Machine Learning
FIB, Master in Innovation and Research in Informatics

Marta Arias (minor mods. Mario Martin), Computer Science @ UPC

What is Machine Learning
What is Learning?

A system (living or not) **learns** if it uses past experience to improve future performance

... and so in Machine Learning\(^1\):

- “past experience” = data
- “improve future performance” = make good predictions

\(^1\) learning by a *machine* or *computer* or *artificial device*
What is Machine Learning good for?

An example: digit recognition

Input: image e.g. 4
Output: corresponding class label [0..9]

Scenarios where ML can help:

1. Very hard to program yourself but easy to assign *labels*
2. Needs to be kept updated over time
3. Needs to be personalized for many different profiles ...
Is Machine Learning useful?

Applications of ML

- Web search
- Computational biology
- Finance
- E-commerce (recommender systems)
- Robotics
- Autonomous driving
- Fraud detection
- Information extraction
- Social networks
- Debugging
- Face recognition
- Credit risk assessment
- Medical diagnosis
- ... etc
Types of ML tasks

- Supervised learning: uses *labelled* data
 - regression: predict real value label for each example
 - classification: predict discrete value (class, category) for each example
- Unsupervised learning: *has no labels*
 - clustering: discover homogeneous groups in data
 - dimensionality reduction: find lower-dimensional representation
 - association rule mining
 - outlier detection
 - ...
- Semi-supervised learning: only few labels
 - ranking: order examples according to some criterion
- Reinforcement learning: delayed rewards, learning to act in an environment
ML in context
ML has strong ties to other disciplines

- **Statistics**: inferential statistics, distribution and sampling theory, mathematical statistics
 - in particular, in *multivariate statistics*, often goals and problems are similar
- **Data Mining**: very large data bases, interest in high-level knowledge
- **Mathematics**: optimization, numerical methods, asymptotics
- **Algorithmics**: correctness, complexity, scalability, …
- **Artificial Intelligence**: aims at “intelligent” behaviour
ML in the real world

1. Understand the domain, prior knowledge, goals
2. Data gathering, integration, selection, cleaning, *pre-processing*
3. **Create models from data**
4. Interpret results
5. Consolidate and deploy discovered knowledge
6. . . . start again!
Representing objects
Features or attributes, and target values in supervised learning

<table>
<thead>
<tr>
<th></th>
<th>Sepal.Length</th>
<th>Sepal.Width</th>
<th>Petal.Length</th>
<th>Petal.Width</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>setosa</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
<td>versicolor</td>
</tr>
<tr>
<td>4</td>
<td>6.1</td>
<td>2.8</td>
<td>4.0</td>
<td>1.3</td>
<td>versicolor</td>
</tr>
<tr>
<td>5</td>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
<td>virginica</td>
</tr>
<tr>
<td>6</td>
<td>7.2</td>
<td>3.0</td>
<td>5.8</td>
<td>1.6</td>
<td>virginica</td>
</tr>
</tbody>
</table>

- Features or attributes: sepal length, sepal width, petal length, petal width
- Target value (class): species

Main objective in **classification**: predict class from feature values
Elements of Supervised Learning

1. **Data.** A random sample collected from the problem that we want to model described with a set of attributes and their associated answer.

2. **Models.** Description of how data are generated or behave in a general way using a specific language, for instance, logical formulas, mathematical functions or probability distributions.

3. **Learning.** The process by which concrete models are found so that they (1) explains observed data and also (2) can predict unseen data.
On data

- Data is tabular: rows are **examples** (objects, instances, or data samples) and columns are the **attributes** (features, ..) describing the examples

- Features can be numerical (continues range of values) or categorical (discrete set of values)

- One special column corresponds to the supervised answer (numerical or categorical)

- So, each example is a d-dimensional vector \mathbf{x}_i, and a dataset is a set of labelled examples (input-output pairs):

 $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$

- It is convenient to place all the input features into a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, and all the labels into a vector \mathbf{y}
On data pre-processing

Each problem requires a different approach in what concerns data cleaning and preparation. This pre-process can have a **deep impact on performance**; it can easily take a **significant amount of time**

1. Attribute coding (discretization, encoding)
2. Normalization (range, distribution)
3. Missing values (imputation)
4. Outliers
5. Feature selection
6. Feature extraction (feature engineering)
7. Dimensionality reduction and transformations

Non-tabular data (images, audio, text, time-series, graphs, ...) may need ad-hoc treatments and are out of the scope of this course.
Models

Models are the artifact by which we describe the input data; can be understood as a **compression mechanism** with predictive abilities. They define how the learning is approached. In the course, we focus on two main groups of models: **functions**, and **probability distributions**

1. **Models as functions**, i.e. functions mapping input examples to target values
 - $f : \mathbb{R}^d \rightarrow \{C_1, .., C_K\}$ for classification
 - $f : \mathbb{R}^d \rightarrow \mathbb{R}$ for regression, for example:
 $$f(x) = w^T x + w_0$$

2. **Models as probability distributions** if we assume data come from a stochastic process it may be useful to allow models to represent/quantify uncertainty/noise; instead of only one function we model a distribution over possible functions; a model is then a **multivariate probability distribution**
 - $p(y|x)$ for **discriminative models**
 - $p(y, x)$ for **generative models**
Learning

Learning is the process of finding good models from input data.

good model = a model that predicts well on **unseen data** (this is the *generalization ability* of a model)
Is learning possible?

Complete the series: 2, 4, 6, 8, ...
Inductive bias
A fundamental concept in ML

Complete the series: 2, 4, 6, 8, . . .

▶ Answer 1: 132; model 1: \(f(n) = n^4 - 10n^3 + 35n^2 - 48n + 24 \)
▶ Answer 2: 10; model 2: \(f(n) = 2n \)

How can we rule out the more complex one? (and many others)

1. Supply more “training” data: 2, 4, 6, 8, 10, 12, 14, . . .
2. Regularize: add a penalty to higher-order terms
3. Reduce the hypothesis space (e.g. restrict to quadratic models)
Based on training data only, there is no means of choosing which function \(f \) is better (generalization is not “guaranteed”)

So ... what do we do?

Complexity control: we must add control to the “fitting ability” of our methods

\[
\text{true error}(f) \leq \text{training error}(f) + \text{complexity}(f)
\]
Suppose that the learning process has a candidate model f. How can we assess its quality?

We have several *notions* of errors we can compute or at least estimate.

Assume that the input dataset is given by $\{(x_1, y_1), \ldots, (x_n, y_n)\}$, then we denote:

- $\hat{y} = f(x)$ is the *prediction* on object x by model f
- the *error function* (or *loss function*) $l(y, \hat{y})$ measures how “off” are predictions from true values

We call the true error of a model f (i.e. its *generalization error*), the expected error\(^2\) that the model will make on a random, possibly unseen example (x, y) drawn from distribution $p(x, y)$:

$$E_{true}(f) = \mathbb{E}_{x, y}[l(y, f(x))] = \int_{x, y} l(y, f(x))p(x, y)dxdy$$

\(^2\)also called *expected risk*
We only see a partial view of the process we are modelling through a finite dataset, so we cannot compute the true error directly, and therefore we resort to estimates/approximations for it.

Assuming that the examples are independent and identically distributed (iid), the empirical mean of the loss is a good estimate of the population loss. So we define the empirical error\(^3\):

\[
E_{emp}(f, X, y) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, f(x_i))
\]

Empirical risk minimization is a common learning process by which one finds a model with minimum empirical error. This model is such that will be the one that best explains the input (training) data.

\(^3\)also called empirical risk
The *first law of Machine Learning* states:

Small training error does not imply small generalization error.

Minimizing training error excessively may lead to the famous notion of *overfitting*. This is particularly dangerous for complex fs, so the natural way to fix this is by limiting complexity or *penalizing complexity* (this is called *regularization*).

So, now the learning process should seek an f that minimizes this empirical risk instead:

$$
E_{\text{reg}}(f, \mathbf{X}, \mathbf{y}) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda |f|
$$

- where $|f|$ stands for some function of the parameters of f capturing f’s complexity
- note the introduction of a new **hyper-parameter** λ which we will need to set appropriately
Training error underestimates generalization error.

This is because the examples used in the estimate *have been seen by the learning process*, and so memorization could have taken place especially for complex fs.

A validation set is used to better estimate true error. The particularity of a validation set is that the learning process *does not have access to it* during learning.

So, generalization error – i.e. quality of model – can be assessed by computing the empirical error on an independent validation set.

Fancier methods exist (e.g. cross-validation, loocv, ...); these are known as resampling methods) which in general are different ways of sampling input data to better estimate generalization error.
On error, cont.
Under- and overfitting, unregularized empirical risk minimization
On error, cont.
Under- and overfitting, unregularized empirical risk minimization

Diagram showing underfitting and overfitting regions with respect to model parameter and error, including training and validation error curves.
On error, cont.
Under- and overfitting, regularized empirical risk minimization
In the next lecture

We will see all of these concepts and more in the context of **linear regression**.

Please refresh concepts from linear algebra, vector calculus, probability theory and statistics.

The book *Mathematics for Machine Learning* contains good coverage of these topics:

- Eigendecomposition and the SVD (chapter 4)
- Partial differentiation, gradients of vector-valued functions (chapter 5)
- Probability and Distributions (chapter 6)
Some concepts to check

- Data (tabular form, preprocess, ...)
- Learning and kinds of learning
- Model: Generative/Discriminative
- Parameters
- Inductive bias
- Loss function
- Empirical Risk minimization
- Underfitting / Overfitting
- Simplicity and Regularization