}{\Delta(\Gamma(\overrightarrow{A})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}} \qquad \Gamma(\overrightarrow{B}) \Longrightarrow_{\mathbf{w}} P \qquad \Delta(\overrightarrow{P}) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}}{\Delta(\Gamma(\overrightarrow{A} \oplus \overrightarrow{B})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}} \qquad \rho\text{-}Cut_1}$$

$$\frac{\Delta(\Gamma(\overrightarrow{A} \oplus \overrightarrow{B})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}}{\Delta(\Gamma(\overrightarrow{A} \oplus \overrightarrow{B})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}} \qquad \theta\text{-}Cut_1}{\Delta(\Gamma(\overrightarrow{A} \oplus \overrightarrow{B})) \Longrightarrow_{\mathbf{w}} C \diamond \text{ foc}} \qquad \theta\text{-}Cut_1}$$

Etc.

Embedding of **DA**_{foc} (without Cut) into **DA**_{Foc}

The following theorem entails the embedding of $\mathbf{DA_{foc}}$ (without Cut) into $\mathbf{DA_{Foc}}$ since a $\mathbf{DA_{Foc}}$ sequent cannot contain both a focus and a complex negative type, and if there is no focus and no complex negative type the sequent is already of the form required for $\mathbf{DA_{Foc}}$.

Theorem. For any configuration Δ and type A, we have that if $\Delta \Longrightarrow_w A$ with one focalised formula and no asynchronous formula occurrence, then $\Delta \Longrightarrow_A A$ with the same formula focalised. If $\Delta \Longrightarrow_w A$ with no focalised formula and with at least one asynchronous formula, then $\Delta \Longrightarrow_A A$.

Proof.

We proceed by induction on the size of (number of connectives in) of $\mathbf{DA_{foc}}$ sequents. We consider Cut-free $\mathbf{DA_{foc}}$ proofs which match the sequents of this theorem. If the last rule is logical (i.e., it is not an instance of the *foc* rule) the i.h. applies directly and we get $\mathbf{DA_{Foc}}$ proofs of the same end-sequent. Now, let us suppose that the last rule is not logical, i.e. it is an instance of the *foc* rule. Let us suppose that the end sequent $\Delta \Longrightarrow_w A$ is a synchronous sequent. Suppose for example that the focalised formula is in the succedent:

$$\frac{\Delta \Longrightarrow_{w} P}{\Delta \Longrightarrow_{w} P} \text{ foc}$$

The sequent $\triangle \Longrightarrow_w \boxed{P}$ arises from a synchronous rule to which we can apply i.h.

Let us suppose now that the end-sequent contains at least one asynchronous formula. We see three cases which are illustrative:

- $(1) \quad a. \quad \Delta \langle \overrightarrow{A \odot_k B} \rangle \Longrightarrow_w P$
 - b. $\Delta \langle Q \rangle \Longrightarrow_w B \uparrow_k A$
 - c. $\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{W} A \& B$

In case (1a), we have by Eta expansion that $\overrightarrow{A \odot_k B} \Longrightarrow_w \overrightarrow{A \odot_k B}$. We apply to this sequent the invertible \odot_k left rule, whence $\overrightarrow{A}|_k \overrightarrow{B} \Longrightarrow_w \overrightarrow{A \odot_k B}$. In this case we have the following proof in $\mathbf{DA_{foc}}$:

$$\frac{\overrightarrow{A} \mid_{k} \overrightarrow{B} \Longrightarrow_{w} \overrightarrow{A \odot_{k} B} \qquad \Delta \langle \overrightarrow{A \odot_{k} B} \rangle \Longrightarrow_{w} P}{\Delta \langle \overrightarrow{A} \mid_{k} \overrightarrow{B} \rangle \Longrightarrow_{w} P} \text{ foc}$$

$$\frac{\Delta \langle \overrightarrow{A} \mid_{k} \overrightarrow{B} \rangle \Longrightarrow_{w} P}{\Delta \langle \overrightarrow{A} \mid_{k} \overrightarrow{B} \rangle \Longrightarrow_{w} P} \text{ foc}$$

To the above $\mathbf{DA_{foc}}$ proof we apply Cut-elimination and we get the Cut-free $\mathbf{DA_{foc}}$ end-sequent $\Delta \langle \overrightarrow{A}|_k \overrightarrow{B} \rangle \Longrightarrow_w P$. We have $|\Delta \langle \overrightarrow{A}|_k \overrightarrow{B} \rangle \Longrightarrow_w P| < |\Delta \langle \overrightarrow{A} \odot_k \overrightarrow{B} \rangle \Longrightarrow_w P|$. We can apply then i.h. and we derive the provable $\mathbf{DA_{Foc}}$ sequent $\Delta \langle \overrightarrow{A}|_k \overrightarrow{B} \rangle \Longrightarrow_P P$ to which we can apply the left \odot_k rule. We have obtained $\Delta \langle \overrightarrow{A} \odot_k \overrightarrow{B} \rangle \Longrightarrow_P P$.

In the same way, we have in case (1b) that $\overrightarrow{B \uparrow_k A}_{|k} \overrightarrow{A} \Longrightarrow_w B$. Thus we have the following proof in \mathbf{DA}_{foc} :

$$\frac{\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{w} B \uparrow_{k} A \qquad \overrightarrow{B \uparrow_{k} A} |_{k} \overrightarrow{A} \Longrightarrow_{w} B}{\Delta \langle \overrightarrow{Q} \rangle |_{k} \overrightarrow{A} \Longrightarrow_{w} B} p\text{-}Cut_{2}}{\Delta \langle \overrightarrow{Q} \rangle |_{k} \overrightarrow{A} \Longrightarrow_{w} B} foc$$

As before, we apply Cut-elimination to the above proof. We get the Cut-free $\mathbf{DA_{foc}}$ end-sequent $\Delta \langle \overrightarrow{Q} \rangle|_k \overrightarrow{A} \Longrightarrow_w B$. It has size less than $|\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_w B \uparrow_k A|$. We can apply i.h. and we get the $\mathbf{DA_{Foc}}$ provable sequent $\Delta \langle \overrightarrow{Q} \rangle|_k \overrightarrow{A} \Longrightarrow B$ to which we apply the \uparrow_k right rule.

In case (1c):

$$\frac{\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{w} A \& B}{\Delta \langle \overrightarrow{Q} \rangle \Longrightarrow_{w} A \& B} \text{ for}$$

by applying the foc rule and the invertibility of &R we get the provable $\mathbf{DA_{foc}}$ sequents $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_wA$ and $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_wB$. These sequents have smaller size than $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_wA\&B$. The aforementioned sequents have a Cut-free proof in $\mathbf{DA_{foc}}$. We apply i.h. and we get $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_AA$ and $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_BB$. We apply the & right rule in $\mathbf{DA_{Foc}}$, and we get $\Delta\langle\overrightarrow{Q}\rangle\Longrightarrow_A\&B$.