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 Discussion on SVM
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History of SVM
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 SVM is related to statistical learning theory [3]

 Introduced by Vapnik

 SVM was first introduced in 1992

 SVM becomes popular because of its success a lot of 
classification problems

SVM: Large-margin linear classifier
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Perceptron Revisited:  Linear 
Separators 

 Binary classification can be viewed as the task of separating 
classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)
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Linear Separators
 Which of the linear separators is optimal? 
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What is a good Decision Boundary?
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 Consider a two-class, linearly 
separable classification problem

 Many decision boundaries!
 The Perceptron algorithm can be 

used to find such a boundary
 Other different algorithms have 

been proposed 
 Are all decision boundaries equally 

good?
Class 1

Class 2

Examples of Bad Decision Boundaries
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Class 1

Class 2

Class 1

Class 2



Maximum Margin Classification
 Maximizing the distance to examples is good according to 

intuition and PAC theory.

 Implies that only few vectors matter; other training examples are 
ignorable. 
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Classification Margin
 Distance from example xi to the separator is 

 Examples closest to the hyperplane are support vectors. 

 Margin ρ of the separator is the distance between support vectors.

w
xw br i

T 


r

ρ
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Large-margin Decision Boundary

May 13, 2012Simple introduction to SVMs11

 The decision boundary should be as far away from the data of both 
classes as possible: We should maximize the margin, m

Class 1

Class 2

m

w
xw br i

T 


We normalize equations so 
function in supports is 1/-1.

Finding the Decision Boundary
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 Let {x1, ..., xn} be our data set and let yi  {1,-1} be the 
class label of xi

 The decision boundary should classify all points correctly 

 Maximizing margin classifying all points correctly constraints 
is defined as follows:



Finding the Decision Boundary
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 Primal formulation

 We can solve this problem using this formulation, or using 
the dual formulation…

[Recap of Constrained Optimization]
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 Suppose we want to: minimize f(x) subject to g(x) = 0

 A necessary condition for x0 to be a solution:

 : the Lagrange multiplier

 For multiple constraints gi(x) = 0, i=1, …, m, we need a 
Lagrange multiplier i for each of the constraints

 The case for inequality constraint gi(x)0 is similar, except that 
the Lagrange multiplier i should be positive

 If x0 is a solution to the constrained optimization problem

 There must exist i0 for i=1, …, m such that x0 satisfy

 The function                             is also known as the Lagrangrian. 
We want to set its gradient to 0

[Recap of Constrained Optimization]
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Back to the Original Problem
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 The Lagrangian is

 Note that ||w||2 = wTw

 Setting the gradient of      w.r.t. w and b to zero, we have



The Dual Formulation
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 If we substitute                              to      , we have 

 Remember that

 This is a function of i only

The Dual formulation
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 It is known as the dual problem (the original problem is 
known as the primal problem): if we know w, we know all 
i; if we know all i, we know w

 The objective function of the dual problem needs to be 
maximized!

 The dual problem is therefore:

Properties of i when we introduce the 
Lagrange multipliers

The result when we differentiate the 
original Lagrangian w.r.t. b

The Dual Problem
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 This is a quadratic programming (QP) problem

 A global maximum of i can always be found

 w can be recovered by

A Geometrical Interpretation
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6=1.4

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0
7=0

8=0.6

9=0

10=0



Characteristics of the Solution
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 Many of the i are zero
 w is a linear combination of a small number of data points
 This “sparse” representation can be viewed as data compression

 xi with non-zero i are called support vectors (SV)
 The decision boundary is determined only by the SV
 Let tj (j=1, ..., s) be the indices of the s support vectors. We can 

write

Characteristics of the Solution
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 For testing with a new data z

 Compute                                                      

 classify z as class 1 if the sum is positive, and class 2 otherwise

 Note: w need not be formed explicitly

The Quadratic Programming Problem
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 Many approaches have been proposed
 Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)

 Most are “interior-point” methods
 Start with an initial solution that can violate the constraints
 Improve this solution by optimizing the objective function and/or 

reducing the amount of constraint violation
 For SVM, sequential minimal optimization (SMO) seems to be the 

most popular
 A QP with two variables is trivial to solve
 Each iteration of SMO picks a pair of (i,j) and solve the QP with 

these two variables; repeat until convergence
 In practice, we can just regard the QP solver as a “black-box” 

without bothering how it works

This is too This is too 
close!

Maybe this 
point is not
so important.

SVMSVM

Non-Separable SetsNon-Separable Sets

• Sometimes, we do not want to separate perfectly.
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• Sometimes, we do not want to separate perfectly.

The hyperplane The hyperplane 
is nicer! 

If we ignore
this point

SVM

Non-Separable Sets
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Non-Separable Sets

.

SVM
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Soft Margin Classification  
 What if the training set is not linearly separable?

 Slack variables ξi can be added to allow misclassification of 
difficult or noisy examples, resulting margin called soft.

ξi
ξi
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Non-linearly Separable Problems
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 We allow “error” i in classification; it is based on the output 
of the discriminant function wTx+b

 i approximates the number of misclassified samples

Class 1

Class 2



Soft Margin Hyperplane
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 If we minimize ii, i can be computed by

 i are “slack variables” in optimization
 Note that i=0 if there is no error for xi

 Number of slacks + supports is an upper bound of the number 
of errors (Leave one out error)

Soft Margin Hyperplane
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 We want to minimize

 C : tradeoff parameter between error and margin

 The optimization problem becomes

The Optimization Problem
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 The dual of this new constrained optimization problem is

 w is recovered as:

 This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on i now

 Once again, a QP solver can be used to find i

Non-linearly Separable Problems
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 We allow “error” i in classification; it is based on the output 
of the discriminant function wTx+b

 i approximates the number of misclassified samples

Class 1

Class 2

2<=C

1=0

3=C



SVM with KERNELS: Large-margin 
NON-linear classifiers
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Extension to Non-linear Decision 
Boundary
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 So far, we have only considered large-margin classifier with a 
linear decision boundary

 How to generalize it to become nonlinear?
 Key idea: transform xi to a higher dimensional space to “make life 

easier”
 Input space: the space the point xi are located
 Feature space: the space of (xi) after transformation

 Why transform?
 Linear operation in the feature space is equivalent to non-linear 

operation in input space
 Classification can become easier with a proper transformation. In the 

XOR problem, for example, adding a new feature of x1x2 make the 
problem linearly separable

Transforming the Data
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 Computation in the feature space can be costly because it is high 
dimensional
 The feature space is typically infinite-dimensional!

 The kernel trick comes to rescue

(  )

(  )

(  )
(  )(  )

(  )

(  )(  )

(.) (  )

(  )

(  )
(  )
(  )

(  )

(  )

(  )
(  ) (  )

Feature spaceInput space
Note: feature space is of higher dimension than 
the input space in practice

Non-linear SVMs:  Feature spaces
 General idea:   the original feature space can always be 

mapped to some higher-dimensional feature space where the 
training set is separable:

Φ:  x→
φ(x)
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The Kernel Trick
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 Recall the SVM optimization problem

 The data points only appear as inner product
 As long as we can calculate the inner product in the feature space, 

we do not need the mapping explicitly
 Many common geometric operations (angles, distances) can be 

expressed by inner products
 Define the kernel function K by

SVMs with kernelsSVMs with kernels

• Training

• Classification of x:
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An Example for (.) and K(.,.)
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 Suppose (.) is given as follows

 An inner product in the feature space is

 So, if we define the kernel function as follows, there is no need to 
carry out (.) explicitly

 This use of kernel function to avoid carrying out (.) explicitly is 
known as the kernel trick

• Kernel (Gram) matrix:























),(),(),(),(

),(),(),(),(
),(),(),(),(

321

2322212

1312111

lllll

l

l

KKKK

KKKK
KKKK

xxxxxxxx

xxxxxxxx
xxxxxxxx







May 13, 2012Simple introduction to SVMs40

Kernel Functions

Matrix obtained from product:
’
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 Any function K(x,z) that creates a symmetric, positive 

definite matrix Kij = K(xi,xj) is a valid kernel (an inner 
product in some space)

 Why? Because any sdp matrix M can be decomposed as

N’N = M

so N can be seen as the projection to the feature space

Kernel Functions
Kernel Functions
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 Another view: kernel function, being an inner 
product, is really a similarity measure between the 
objects 

 Not all similarity measures are allowed – they must 
Mercer conditions

 Any distance measure can be translated to a kernel 

Examples of Kernel Functions
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 Polynomial kernel with degree d

 Radial basis function kernel with width 

 Closely related to radial basis function neural networks
 The feature space is infinite-dimensional

 Sigmoid with parameter  and 

 It does not satisfy the Mercer condition on all  and 

Modification Due to Kernel Function
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 Change all inner products to kernel functions

 For training,

Original

With kernel 
function



Modification Due to Kernel Function
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 For testing, the new data z is classified as class 1 if f 0, and 
as class 2 if f <0

Original

With kernel 
function

More on Kernel Functions
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 Since the training of SVM only requires the value of K(xi, xj), 
there is no restriction of the form of xi and xj

 xi can be a sequence or a tree, instead of a feature vector

 K(xi, xj) is just a similarity measure comparing xi and xj

 For a test object z, the discriminant function essentially is a 
weighted sum of the similarity between z and a pre-selected 
set of objects (the support vectors)

More on Kernel Functions
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 Not all similarity measure can be used as kernel function, 
however
 The kernel function needs to satisfy the Mercer function, 

i.e., the function is “positive-definite”
 This implies that the n by n kernel matrix, in which the 

(i,j)-th entry is the K(xi, xj), is always positive definite
 This also means that the QP is convex and can be solved in 

polynomial time

Choosing the Kernel Function
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 Probably the most tricky part of using SVM.
 The kernel function is important because it creates the kernel 

matrix, which summarizes all the data
 Many principles have been proposed (diffusion kernel, Fisher 

kernel, string kernel, …)
 There is even research to estimate the kernel matrix from available 

information

 In practice, a low degree polynomial kernel or RBF kernel with a 
reasonable width is a good initial try

 Note that SVM with RBF kernel is closely related to RBF neural 
networks, with the centers of the radial basis functions 
automatically chosen for SVM



Other Aspects of SVM
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 How to use SVM for multi-class classification?
 One can change the QP formulation to become multi-class
 More often, multiple binary classifiers are combined
 One can train multiple one-versus-all classifiers, or combine 

multiple pairwise classifiers “intelligently”

 How to interpret the SVM discriminant function value as 
probability?
 By performing logistic regression on the SVM output of a set of 

data (validation set) that is not used for training

 Some SVM software (like libsvm) have these features built-in

Software
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 A list of SVM implementation can be found at 
http://www.kernel-machines.org/software.html

 Some implementation (such as LIBSVM) can handle multi-
class classification

 SVMLight is among one of the earliest implementation of 
SVM

 Several Matlab toolboxes for SVM are also available

Summary: Steps for Classification
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 Prepare the pattern matrix

 Select the kernel function to use

 Select the parameter of the kernel function and the value of C
 You can use the values suggested by the SVM software, or you 

can set apart a validation set to determine the values of the 
parameter

 Execute the training algorithm and obtain the i

 Unseen data can be classified using the i and the support 
vectors

Strengths and Weaknesses of SVM
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 Strengths
 Training is relatively easy 
 No local optimal, unlike in neural networks

 It scales relatively well to high dimensional data
 Tradeoff between classifier complexity and error can be 

controlled explicitly
 Non-traditional data like strings and trees can be used as input 

to SVM, instead of feature vectors

 Weaknesses
 Need to choose a “good” kernel function.



Other Types of Kernel Methods
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 A lesson learnt in SVM: a linear algorithm in the feature 
space is equivalent to a non-linear algorithm in the input 
space

 Standard linear algorithms can be generalized to its non-
linear version by going to the feature space
 Kernel principal component analysis, kernel independent 

component analysis, kernel canonical correlation analysis, 
kernel k-means, 1-class SVM are some examples

Conclusion
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 SVM is a useful alternative to neural networks

 Two key concepts of SVM: maximize the margin and the 
kernel trick

 Many SVM implementations are available on the web for you 
to try on your data set!

Toy ExamplesToy Examples
ExamplesExamples

• All examples have been run with the 2D graphic interface of 
SVMLIB (Chang and Lin, National University of Taiwan)

“LIBSVM is an integrated software for support vector classification,
(C-SVC, nu-SVC), regression (epsilon-SVR, un-SVR) and distribution
estimation (one-class SVM). It supports multi-class classification. The
basic algorithm is a simplification of both SMO by Platt and SVMLight
by Joachims. It is also a simplification of the modification 2 of SMO by
Keerthy et al. Our goal is to help users from other fields to easily use
SVM as a tool. LIBSVM provides a simple interface where users can
easily link it with their own programs…”

• Available from: www.csie.ntu.edu.tw/~cjlin/libsvm (it icludes a 
Web integrated demo tool)
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Toy Examples (I)Toy Examples (I)
ExamplesExamples

.
What happens if we addWhat happens if we add
a blue training example
here?

Linearly separable data set
Linear SVM
Maximal margin Hyperplane
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Toy Examples (I)Toy Examples (I)
ExamplesExamples

(still) Linearly separable 
data set
Linear SVM
High value of C parameter
Maximal margin Hyperplane

correctly classified
The example is 
correctly classified
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(still) Linearly separable 
data set
Linear SVM
Low value of C parameter
Trade-off between: margin 
and training error

ExamplesExamples

now a bounded SV
The example is 
now a bounded SV

Toy Examples (I)Toy Examples (I)
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ExamplesExamples

Toy Examples (I)Toy Examples (I)
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ExamplesExamples

Toy Examples (I)Toy Examples (I)

May 13, 2012Simple introduction to SVMs60



ExamplesExamples

Toy Examples (I)Toy Examples (I)
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ExamplesExamples

Toy Examples (I)Toy Examples (I)
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Resources
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 http://www.kernel-machines.org/

 http://www.support-vector.net/

 http://www.support-vector.net/icml-tutorial.pdf

 http://www.kernel-machines.org/papers/tutorial-
nips.ps.gz

 http://www.clopinet.com/isabelle/Projects/SVM/applist.
html

Transduction with SVMs
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The learning problem
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 Transduction:
We consider a phenomenon f that maps inputs (instances) x to 
outputs (labels) y = f(x) (y {−1, 1})
 Given a set of labeled examples {(xi, yi) : i = 1, …, n},
 and a set of unlabeled examples x’1, …, x’m

 the goal is to find the labels y’1 , …, y’m

 No need to construct a function f, the output of the 
transduction algorithm is a vector of labels.
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Transduction based on margin size 
 Binary classification, linear parameterization,  joint set of 

(training + working) samples

 Two objectives of transductive learning:

(TL1) separate labeled training data using a large-margin 
hyperplane (as in standard inductive SVM)

(TL2) separating (explain) working data set using a large-margin 
hyperplane.

Transductive SVMs

• Transductive instead of inductive (Vapnik 98)

• TSVMs take into account a particular test set and try    
to minimize misclassifications of just those particular 
examples

• Formal setting:

1 1 2 2
* * *
1 2

{( , ),  ( , ),  ,  ( , )}

{ ,  ,   , }  (normally  )
Goal of the transductive learner L:
find a function ( , ) so that the expected number
of erroneous prediction

train n n

test k

L train test

S y y y
S k n

h L S S



 



x x x
x x x




s on the test examples is minimized
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Transductive SVMsTransductive SVMs
TextCatTextCat
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Transductive SVMsTransductive SVMsTextCatTextCat
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Induction  vs  Transduction

70

71

Optimization formulation for SVM transduction
 Given: joint set of (training + working) samples

 Denote slack variables for training,    for working 

 Minimize

subject to

where 

 Solution (~ decision boundary)
 Unbalanced situation (small training/ large test)

 all unlabeled samples assigned to one class 
 Additional constraint:

i
*
j





m

j
j

n

i
i CCbR

1

**

1
)(

2
1),( www













mjni
by
by

ji

jij

iii

,...,1,,...,1,0,
1])[(
1])[(

*

**





xw
xw

mjbsigny jj ,...,1),(*  xw
** )()( bD  xwx





m

j
i

n

i
i b

m
y

n 11
])[(11 xw

72

Optimization formulation (cont’d)

 Hyperparameters control the trade-off between 
explanation and margin size

 Soft-margin inductive SVM is a special case of soft-margin 
transduction with zero slacks

 Dual + kernel version of SVM transduction
 Transductive SVM optimization is not convex

(~ non-convexity of the loss for unlabeled data) –
 different opt. heuristics ~ different solutions

 Exact solution (via exhaustive search) possible for small 
number of test samples (m)

*CandC

0* j
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Many applications for transduction

 Text categorization: classify word documents into a number 
of predetermined categories

 Email classification: Spam vs non-spam
 Web page classification
 Image database classification
 All these applications:

- high-dimensional data
- small labeled training set (human-labeled)
- large unlabeled test set
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Example application
 Prediction of molecular bioactivity for drug discovery
 Training data~1,909; test~634 samples
 Input space ~ 139,351-dimensional
 Prediction accuracy:
SVM induction ~74.5%; transduction ~ 82.3%
Ref: J. Weston et al, KDD cup 2001 data analysis: prediction of molecular 

bioactivity for drug design – binding to thrombin, Bioinformatics 2003


