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Motivation

• SVM has nice (theoretical and practical) 
properties: 
– Generalization
– Convergence to optimum solution

• This extends to SVM for regression 
(function approximation)

• But they present some practical problems in 
the application to interesting problems

On-line applications

• What happens when:
– You have trained your SVM but new data is available?
– Some of your data must be updated?
– Some data must be removed?

• In some applications we need actions to efficiently
– Add new data
– Remove old data
– Update old data



On-line applications

• Some examples in regression:
– Temporal series prediction: New data for learning but  

system must predict from the first data (for instance 
prediction of share values for companies in the market).

– Active Learning: Learning agent sequentially chooses 
from  a set of examples the next data from which to 
learn.

– Reinforcement Learning: Estimated Q target values for 
existing data change as learning goes on.

Antecedents

• (Cawenbergs, Poggio 2000) presents a method for 
incrementally build exact SVMs for classification

• Allow us to incrementally add and remove vectors 
to/from the SVM

• Goals:
– Efficient procedure in memory and time for solving 

SVMs
– Efficient computation of Leave-One-Out Error

Incremental approaches

• (Nando de Freitas, et alt 2000):
– Regression based on the Kalman Filter and windowing.
– Bayesian framework.
– Not an exact method (only inside the window or with 

RBFs).
– Not able to update or remove data.

• (Domeniconi, Gunopulus 2001):
– Train with n vectors. Keep support vectors. Select 

heuristically the following k vectors from a set of m
vectors. Then learn from scratch with the k vectors and 
the support vectors.

On-line SVM regression

• Based on C&P method but applied to regression.
• Goal: allow the application of SVM regression to 

on-line problems.

• Essence of the method:
“Add/remove/update one vector by varying in the 
right direction the influence on the regression tube 

of the vector until it reaches a consistent KKT 
condition while maintaining KKT conditions of the 

remaining vectors.”



Formulation of SVM     
regression

SVM regression

• See the excellent slides of Belanche’s talk.
• In particular, we are interested in ε-insensitive 

support vector machine regression:
Goal: find a function that presents at most ε
deviation from the target values while being as  
“flat” as possible.

Graphical example ε-tube Formulation of SVM regression 

• The dual formulation for ε-insensitive support 
vector regression consists in finding the 
values for α, α* that minimize the following 
quadratic objective function:



subject to constraints:

where

Computing b

• Adding b Lagrange coefficient for including 
constraint                             in the formulation, we 
get:

with constraint:

• Regression function:

• KKT conditions:
– αi

¦ αi
* = 0

– αi
(*) = C only for points outside the ε-tube

– αi
(*) ∈ (0,C) → i lies in the margin

Solution to the dual formulation

Characterization of vectors 
in SVM regression



Obtaining FO conditions

• We will characterize vectors by using the 
KKT conditions and by deriving the dual 
SVM regression formulation wrt the 
Lagrange coefficients  (FO conditions)                 

Renaming:

Comparing with solution:



TO  KEEP  IN  MIND!!!!

• g allows us to classify vectors depending on its 
membership to sets  R, S, E and E*

• Complete characterization of the SVM implies 
knowing β for vectors in the margin.

Reformulation of 
FO conditions (1)

(1)

(2)



Reformulation of 
FO conditions (2)

(3)

Will be used later...

Adding one vector

Procedure

• Has the new vector c any influence on the 
regression tube?
– Compute gc and gc

*

– If both values are positive, the new point lies 
inside the ε-tube and βc=0

– If gc<0 then βc must be incremented until it 
achieves a consistent KKT condition

– If gc
*<0 then βc must be decremented until it 

achieves a consistent KKT condition



But ...

• Increasing and decreasing βc changes the   
ε-tube and thus gi , gi

* and βi of vectors 
already in D

• Even more, increasing and decreasing βc
can change the membership of vectors to 
sets R, S, E and E*

Step by step

• First, assume that variation in βc is so small 
that does not change membership of 
vectors....

• In this case, how variation in βc change      
gi , gi

* and  βi of the other vectors assuming 
that these vectors do not transfer from one 
set to another?

Changes in gi by modifying βc Changes in gi
* by modifying βc



Changes in ∑βj
Equations valid for all vectors 

(while vectors do not migrate)

Vectors in the margin

• If vectors do not change membership to sets 
then, for vectors i in the margin,  ∆gi = ∆gi

*= 0
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Procedure

Computational resources

• Time resources:
– Still not deeply studied, but:

• Maximum 2|D| iterations for adding one new vector 
• Linear costs for computing γ, δ and R

– Empirical comparison with QP shows that this 
method is at least one order of magnitude faster 
for learning the whole training set

Computational resources

• Memory:
– Keep g for vectors not in S
– Keep β for vectors in S
– Keep R (dimensions: |S|2 )
– Keep Qij for i,j in S (dimensions: |S|2 )



[Computational details]

Transfer of vectors between sets

• Transfers only from 
neighbor sets:
– From E to S
– From S to E
– From S to R
– From R to S
– From S to E*
– From E* to S

Transfer of vectors

• Always from/to S to/from R, E or E*
– Update vector membership to sets
– Create/remove β entry
– Create/remove g entry
– Update R matrix

Efficient update of R matrix

• Naive procedure: maintain     and compute the 
inverse

...inefficient. 

• A better approach: Adapt Poggio & 
Cawenbergs recursive update to regression.



Recursive update

• Adding one margin 
support vector c

• Removing one margin support vector

Trivial case

• Adding the first margin support vector

Removing one vector



Updating target value for one 
vector

Update target value

• Obvious way:

• More efficient way:
– Compute g and g* for new target value.
– Determine if the influence of the vector should be 

increased or decreased (and in which direction).
– Update βc “carefully” until c status becomes consistent 

with a KKT condition.

Matlab Demo Conclusion and Discussion



Conclusions

• We have seen an on-line learning method 
for SVMs that:
– It is an exact method
– It is efficient in memory and time
– It allows the application of SVM for 

classification and regression to on-line 
applications

Some possible future applications

• On-line learning in classification.
– Incremental learning.
– Active Learning.
– Transduction.
– ...

• On-line regression.
– Prediction in real-time temporal series.
– Generalization in Reinforcement Learning.
– ...

Software and future extensions

• Matlab code for regression available from
http://www.lsi.upc.es/~mmartin/svmr.html

• Future extension to ν-SVM and adaptive 
margin algorithms

[It seems extensible to ν-SVM, but not (still) to 
SVMr with other loss functions like quadratic 
or Huber loss.]


