Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentin

Department of Computer Science
Universitat Politecnica de Catalunya
morrill@cs.upc.edu & oriol.valentin@gmail.com

BGSMath Course
Class 9

Multiplicative-Additive Focusing for Parsing as
Deduction

Multiplicative-Additive Focusing for Parsing as
Deduction

» Displacement calculus with additives DA

Multiplicative-Additive Focusing for Parsing as
Deduction

» Displacement calculus with additives DA
» Parsing as deduction

Multiplicative-Additive Focusing for Parsing as
Deduction

» Displacement calculus with additives DA
» Parsing as deduction
» Spurious ambiguity

Multiplicative-Additive Focusing for Parsing as
Deduction

v

Displacement calculus with additives DA

\4

Parsing as deduction
Spurious ambiguity
Focusing

\4

\4

Displacement calculus with additives DA

Displacement calculus with additives DA

Displacement calculus D is an intuitionistic sublinear logic
which is a conservative extension of Lambek calculus L, but D
is not just an extension of L because it requires a whole new
machinery to deal with semantically unitary expressions which
are separated in more than one piece.

Displacement calculus with additives DA

Displacement calculus D is an intuitionistic sublinear logic
which is a conservative extension of Lambek calculus L, but D
is not just an extension of L because it requires a whole new
machinery to deal with semantically unitary expressions which
are separated in more than one piece.

It is necessary to check that focusing works under these
conditions.

Displacement calculus with additives DA

Displacement calculus D is an intuitionistic sublinear logic
which is a conservative extension of Lambek calculus L, but D
is not just an extension of L because it requires a whole new
machinery to deal with semantically unitary expressions which
are separated in more than one piece.

It is necessary to check that focusing works under these
conditions.

DA is displacement calculus extended with additives (for
polymorphism).

Parsing as deduction

Parsing as deduction

In type logical categorial grammar, grammaticality is reduced to
theoremhood in a sublinear logic: a string is grammatical if and
only if an associated sequent is a theorem. It follows that
parsing is deduction.

Spurious ambiguity

Spurious ambiguity

A major challenge to the efficiency of parsing/theorem-proving
is the existence of proofs differing only in inessential rule
reorderings: spurious ambiguity.

Spurious ambiguity

A major challenge to the efficiency of parsing/theorem-proving
is the existence of proofs differing only in inessential rule
reorderings: spurious ambiguity.

For example

N=N S=S8
\L
N=N N,N\S = S
/L
N, (N\S)/N,N= S
—\R
(N\S)/N,N = N\S $=8
/L

CN= CN S/(M\S), (N\S)/N,N = S

/L

(S/(N\S))/CN, CN,(N\S)/N,N = S

N=N S=S8
\L
N,N\S = S
—— R
N\S = N\S B

JL
CN= CN S/(N\S),M\S = S

/L

N=N (S/(N\S))/CN,CN,N\\S = S
/L

(S/(N\S))/CN, CN,(N\S)/N,N = S

Outline

Outline

» Definition of DA

Outline

» Definition of DA

» Definition of DAsoc (Weakly focalised) and DAge¢ (strongly
focalised) displacement calculus with additives

Outline

» Definition of DA

» Definition of DAsoc (Weakly focalised) and DAge¢ (strongly
focalised) displacement calculus with additives

» Structure of the reasoning of completeness

Outline

Definition of DA

Definition of DAsoc (weakly focalised) and DAEgoc (strongly
focalised) displacement calculus with additives

Structure of the reasoning of completeness
Proof of completeness

v

v

v

v

Definition of DA

Displacement calculus is a logic of discontinuous strings —
strings punctuated by a separator 1 and subject to operations
of append and plug:

Q
=
I =

Q
=
=

append + : L;, Lj - LH‘] plug Xy : Li+1r Lj — Li+/

Definition of types of DA

A
x
i

A
x
[

i
i

Sort s(A)

FitjlFj
Fi\Fitj
FioF;

/

FiviTkFj
Fir1IkFis
Fir10kF;
J

Fi&Fi
FioFi

=theist Ae¥;
For example, where s(N) =

(S)

S((ST1N)T2N) = s((STIN)T1N) =

Interpretation of multiplicative types

[[C/B]]
[[A\C]]
[[AeB]]

Ul

[[CT«B]]
[[AL«CI]
[[AoxB]]

(V1]

(s1] Vsz € [[B]], s1+s2 € [[C]])
{s2| Vs1 € [[A]], s1+s2 € [[C]]}
{s1+82] 51 € [[A]] & s2 € [[B]]}
{0}

{s1] ¥s2 € [[B]], s1Xks2 € [[C]]}
{s2| Vs1 € [[A]], s1xks2 € [[C]]}
{s1xksz| s1 € [[A]] & s2 € [[B]]}
{1}

Definition of configurations and sequents of DA

Configurations O == A|7,0
T = 1|Fo|Fi=0fO:...: 0}
—_—
iO’s
For example, there is the configuration
(ST1N)T2N{N, 1 : ST{N{S}},1,N, 1

Where a type A of sort i > 0 includes
ap+1+ai+---+ai_1+1+a;and By € Ay,...,Bi € A,
A{Aq:...: Aj} contains ag+p1+a1+ - - - +aj—1+pit+a;.
Sort s(0) = 10I1

For example s((ST1N)T2N{N,1: ST{N{S}},1,N,1) =3

Sequents X ::=0 = A s.t. s(O) = s(A)

Figure of a type

The figure X of a type A is defined by:

> >

if S(A) = 0
Z)_{ {1:...:1} ifs(A)>0
— —_———

s(A) 1's

Fold

Where I is a configuration of sort i and Ay, ..., A; are
configurations, the fold T ® (A1 : ... : A}) is the result of
replacing the successive 1'sin I by Aq,..., Aj respectively.

Metalinguistic wrap

Where A is a configuration of sort i > 0 and I is a configuration,
the kth metalinguistic wrap A | I, 1 < k < i, is given by

AlN=g A1 :...:1:T:1:...:1)
———— ——

k-1 1’s i-k 1’s
l.e. A |, T is the configuration resulting from replacing by I' the
kth separator in A.

Rules of DA

The rules of the displacement calculus with additives are as
follows, where A(I') abbreviates Ag(IF @ (A1 :...: Aj)):

H
AN =B

Cut

P=P

— -
r B A(C)=>D B==C
/L /R
A(C/B,TY=D = C/B

— -
r A AC)=D Al=2C_
\L \R
A{r,LA\C)=D r= A\C

AABy= D , M=A T,=B

1—. []

A(AeB) = D [1,l2= AeB
AN = A s

A<f>:>A AN=

— -
rB A(C)=D Ne B=20C

Tk — TR
A(CTkB|k r) =D = CTkB

— -

rA AC)=D AklI'=2=C
kL — = kR

ANk AlkC)=D r=AlC

AAIKBY=D , M=A T.=B
©
AAGKBY = D g Mlkl2 = AokB

oxR

A1y = A
_— —JR
AlJY= A 1=J

r(Ay=C r(By=cC
(A&B) = C (A&B) = C

r= A =B
= A&B

- —
MAYy=C T[(By=C
oL
NAeB) = C

r= A =B

—— &Ry — &R
= AeB = AeB

Definition of weakly focalised DA, DAsoc

Where atomic types are partitioned into those with positive
(At*) and negative (At™) bias, situated (input */output °) polar
types are classified into positive and negative according as
their rules is not or is invertible respectively as follows:

At" | AeB || AckB|J| AeB
At |C/B|A\C|CT«BIAlkC | A&B

Pos. out., neg.in. P,M
Pos. in., neg.out. Q,N

Rules of DAsoe

A sequent is either unfocused and as before, or else focused
and has exactly one type boxed.

—
A(Q)=ua A=WP]
—=——10C
AQ)=,A A—,P

Identity group

id, if P € At*

=
P—=/

A(B)—_—>WC < foc

F—_—>WE]

A{MN=—,C < foc

p'CUt1

—,P < foc A(TD))—_—>WC

n-Cut
A(MN—, C <© foc

id, if Q € At~

_
@:N,O

r—=wN < foc

_,
A(Np=wC

A(MN=—,C < foc

p-Cut,

r—=wN A(ﬁ)—_—>WC <& foc

n-Cuty
A(MNH—, C < foc

Logical rules of DA¢o¢

The focalised logical rules are as follows including
Curry-Howard categorial semantic labelling.

Asynchronous multiplicative rules

- —
A:x,IT = C:x IB:y=C:x
\R /R
= A\C: Axy = C/B:Ayx
A(X:X,B:y} = D:w AN = A
— ol — L
A(AeB: z) = D: w{n1z/x, m2z/y)} All:x)=> A
— -
A:xlyT=C:x MNgB:y=C:x
— iR — R
= Al C: Axx = CT¢B: Ayx
A(X:Xlkﬁ:y):»D:w A1)y = A

oL —JL
A(AOKB: z) = D: w{n1z/x, m22/y} A(J:x)=> Al

Asynchronous additive rules

Fr=A:¢ = B:y
&R

= A&B: (¢,¢)

— —
[{A:x) = C: x4 M(B:y)= C: x2
eL

—
M{A®B:z) = C:z = X.x1;¥-X2

Left synchronous continuous multiplicative rules

N
rﬁE]:(f) A(@:Z)ﬁD:m
—

\L
ar[Py = Dol 9)/2)
—
r=N:¢ A(@: z)y=D:w
— \L
A(E:y} = D:l(y ¢)/2}
F:E]:lp A(@:z):D:m
— /L
A(:x,r> = D:w{(x ¢)/2}
F:E]:y/) A(T/l:z)ﬁD:m
— /L

A(:x, My = D:wi(x p)/z}

r=[rle AM:2) = D:w
— \L
A<r,;y> = D:ol(y 0)/2)

_
r=N:¢ AM:2) = D:w

— \L
A(F,:y) = D:wl(y ¢)/2)

—
A(@: zZy=>D:w

r= Ny
— /L
A(:x,r): D: wl(x)/2}
r= My A(N:2) = D:w
/L

—
A<:x,r> = D:wl(x)/}

FzE]:d) A(E’]:Z)ﬁD:w

Left synchronous discontinuous multiplicative rules

rﬁE]:(f) A(T/I:Z)ﬁD:w
— Il

s

kL

ATl PLQ) = Diol(y)/2) lkL AT K[PUM |y = Diolty 9)/2)
r=N:o A<@;z> - Dw r=Ng AM:2) = D:w
AT g : y) = D:ol(y ¢)/z) e AT g : y) = D:wl(y ¢)/2)
I'zE]:q; A(@:z): D:w r= Ny A(@:z): D:w

L
A<3X|k M = D:w{(x ¢)/z} b A(:X\k M = D:of(x)/z}
r=[Ply a2 =Dw Fr=Ny AM2=Dw
Tkl

A(: Xl 1) = D:wl(x ¥)/2)

Tkl

A(:X\k M = D:wl(x y)/2)

Left synchronous additive rules

R .
r(alx=cx F(M:x)= C:x
&L &Ly
—_—

S
F(:z) = C: xlmyz/x) F(: z) = C: x{miz/x}

&Ly &Ly

F(: z) = C: x{moz/y} I'(: z) = C: x{naz/y}

r{aly) = c:x r(M:y)= C:x

Right synchronous continuous multiplicative rules

F1:>:q5 rzﬁid) - F1:>E]:¢ M= N:y
[)

R
M1,z =[PrePa | (,9) F1,T2 =[PeN] (6,9)
=N¢ T=[Ply Mi=N:p T2= Ny
oR R
ri,r2 = [NeP }(9,9) M2 = [Mehe | (9,9)
IR

A=[1]o

Right synchronous discontinuous multiplicative rules

r=[Pile =[Py =[Ple Tr=Ny
okR)
1k F2:>:(¢,1P) * 11k F2:>: (. 9)

«R

r=Ng¢ |'2:>E]:¢u M=Np:¢ Ta=Np:yp o
OkR Ok
1l T2 = [NowP (6, 4) IR [VENTAICAD
JR

1:>:O

Right synchronous additive rules

r=[pPlo r=N:¢
—_—— 3Ry — Ry
r=[PeBuo r=[NeBuo
F:E]:lp F:>N:1/)
- — eR ——— R

ro[AeP oy T=[AsN}ey

Definition of strongly focused DA, DAgoc

DAE.c has all the same rules as DA, but not the Cut rules.
In addition, the sequents of DAge¢ are restricted:

A DAgoc sequent cannot contain both a focus and a complex
negative type.

Consequently, proofs in DAgec run in alternating phrases of
positive rule application and negative rule application.

Structure of the reasoning of completeness

1. Lemma: Eta-expansion for DAsoc. Proof by a simple
induction on the structure of types. Corollary: Eta-expansion for
DA.

2. Theorem: Embedding of DA with Cut into DA, With Cuts
(and Eta). Proof by induction on the length of DA proofs.

3. Theorem: Cut-elimination for DAsoc. Proof by double
induction on the size of the Cut formula and the depth of the
top-most Cut. Corollary: Cut-elimination for DA.

4. Theorem: embedding of DAsoc (without Cut) into DAEec.

Embedding of DA into DA

Theorem 4.1 For any configuration A and type A, we have that
if A = A then A—,A.

Proof We proceed by induction on the length of DA proofs. For
the non-axiomatic rules we apply the induction hypothesis (i.h.)
for each premise of DA rules.

- ldentity axiom:

Pﬁw@ =w

:— —— 10C
- Cut rule: just apply n-Cut.
- Units
—— IR
—— IR A=l
A= — foc
——=JR
—JR . 1=J]
1=J —— foc

Left unit rules apply as in the case of DA.

- Left discontinuous product: directly translates.
- Right discontinuous product. There are cases P10k P,
N10okN2, Nok P and PogN. We show one example:

A=P r= N

okR ~
AT = PogN

W=t

P=>W@ N=>WN

A=, P PLN=

Y Al N=] PocN|
Al T==4| PoxN|

Al T=w PN

n-Cuts

n-Cuts

foc

- Left discontinuous T rule (the left rule for | is entirely
similar). Like in the case for the right discontinuous product Ok
rule, we only show one representative example:

r=pP A(N)=A

ANTKP|kTYy=A

N —
B[P [Nl
; TwL
- —
|NTP |l P==uN A(N)=>, A

a4

n-Cuty
———
r—wP A(N1KP |l Py=wA
n-Cuty
—
ANTP Ik D=,A f
oC

ANTkP |k N=,A

- Right discontinuous T rule (the right discontinuous rule for |«
is entirely similar):

AlKA =B Al A=—,B
kA = k A=w
— TR ~ — T
A= BTKA A:>WBTKA

- Product and implicative continuous rules. These follow the
same pattern as the discontinuous case. We interchange the
metalinguistic k-th intercalation | with the metalinguistic
concatenation ’;, and we interchange ok, Tx and |, with e, /,
and \ respectively.

Concerning additives, conjunction Right translates directly and
we consider then conjunction Left (disjunction is symmetric):

P—=.[P]

——— foc
P=—=,P

A(Py=C — &L
—— &L~ [PaM|=,P
A(P&M) = C —; " foc R
P&M==>,P A(P)y=,C
— n-Cuty
A(P&M)==>,,C

Cut-elimination for DAsec

We prove this by induction on the complexity (d, h) of top-most
instances of Cut, where d is the size (number of connectives)
appearing in the top-most Cut formula, and h is the depth of the
top-most Cut.

Cut-elimination for DAsec

We prove this by induction on the complexity (d, h) of top-most
instances of Cut, where d is the size (number of connectives)
appearing in the top-most Cut formula, and h is the depth of the
top-most Cut.

There are four cases to consider: Cut with axiom in the minor
premise, Cut with axiom in the major premise, principal Cuts,
and permutation conversions.

Id cases

B:m,.,@ A(F’))ﬂWB < foc

— p-Cut, ~ A(ﬁ):mB & foc
A(P)=—=,B < foc

—
A—,N <& foc :>WN

_)
. ~ A(N)=—=,B < foc
A(NY—, B < foc

p-Cut,

foc cases

AﬁWE]
——foc

A=y P I'(T’))ﬁwA < foc

n-Cuty
M(A)y=wA < foc

A{Np=wa

s
A—yN M{N)y=—=wA

foc

n-Cuty
M[(AYy=—yA

A=>WE] F(B>:>WA < foc

p-Cut
A)y=—=wA < foc

.,
A—yN r{(N)=wa

p-Cuty
HAy=wA

Principal cases

Principal cut of T:

—
A|kF1)ﬁWP2 <O foc M :>W F2(P2)==wA
TR — Tl
A=, P>T(Py < foc I'2<|kl'1):>WA
p-Cuty,
Mo(AlxM1)=wA < foc
~>

— —
Al P1=P, ¢ foc Mo(Po)y=—=nA

F=|P1] Fo(Alk P)==wA © foc

(AT 1)y=wA < foc

n-Cut

p-Cut,

The case of | is entirely similar to the T case.

Principal Cut of discontinuous product:

—- -
A1:>w|E] Ap=wN I{PlxN)y=wA < foc
okR OkL

Ay |kA2:w M(PoxN)y=,A < foc

M{A1lkA2)==wA < foc

fa S

p-Cut,

Ay :>E] (Pl N)y==,A © foc

— p-Cuty
Do=yN Ak N)y=,A © foc

n-Cut,
F<A1 |kA2>:>WA < foc

Principal Cut of additive conjunction:

—
A=,Q < foc A=,A < foc F(@):mB
—_— &l
&R Y
A=, Q&A ¢ foc r{ Q&A =B
p-Cut,

M {A)—uB < foc

N

—
A=—Q O foc F(@)—_—mB

p-Cut2
M {A)y—,B < foc

Principal Cut of additive conjunction, another case:

N
A=—=,M < foc A=—=,A < foc HM)=wB
&R _— &L

—
A=, M&A & foc r{ M&A =B

M {A)=—uB < foc
>

p-Cut,

A=—M < foc F(TA)—_—N,B

n-Cut
NAYy=—,B < foc

Commutation conversions

Left commutative p-Cut conversions:

A(I_—E_)bﬂw,\l
———foc —
A@)=wN r(Np=wC

N(A(Q)==wC

N

al@)=wN F(N)=we

radQh=wc

-y
HA(Q)=wC

p-Cut,

p-Cut,

foc

AR B)y=u[P]
L

— — % N
A(AGKB)=>y| P | (P)==uC © foc

p-Cut,
M{A(AekB))=wC < foc

N

— — —
ARKBY=u[P] T(Py=uC o foc

JE— p-Cut,
M{A{A|xB))=—wC < foc

oL
M{A(AOB))=—,, C < foc

- —
A(A|BYy=wN < foc

— okl =
A(AKBYy=wN < foc r<>:>wC

p-Cut,
M{A(AOKB))y—, C < foc
N>
i —
A(A|xBYy=—=wN < foc F():>WC
p-Cut,

-
M{A(AlkB))=wC < foc

oL
[{A(AeKB))— C < foc

_,
M= Pi| Fo(Ns p=uN
Tkl

k

N _
r2<|k r)=wN @():»WC

p-Cuty
oo N TkP1 JkT1)==uC
N>
— —
M =N o(N)=uC
p-Cut,

—
M= P | o2 Ni hr=wC
—
oo Ni1xP1 JkT1)==uC

TkL

Additive case:

r&=u[P] rB=u[P]

el
r(A®B)—=su P | A(P)==w C © foc
p-Cuty
—_—
A(T{A®B))==yC < foc
e s
rAy=u[P] AB)=wC oo rB—w[P| AB—wC oo
p-Cuty p-Cuty
— —
AT Yy==wC © foc A(F{(B)y==wC o foc
ol

—
A(T{(AeB))==w C © foc

Etc.

Embedding of DA (Without Cut) into DAEec

The following theorem entails the embedding of DA (without
Cut) into DAg,c since a DAg,c sequent cannot contain both a
focus and a complex negative type, and if there is no focus and
no complex negative type the sequent is already of the form
required for DAEqc.

Theorem. For any configuration A and type A, we have that if
A=, A with one focalised formula and no asynchronous
formula occurrence, then A=A with the same formula
focalised. If A=—, A with no focalised formula and with at least
one asynchronous formula, then A—A.

Proof.

We proceed by induction on the size of (number of connectives
in) of DAoc sequents. We consider Cut-free DAgoc proofs which
match the sequents of this theorem. If the last rule is logical
(i.e., it is not an instance of the foc rule) the i.h. applies directly
and we get DAg,c proofs of the same end-sequent. Now, let us
suppose that the last rule is not logical, i.e. it is an instance of
the foc rule. Let us suppose that the end sequent A—, A is a
synchronous sequent. Suppose for example that the focalised
formula is in the succedent:

-
—— foc

The sequent A= ,| P] arises from a synchronous rule to
which we can apply i.h.

Let us suppose now that the end-sequent contains at least one
asynchronous formula. We see three cases which are
illustrative:

(1) a. A<@B>:>w@
b. A<@>:>WBTKA
c. A(Q)=wA&B

In case (1a), we have by Eta expansion that
—
AoxB=—=| Aok B | We apply to this sequent the invertible o
m—

left rule, whence Z|k_B>:>W. In this case we have the
following proof in DAsec:

- = —

Alxk B=uAckB| A(AGkB)=—=/P]
AA Ik B>:>W@
A(A |k B>:>WP

p'CUt1

To the above DA¢oc proof we apply gut-_e>limination and we get
the Cut-free DA end-sequent A(A|xB) =, P. We have
- — _— .
IA(A |k B)=wP| < |A(AeB)— P|. We can_gppl;)/ then i.h.
and we derive the provable DAgoc sequent A(A |y B)=—=P to
which we can apply the left © rule. We have obtained
_—
A(AGkB)=—P.

—
In the same way, we have in case (1b) that |k2—_—>WB.
Thus we have the following proof in DAso:

A(Qp—=>wBTA |kA:>WBp cui
-GUi

A<@> k A==,B
A(Q)Ik A=>WB

foc

As before, we apply Cut—elimination_t}o thj above proof. We get
the Cut-free E)Afoc end-sequent A(Q)|xA = B. It has size
less than |[A(Q)=—=,BT«A|. We can apply i.h. and we get the

DAgoc provable sequent A(3>|k2:>8 to which we apply the
Tk right rule.

In case (1c¢):
_)
A{Q)=—=wA&B f
— oc
AQ)=—,A&B
by applying the foc rule and the invertibility of &R we get the

provable DA¢,c sequents A(B):>WA and A(8):>WB. These

sequents have smaller size than A(a)—_—>WA&B. The
aforementioned sequents have a Cut-free proof in DAsoc. We

apply i.h. and we get A(8)=>A and_)A(8)=>B. We apply the
& right rule in DAgoc, and we get A(Q)—A&B.

O

