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Motivation On-line applications

* SVM has nice (theoretical and practical)
properties:
— Generalization
— Convergence to optimum solution

* This extends to SVM for regression
(function approximation)

» But they present some practical problems in
the application to interesting problems

» What happens when:
— You have trained your SVM but new data is available?
— Some of your data must be updated?
— Some data must be removed?

» In some applications we need actions to efficiently
— Add new data
— Remove old data
— Update old data




On-line applications

* Some examples in regression:

— Temporal series prediction: New data for learning but
system must predict from the first data (for instance

prediction of share values for companies in the market).

— Active Learning: Learning agent sequentially chooses
from a set of examples the next data from which to
learn.

— Reinforcement Learning: Estimated Q target values for
existing data change as learning goes on.

Antecedents

(Cawenbergs, Poggio 2000) presents a method for
incrementally build exact SVMs for classification

Allow us to incrementally add and remove vectors
to/from the SVM

Goals:

— Efficient procedure in memory and time for solving
SVMs

— Efficient computation of Leave-One-Out Error

Incremental approaches

* (Nando de Freitas, et alt 2000):

— Regression based on the Kalman Filter and windowing.

— Bayesian framework.

— Not an exact method (only inside the window or with
RBFs).

— Not able to update or remove data.

e (Domeniconi, Gunopulus 2001):

— Train with n vectors. Keep support vectors. Select
heuristically the following k vectors from a set of m
vectors. Then learn from scratch with the & vectors and
the support vectors.

On-line SVM regression

Based on C&P method but applied to regression.

Goal: allow the application of SVM regression to
on-line problems.

Essence of the method:

“Add/remove/update one vector by varying in the
right direction the influence on the regression tube
of the vector until it reaches a consistent KKT
condition while maintaining KKT conditions of the
remaining vectors.”’




Formulation of SVM
regression

SVM regression

» See the excellent slides of Belanche’s talk.

* In particular, we are interested in &-insensitive
support vector machine regression:

Goal: find a function that presents at most £
deviation from the target values while being as
“flat” as possible.

Graphical example

Formulation of SVM regression

* The dual formulation for €-insensitive support
vector regression consists in finding the
values for a, a” that minimize the following
quadratic objective function:
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Computing b

« Adding b Lagrange coefficient for including
constraint Z(ai — ;) = 0 in the formulation, we
get: !
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with constraint:
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Solution to the dual formulation

* Regression function:

flz;) = ZQz‘j(Oéj —a;)+b
J

» KKT conditions:
- a;a" =0
— a” = C only for points outside the &-tube
— a7 € (0,C) — i lies in the margin

Characterization of vectors
in SVM regression




Obtaining FO conditions
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Comparing with solution:
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TO KEEP IN MIND!!!!

» g allows us to classify vectors depending on its
membership to sets R, S, E and E”
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» Complete characterization of the SVM implies
knowing [3 for vectors in the margin.
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Procedure

* Has the new vector ¢ any influence on the

regression tube?

Adding one vector " Compute g, and g."

— If both values are positive, the new point lies
inside the e-tube and f3.=0

— If g.<0 then . must be incremented until it
achieves a consistent KKT condition

— If g,"<0 then S, must be decremented until it
achieves a consistent KKT condition




But ...

* Increasing and decreasing 3. changes the
e-tube and thus g;, g;" and (3, of vectors
already in D

» Even more, increasing and decreasing [3.
can change the membership of vectors to
sets R, S, E and E*

Step by step

» First, assume that variation in 3, is so small
that does not change membership of
vectors....

* In this case, how variation in 8, change
g;, g and B of the other vectors assuming
that these vectors do not transfer from one
set to another?

Changes in g; by modifying (3.
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Changes in g;" by modifying 3.
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Changes in } f5,

Y. B;+C|E|-C|E*|=0

JeS

ABe+ > AB; =0

Equations valid for all vectors
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1. Set g-.to 0
2. If g >0 and ¢} > 0 Then add ¢ to R and exit
3. If g- <0 Then
Increment B¢, updating 3; for ¢ € S and
gi»g; for i € S, until one of the following
conditions holds:
- ge = 0: add ¢ to S, update R and exit
- Be=C" add ¢ to E and exit
PrOCCdure - one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
Else {g; <0}
Decrement S., updating 3; for ¢« € S and
gi-g; for i ¢ S, until one of the following
conditions holds:
- g = 0: add ¢ to S, update R and exit
- fe=—C: add ¢ to E* and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
4. Return to 3

Computational resources Computational resources
* Time resources:  Memory:
— Still not deeply studied, but: — Keep g for vectors not in S
* Maximum 2|D] iterations for adding one new vector — Keep f for vectors in S
* Linear costs for computing y, d and R — Keep R (dimensions: |S]?)

— Empirical comparison with QP shows that this
method is at least one order of magnitude faster
for learning the whole training set

— Keep O, for i,j in S (dimensions: |S]|?)

|D| + 2|52




[Computational details]

Transfer of vectors between sets

* Transfers only from
neighbor sets: S0

— From Eto S

— From Sto E R (g;>0 and g*>0)

— From Sto R . i S (g* =0)
— From R to § / \\E* »

— From Sto E*

— From E*to S

E (g<0)

Transfer of vectors

» Always from/to S to/from R, E or E*
— Update vector membership to sets
— Create/remove [ entry

— Create/remove g entry
— Update R matrix

Efficient update of R matrix

 Naive procedure: maintain @ and compute the
inverse

o= 1 Qsl s, 0 Qsys
1 Qs! sy o Qss

...Inefficient.

» A better approach: Adapt Poggio &
Cawenbergs recursive update to regression.




Recursive update

* Adding one margin o 0
support vector ¢ Ri= ot
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* Removing one margin support vector

Rij = Rij = Rpg RixRyj  Vivi# k€ [0.1]

Trivial case

» Adding the first margin support vector
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Removing one vector

1. If g. > 0 and g} > 0 Then remove
¢ from R and exit
2. If g <0 Then
Decrement g., updating 3; for ¢ € S and
gi-g; for i € S, until one of the following
conditions holds:
- B = 0: remove ¢ from R and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
Else {g} <0}
Increment 3., updating g; for ¢ € S and
gi-g; for i € S, until one of the following
conditions holds:
- Be = 0: remove ¢ from R and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
3. Return to 2




Update target value

* Obvious way:
Updating target value for one L. on-line removal of <, yo>
2. on-line addition of <z, y/>
vector

* More efficient way:
— Compute g and g* for new target value.

— Determine if the influence of the vector should be
increased or decreased (and in which direction).

— Update S, “carefully” until ¢ status becomes consistent
with a KKT condition.

Matlab Demo Conclusion and Discussion




Conclusions

* We have seen an on-line learning method
for SVMs that:
— It 1s an exact method
— It 1s efficient in memory and time

— It allows the application of SVM for
classification and regression to on-line
applications

Some possible future applications

* On-line learning in classification.
— Incremental learning.
— Active Learning.
— Transduction.
* On-line regression.
— Prediction in real-time temporal series.
— Generalization in Reinforcement Learning.

Software and future extensions

» Matlab code for regression available from

http://www.lsi.upc.es/~mmartin/svmr.html

* Future extension to V-SVM and adaptive
margin algorithms

[It seems extensible to V-SVM, but not (still) to
SVMr with other loss functions like quadratic
or Huber loss.]




