
Mathematical Logic and Linguistics

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya

morrill@cs.upc.edu & oriol.valentin@gmail.com

BGSMath Course
Class 10

Syntactic and Semantic Analyses: the PTQ Fragment

”The Montague Test” is the challenge of providing a
computational cover grammar of the Montague fragment.

Syntactic and Semantic Analyses: the PTQ Fragment

”The Montague Test” is the challenge of providing a
computational cover grammar of the Montague fragment.

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised

I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics

I gave rise to a field of formal semantics (L&P, A’dam
Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification

I anaphora
I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora

I intensionality
I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality

I coordination

Montague Grammar

The Montague fragment:

I overturned the view that semantics cannot be formalised
I generated a paradigm of logical semantics
I gave rise to a field of formal semantics (L&P, A’dam

Colloquium, and for forth)

The fragment includes:

I quantification
I anaphora
I intensionality
I coordination

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog
I has 20 primitive categorial connectives, 29 defined

connectives, and 1 metalogical connective: a total of 50
I has typically 2 rules for each connective: a rule of use and

a rule of proof: roughly 50 × 2 = 100 rules
I uses backward chaining focused sequent proof search so

that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog
I has 20 primitive categorial connectives, 29 defined

connectives, and 1 metalogical connective: a total of 50
I has typically 2 rules for each connective: a rule of use and

a rule of proof: roughly 50 × 2 = 100 rules
I uses backward chaining focused sequent proof search so

that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog

I has 20 primitive categorial connectives, 29 defined
connectives, and 1 metalogical connective: a total of 50

I has typically 2 rules for each connective: a rule of use and
a rule of proof: roughly 50 × 2 = 100 rules

I uses backward chaining focused sequent proof search so
that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog
I has 20 primitive categorial connectives, 29 defined

connectives, and 1 metalogical connective: a total of 50

I has typically 2 rules for each connective: a rule of use and
a rule of proof: roughly 50 × 2 = 100 rules

I uses backward chaining focused sequent proof search so
that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog
I has 20 primitive categorial connectives, 29 defined

connectives, and 1 metalogical connective: a total of 50
I has typically 2 rules for each connective: a rule of use and

a rule of proof: roughly 50 × 2 = 100 rules

I uses backward chaining focused sequent proof search so
that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

CatLog2

CatLog2 is a type logical parser/theorem prover. It:

I comprises 6000 lines of prolog
I has 20 primitive categorial connectives, 29 defined

connectives, and 1 metalogical connective: a total of 50
I has typically 2 rules for each connective: a rule of use and

a rule of proof: roughly 50 × 2 = 100 rules
I uses backward chaining focused sequent proof search so

that for a binary connective for half of the rules there are
4 cases: +/+,+/−,−/+,−/−: 50 × 4 + 50 = a total of
about 250 focused rules

The Montague Test

Concretely, we define the Montague test as the task of:

semantically parsing the mini-corpus comprising the example
sentences of Chapter Seven of Dowty et al. (1981)

as a baseline criterion for grammar formalisms.

I.e. we propose as a sine qua non being able to simulate
computationally the Montague syntax-semantics interface of
quantification, anaphora, intensionality, coordination, . . .

The Montague Test

Concretely, we define the Montague test as the task of:

semantically parsing the mini-corpus comprising the example
sentences of Chapter Seven of Dowty et al. (1981)

as a baseline criterion for grammar formalisms.

I.e. we propose as a sine qua non being able to simulate
computationally the Montague syntax-semantics interface of
quantification, anaphora, intensionality, coordination, . . .

The Montague Test

Concretely, we define the Montague test as the task of:

semantically parsing the mini-corpus comprising the example
sentences of Chapter Seven of Dowty et al. (1981)

as a baseline criterion for grammar formalisms.

I.e. we propose as a sine qua non being able to simulate
computationally the Montague syntax-semantics interface of
quantification, anaphora, intensionality, coordination, . . .

The Montague Test

Concretely, we define the Montague test as the task of:

semantically parsing the mini-corpus comprising the example
sentences of Chapter Seven of Dowty et al. (1981)

as a baseline criterion for grammar formalisms.

I.e. we propose as a sine qua non being able to simulate
computationally the Montague syntax-semantics interface of
quantification, anaphora, intensionality, coordination, . . .

The Montague Test

Concretely, we define the Montague test as the task of:

semantically parsing the mini-corpus comprising the example
sentences of Chapter Seven of Dowty et al. (1981)

as a baseline criterion for grammar formalisms.

I.e. we propose as a sine qua non being able to simulate
computationally the Montague syntax-semantics interface of
quantification, anaphora, intensionality, coordination, . . .

Taking on the Montague Test

We invoke CatLog2 on this mini-corpus . . .

str(dwp(’(7-7)’), [b([john]), walks], s(f)).
str(dwp(’(7-16)’), [b([every, man]), talks], s(f)).
str(dwp(’(7-19)’), [b([the, fish]), walks], s(f)).
str(dwp(’(7-32)’), [b([every, man]), b([b([walks, or, talks])])], s(f)).
str(dwp(’(7-34)’), [b([b([b([every, man]), walks, or, b([every, man]), talks])])], s(f)).
str(dwp(’(7-39)’), [b([b([b([a, woman]), walks, and, b([she]), talks])])], s(f)).
str(dwp(’(7-43, 45)’), [b([john]), believes, that, b([a, fish]), walks], s(f)).
str(dwp(’(7-48, 49, 52)’), [b([every, man]), believes, that, b([a, fish]), walks], s(f)).
str(dwp(’(7-57)’), [b([every, fish, such, that, b([it]), walks]), talks], s(f)).
str(dwp(’(7-60, 62)’), [b([john]), seeks, a, unicorn], s(f)).
str(dwp(’(7-73)’), [b([john]), is, bill], s(f)).
str(dwp(’(7-76)’), [b([john]), is, a, man], s(f)).
str(dwp(’(7-83)’), [necessarily, b([john]), walks], s(f)).
str(dwp(’(7-86)’), [b([john]), walks, slowly], s(f)).
str(dwp(’(7-91)’), [b([john]), tries, to, walk], s(f)).
str(dwp(’(7-94)’), [b([john]), tries, to, b([b([catch, a, fish, and, eat, it])])], s(f)).
str(dwp(’(7-98)’), [b([john]), finds, a, unicorn], s(f)).
str(dwp(’(7-105)’), [b([every, man, such, that, b([he]), loves, a, woman]), loses, her],
s(f)).
str(dwp(’(7-110)’), [b([john]), walks, in, a, park], s(f)).

str(dwp(’(7-116, 118)’), [b([every, man]), doesnt, walk], s(f)).

Categorial connectives

cont.
mult.

disc.
mult. add. qu.

norm.
mod.

brack.
mod. exp.

limited
contr.

& weak.

/ \ ↑ ↓ &
∧

2 []−1 ! |

primary • �

I J ⊕
∨

3 〈〉 ? W

sem. �(�� �

(

(

�

u ∀ �
inactive

variants G# H#

G# H#

t ∃ �

det. /−1 .−1 ˇ
diff.

synth. / . ˆ

nondet. ÷ ⇑ ⇓

−

synth. × }

a: �∀g(∀f((Sf↑�Nt(s(g)))↓Sf)/CNs(g)) : λAλB∃C[(A C) ∧ (B C)]

and: �∀f((?�Sf\[]−1[]−1Sf)/�Sf) : (Φn+ 0 and)

and: �∀a∀f((?�(〈〉Na\Sf)\[]−1[]−1(〈〉Na\Sf))/�(〈〉Na\Sf)) : (Φn+ (s 0) and)
believes: �((〈〉∃gNt(s(g))\Sf)/(CPthatt�Sf)) : ˆλAλB(Pres ((ˇbelieve A) B))
bill: �Nt(s(m)) : b
catch: �((〈〉∃aNa\Sb)/∃aNa) : ˆλAλB((ˇcatch A) B)
doesnt: �∀g∀a((Sg↑((〈〉Na\Sf)/(〈〉Na\Sb)))↓Sg) : λA¬(A λBλC(B C))
eat: �((〈〉∃aNa\Sb)/∃aNa) : ˆλAλB((ˇeat A) B)
every: �∀g(∀f((Sf↑Nt(s(g)))↓Sf)/CNs(g)) : λAλB∀C[(A C)→ (B C)]
finds: �((〈〉∃gNt(s(g))\Sf)/∃aNa) : ˆλAλB(Pres ((ˇfind A) B))
fish: �CNs(n) : fish
he: �[]−1

∀g((�Sg|�Nt(s(m)))/(〈〉Nt(s(m))\Sg)) : λAA
her: �∀g∀a(((〈〉Na\Sg)↑�Nt(s(f)))↓(�(〈〉Na\Sg)|�Nt(s(f)))) : λAA
in: �(∀a∀f((〈〉Na\Sf)\(〈〉Na\Sf))/∃aNa) : ˆλAλBλC((ˇin A) (B C))
is: �((〈〉∃gNt(s(g))\Sf)/(∃aNa⊕(∃g((CNg/CNg)t(CNg\CNg))−I))) : λAλB(Pres (A → C .[B =
C]; D.((D λE[E = B]) B)))
john: �Nt(s(m)) : j
loses: �((〈〉∃gNt(s(g))\Sf)/∃aNa) : ˆλAλB(Pres ((ˇlose A) B))
loves: �((〈〉∃gNt(s(g))\Sf)/∃aNa) : ˆλAλB(Pres ((ˇlove A) B))
man: �CNs(m) : man
necessarily: �(SA/�SA) : Nec
or: �∀f((?�(Sf/(〈〉∃gNt(s(g))\Sf))\[]−1[]−1(Sf/(〈〉∃gNt(s(g))\Sf)))/�(Sf/(〈〉∃gNt(s(g))\Sf))) : (Φn+ (s 0) or)
park: �CNs(n) : park
seeks: �((〈〉∃gNt(s(g))\Sf)/�∀a∀f(((Na\Sf)/∃bNb)\(Na\Sf))) : ˆλAλB((ˇtries ˆ((ˇA ˇfind) B)) B)
slowly: �∀a∀f(�(〈〉Na\Sf)\(〈〉�Na\Sf)) : ˆλAλB(ˇslowly ˆ(ˇA ˇB))
such+that: �∀n((CNn\CNn)/(Sf |�Nt(n))) : λAλBλC[(B C) ∧ (A C)]
talks: �(〈〉∃gNt(s(g))\Sf) : ˆλA(Pres (ˇtalk A))
that: �(CPthat/�Sf) : λAA
the: �∀n(Nt(n)/CNn) : ι
to: �((PPto/∃aNa)u∀n((〈〉Nn\Si)/(〈〉Nn\Sb))) : λAA
unicorn: �CNs(n) : unicorn
walks: �(〈〉∃gNt(s(g))\Sf) : ˆλA(Pres (ˇwalk A))
woman: �CNs(f) : woman

