On-line Support Vector
Machine Regression

Index

* Motivation and antecedents

* Formulation of SVM regression

» Characterization of vectors in SVM regression
* Procedure for Adding one vector

* Procedure for Removing one vector

* Procedure for Updating one vector

3 Mario Martin y Demo
@ Software Department — KEML Group * Discussion and Conclusions
"“”::'::::f::"ﬁ:;::'::;ﬁ:::::”' Universitat Politecnica de Catalunya
Motivation On-line applications

* SVM has nice (theoretical and practical)
properties:
— Generalization
— Convergence to optimum solution

* This extends to SVM for regression
(function approximation)

» But they present some practical problems in
the application to interesting problems

» What happens when:
— You have trained your SVM but new data is available?
— Some of your data must be updated?
— Some data must be removed?

» In some applications we need actions to efficiently
— Add new data
— Remove old data
— Update old data

On-line applications

* Some examples in regression:

— Temporal series prediction: New data for learning but
system must predict from the first data (for instance

prediction of share values for companies in the market).

— Active Learning: Learning agent sequentially chooses
from a set of examples the next data from which to
learn.

— Reinforcement Learning: Estimated Q target values for
existing data change as learning goes on.

Antecedents

(Cawenbergs, Poggio 2000) presents a method for
incrementally build exact SVMs for classification

Allow us to incrementally add and remove vectors
to/from the SVM

Goals:

— Efficient procedure in memory and time for solving
SVMs

— Efficient computation of Leave-One-Out Error

Incremental approaches

* (Nando de Freitas, et alt 2000):

— Regression based on the Kalman Filter and windowing.

— Bayesian framework.

— Not an exact method (only inside the window or with
RBFs).

— Not able to update or remove data.

e (Domeniconi, Gunopulus 2001):

— Train with n vectors. Keep support vectors. Select
heuristically the following k vectors from a set of m
vectors. Then learn from scratch with the & vectors and
the support vectors.

On-line SVM regression

Based on C&P method but applied to regression.

Goal: allow the application of SVM regression to
on-line problems.

Essence of the method:

“Add/remove/update one vector by varying in the
right direction the influence on the regression tube
of the vector until it reaches a consistent KKT
condition while maintaining KKT conditions of the
remaining vectors.”’

Formulation of SVM
regression

SVM regression

» See the excellent slides of Belanche’s talk.

* In particular, we are interested in &-insensitive
support vector machine regression:

Goal: find a function that presents at most £
deviation from the target values while being as
“flat” as possible.

Graphical example

Formulation of SVM regression

* The dual formulation for €-insensitive support
vector regression consists in finding the
values for a, a” that minimize the following
quadratic objective function:

1
W =35> (ai = ad)Qij(ay — af) = > _yilei — af) + €3 (i + af)
1j 7)

subject to constraints: 0<ajaf<C

Z(ai—af)zo

where Qi; = K(w;, z))

Computing b

« Adding b Lagrange coefficient for including
constraint Z(ai — ;) = 0 in the formulation, we
get: !

1
W= 32 (0 = a)Qij(ay —af) = il — o))
(¥ ?
-I—eZ(Oéi + o)) + bZ(ai — ;)

with constraint:

0< 07 <C

Solution to the dual formulation

* Regression function:

flz;) = ZQz‘j(Oéj —a;)+b
J

» KKT conditions:
- a;a" =0
— a” = C only for points outside the &-tube
— a7 € (0,C) — i lies in the margin

Characterization of vectors
in SVM regression

Obtaining FO conditions

1
. . i W = =) (0 —a)Qi(ey — af) — > yiley — o)
« We will characterize vectors by using the 2% g e =0
KKT conditions and by deriving the dual Fed (aital) +0) (o —ai)
SVM regression formulation wrt the

Lagrange coefficients (FO conditions oW
g g () g9 = d}e ZQ:J(WJ 0’}() —Yi+e+b

oW
gF = ot = > Qij(aj—af)tyi+e—b=—g;+2¢
g j

15144
= Yaj-a) =0
7

Comparing with solution:

. flz;)) = Qiila; —a®)+b = Qi +b
Renaming: («; —af) = p; ! ZJ: wATI T Zj: W
9 = 54 Z QijBj —yi+e+b gi = ZQ? iBi—vite+b = error(z;)+e
o 0(1«?
ow _ ow
9 = For=- S QiiBj+yite—b=—g+2¢ G = Gor = 9it2e = —error(z) te
1 i 7
O_W — Zb‘ =0 ow
ob

o = 2A=0

E (g,<0)

S (g=0)

R (g;>0 and g}>0)

S (g =0)

E* (g#<0)

loi = —gi + 2¢]

26 g, — gf<oO B;=-C i€E*
g=2 — gi=0 -C<pB;<0 (€58
0<g;<2e — 0<gf<2e B;=0 i€R
=0 — gf=2¢ o<p<C ieS
<0 = gI>2e gi=C i€ E
E (g,<0)
S(g=0)
R (g0 and g>0)
S (g¥ =0)
E* (23<0)

TO KEEP IN MIND!!!!

» g allows us to classify vectors depending on its
membership to sets R, S, E and E”

e <g; — gi<oO pi=-C i€FE*
gi=2 — gi=0 -C<B3<0 (€8S
0<g;<2e — 0<gf<2e B; =0 i€R
=0 — gf=2 0<p<C i€S
;<0 = gf>2e 8;=C i€k

» Complete characterization of the SVM implies
knowing [3 for vectors in the margin.

=

Reformulation of X Qs vt etb

" 6 = —gi+2e
FO conditions (1) 0= ¥4
(1) 9i = if’= Y QiiBi—vyi+e+b
i s

.

g9 = Y Qi +C Y Qi—C > Qij‘—yi+5+b

JES JEL JEE™

() 9 = —g9i+2e

Y Qiifi—yi+e+b
j

Reformulation of | * -
crormuation © g4 Will be used later...

o« e g =
FO conditions (2) 0= Y5
9 = Y Qifi+CY Qii—C) Qij—yitetb
3) i—f: S B,=0 PAAKCARG AL P PR
Jﬂ 9 = —9i+2e

0 = Y B;+C|E|-C|E*|

S Bj+C|E| - C|E*| =0 =

J€S

Procedure

* Has the new vector ¢ any influence on the

regression tube?

Adding one vector " Compute g, and g."

— If both values are positive, the new point lies
inside the e-tube and f3.=0

— If g.<0 then . must be incremented until it
achieves a consistent KKT condition

— If g,"<0 then S, must be decremented until it
achieves a consistent KKT condition

But ...

* Increasing and decreasing 3. changes the
e-tube and thus g;, g;" and (3, of vectors
already in D

» Even more, increasing and decreasing [3.
can change the membership of vectors to
sets R, S, E and E*

Step by step

» First, assume that variation in 3, is so small
that does not change membership of
vectors....

* In this case, how variation in 8, change
g;, g and B of the other vectors assuming
that these vectors do not transfer from one
set to another?

Changes in g; by modifying (3.

gi = Z QiiBj +C Z Qij — C Z Qij—vyi+e+b
JES JEE JEE*

4

Ag; = Qe ABe + Z (JUAHJ + Ab
JES

Changes in g;" by modifying 3.

9 = —g9i+2e

8

Ag; = -Agy;

Changes in } f5,

Y. B;+C|E|-C|E*|=0

JeS

ABe+ > AB; =0

Equations valid for all vectors
(while vectors do not migrate)

Agi = QicABe+ Y. Qi AB; + Ab
JES

Agi = —Ag;

ABe+ > AB;j =0

JES

j€8 JES
. h ; Y AR = —ABe
Vectors in the margin fes
> QAR+ Ab = —QiApc
JjeSs
* If vectors do not change membership to sets
then, for vectors i in the margin, Ag;=Ag,*=0 o 1 - 1 N 1
1 (2.5‘1.51 e Q.Sl._S; . AﬂS’l — _ (‘2.3'1(.‘ A,ﬁ(
&’Hc + Z Aﬁ} =0 1 QS;,Sl T QS}.S} &lﬁ."a} (2.5';(
jes
QicAPe+ D QijABj+ Ab=0
jeSs Ab 1
ABs ,
Y AB = —ABe Q.| A5 | =_| 95ic | pp.
JES ' '
ABg Qs
S QiAB + Ab = —QiApe P Sie

ApPs Q@s;c T
Q- 7 ;| DB o Ab = SAP.
Apg, Qs)e ABj = §;ABc Vje S
K Ng; = 0 Vi€ S
E
Ab 1 E
A,?S]_ — Q— 1 Q,?]_C A,ﬁ(_‘ P (s 1
Apg, Qs)c I 081 | = _g | @sic
N ds, Qs)c
Ab) -1
Ap g 53' M 0 1 c. 1
Sl =—| " ag I where R = 0-1 = 1 Qs:l,sl Q.s:l..s';
Afs, ds, N 1 Qg5 ' Qs.s
D
Vect t in th ' T
CCLOTS NOot 1N 1Inc margln o
K DB = 0 Vi g S
E
Agi = (2."(:'&,3(_‘ + Z (J:J‘&ﬁj + Ab= E &GJ = WJ'&’G(-' V-? e S
JES P
QicABe+ > Qij6; AP+ AL =
JES 1
(Qic + Z (JUAJ + 0)ABe = N where
~
" A Yi = Qic + Z (J-.ijﬁfj + Vi ¢ S
Vi Pe M JES
|
Vi = Qict Y Qijdj + 6 Vig S N
jES D

1. Set g-.to 0
2. If g >0 and ¢} > 0 Then add ¢ to R and exit
3. If g- <0 Then
Increment B¢, updating 3; for ¢ € S and
gi»g; for i € S, until one of the following
conditions holds:
- ge = 0: add ¢ to S, update R and exit
- Be=C" add ¢ to E and exit
PrOCCdure - one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
Else {g; <0}
Decrement S., updating 3; for ¢« € S and
gi-g; for i ¢ S, until one of the following
conditions holds:
- g = 0: add ¢ to S, update R and exit
- fe=—C: add ¢ to E* and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
4. Return to 3

Computational resources Computational resources
* Time resources: Memory:
— Still not deeply studied, but: — Keep g for vectors not in S
* Maximum 2|D] iterations for adding one new vector — Keep f for vectors in S
* Linear costs for computing y, d and R — Keep R (dimensions: |S]?)

— Empirical comparison with QP shows that this
method is at least one order of magnitude faster
for learning the whole training set

— Keep O, for i,j in S (dimensions: |S]|?)

|D| + 2|52

[Computational details]

Transfer of vectors between sets

* Transfers only from
neighbor sets: S0

— From Eto S

— From Sto E R (g;>0 and g*>0)

— From Sto R . i S (g* =0)
— From R to § / \\E* »

— From Sto E*

— From E*to S

E (g<0)

Transfer of vectors

» Always from/to S to/from R, E or E*
— Update vector membership to sets
— Create/remove [entry

— Create/remove g entry
— Update R matrix

Efficient update of R matrix

 Naive procedure: maintain @ and compute the
inverse

o= 1 Qsl s, 0 Qsys
1 Qs! sy o Qss

...Inefficient.

» A better approach: Adapt Poggio &
Cawenbergs recursive update to regression.

Recursive update

* Adding one margin o 0
support vector ¢ Ri= ot
O --- 00
5
s
1 ~1 . .
6_ i A[(’J 55‘1 O'q! 1
¢ 55,!

1

* Removing one margin support vector

Rij = Rij = Rpg RixRyj Vivi# k€ [0.1]

Trivial case

» Adding the first margin support vector

-1
e 0 1 — _Q(:c 1
ri=e _[1 Qcc] —[1 o]

Removing one vector

1. If g. > 0 and g} > 0 Then remove
¢ from R and exit
2. If g <0 Then
Decrement g., updating 3; for ¢ € S and
gi-g; for i € S, until one of the following
conditions holds:
- B = 0: remove ¢ from R and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
Else {g} <0}
Increment 3., updating g; for ¢ € S and
gi-g; for i € S, until one of the following
conditions holds:
- Be = 0: remove ¢ from R and exit
- one vector migrates from/to sets E, E*
or R to/from S: update set memberships
and update R matrix.
3. Return to 2

Update target value

* Obvious way:
Updating target value for one L. on-line removal of <, yo>
2. on-line addition of <z, y/>
vector

* More efficient way:
— Compute g and g* for new target value.

— Determine if the influence of the vector should be
increased or decreased (and in which direction).

— Update S, “carefully” until ¢ status becomes consistent
with a KKT condition.

Matlab Demo Conclusion and Discussion

Conclusions

* We have seen an on-line learning method
for SVMs that:
— It 1s an exact method
— It 1s efficient in memory and time

— It allows the application of SVM for
classification and regression to on-line
applications

Some possible future applications

* On-line learning in classification.
— Incremental learning.
— Active Learning.
— Transduction.
* On-line regression.
— Prediction in real-time temporal series.
— Generalization in Reinforcement Learning.

Software and future extensions

» Matlab code for regression available from

http://www.lsi.upc.es/~mmartin/svmr.html

* Future extension to V-SVM and adaptive
margin algorithms

[It seems extensible to V-SVM, but not (still) to
SVMr with other loss functions like quadratic
or Huber loss.]

