
Reinforcement Learning
Policy Search: Actor-Critic and Gradient Policy search

Mario Martin

Mario Martin - CS-UPC

February 11, 2026

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 1 / 89

Goal of this lecture

So far we approximated the value or action-value function using parameters θ (e.g. neural
networks)

Vθ ≈ V π

Qθ(s, a) ≈ V π(s)

A policy was generated directly from the value function e.g. using ε- greedy
In this lecture we will directly parameterize the policy in a stochastic setting

πθ(a|s) = Pθ(a|s)

and do a direct Policy search
Again on model-free setting

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 2 / 89

Three approaches to RL

Value based learning: Implicit policy
Learn value function Qθ(s, a) and from there infer policy
π(s) = argmaxa Q(s, a)

Policy based learning: No value function
Explicitly learn policy πθ(a|s) that implicitly maximize reward over all
policies

Actor-Critic learning: Learn both Value Function and Policy

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 3 / 89

Advantges of Policy over Value approach

Advantages:
I In some cases, computing Q-values is harder than picking optimal actions
I Better convergence properties
I Effective in high dimensional or continuous action spaces
I Exploration can be directly controlled
I Can learn stochastic policies

Disadvantages:
I Typically converge to a local optimum rather than a global optimum
I Evaluating a policy is typically data inefficient and high variance

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 4 / 89

Stochastic Policies

In general, two kinds of policies:
I Deterministic policy

a = πθ(s)
I Stochastic policy

P(a|s) = πθ(a|s)

Nice thing is that they are smoother than greedy policies, and so, we can compute
gradients!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 5 / 89

Policy optimization

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 6 / 89

Policy Objective Functions

Goal: given policy πθ(a|s) with parameters θ, find best θ
... but how do we measure the quality of a policy πθ?
In episodic environments we can use the starting states value

Jstart(θ) =
∑
s∈S

µ(s) Eπθ
[Rπ(s)]

where µ(s) is probability of starting from state s in a reset of the environment.
We can use other definitions, but it not not important now, we have a target function to
maximize.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 7 / 89

Policy optimization

Goal: given policy πθ(a|s) with parameters θ, find best θ
Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize J(θ)
Two approaches for solving the optimization problem

I Gradient-free
I Policy-gradient

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 8 / 89

Gradient Free Policy Optimization

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 9 / 89

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters θ) to approximate policy πθ(a|s), find
best values for θ
Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize J(θ)
Some approaches do not use gradient

I Hill climbing
I Simplex / amoeba / Nelder Mead
I Genetic algorithms
I Cross-Entropy method (CEM)
I Covariance Matrix Adaptation (CMA)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 10 / 89

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters θ) to approximate policy πθ(a|s), find
best values for θ
Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize J(θ)
Some approaches do not use gradient

I Hill climbing
I Simplex / amoeba / Nelder Mead
I Genetic algorithms
I Cross-Entropy method (CEM)
I Covariance Matrix Adaptation (CMA)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 10 / 89

Hill Climbing

A popular implementation consist is approximating the policy using a Neural Network
where weights have a value and a standard deviation. It is initialized randomly with large
standard deviation.
Repeat until convergence:

1 A population of N neural networks are a created from the policy by sampling the weights
from the stochastic neural network

2 Each of the N networks is evaluated and a elite of best M members is selected.
3 Weights of the stochastic neural network are recomputed from statistics from the Elite

Simple to implement and effective
Try (search) and move weights towards better direction

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 11 / 89

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters θ) to approximate policy πθ(a|s), find
best values for θ
Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize J(θ)
Some approaches do not use gradient

I Hill climbing
I Simplex / amoeba / Nelder Mead
I Genetic algorithms
I Cross-Entropy method (CEM)
I Covariance Matrix Adaptation (CMA)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 12 / 89

Gradient Free Policy Optimization

Goal: given parametrized method (with parameters θ) to approximate policy πθ(a|s), find
best values for θ
Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize J(θ)
Some approaches do not use gradient

I Hill climbing
I Simplex / amoeba / Nelder Mead
I Genetic algorithms
I Cross-Entropy method (CEM)
I Covariance Matrix Adaptation (CMA)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 12 / 89

Cross-Entropy Method (CEM)

A simplified version of Evolutionary algorithm
Works embarrassingly well in some problems, f.i.

I Playing Tetris (Szita et al., 2006), (Gabillon et al., 2013)
I A variant of CEM called Covariance Matrix Adaptation has become standard in graphics

(Wampler et al., 2009)
Very simple idea:

1 From current policy, sample N trials (large)
2 Take the M trials with larger long-term return (we call the elite)
3 Fit new policy to behave as in M best sessions
4 Repeat until satisfied

Policy improves gradually

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 13 / 89

https://pdfs.semanticscholar.org/b199/22afc8678a228c780715d50f5a427dc51680.pdf
https://papers.nips.cc/paper/5190-approximate-dynamic-programming-finally-performs-well-in-the-game-of-tetris.pdf
http://grail.cs.washington.edu/projects/animal-morphology/s2009/Optimal_Gait_and_Form_for_Animal_Locomotion.pdf

Tabular Cross-Entropy

Tabular Cross-Entropy Algorithm
Given M (f.i, 20), N (f.i. 200)
Initialize matrix policy π(a|s) = As,a randomly
repeat

Sample N roll-outs of the policy and collect for each Rt
elite = M best samples
π(a|s) = [times in M samples took a in s] + λ

[times in M samples was at s] + λ|A|
until convergence
return π

Notice! No value functions!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 14 / 89

Tabular Cross-Entropy

Some possible problems and solutions:
If you were in an state only once, you only took one action and probabilities become 0/1
Solution: Introduction of λ, a parameter to smooth probabilities

Due to randomness, algorithm will prefer lucky sessions (training on lucky sessions is no
good)
Solution: run several simulations with these state-action pairs and average the results.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 15 / 89

Tabular Cross-Entropy

Some possible problems and solutions:
If you were in an state only once, you only took one action and probabilities become 0/1
Solution: Introduction of λ, a parameter to smooth probabilities

Due to randomness, algorithm will prefer lucky sessions (training on lucky sessions is no
good)
Solution: run several simulations with these state-action pairs and average the results.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 15 / 89

Approximated Cross-Entropy Method (CEM)

Approximated Cross-Entropy Method
Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN) depending on θ
Initialize θ randomly
repeat

Sample N roll-outs of the policy and collect for each Rt
elite = M best samples
θ = θ + α∇

[∑
s,a∈elite log πθ(a|s)

]
until convergence
return πθ

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 16 / 89

Approximated Cross-Entropy Method (CEM)

No Value function involved
Notice that best policy is:

argmax
πθ

∑
s,a∈elite

log πθ(a|s) = argmax
πθ

∏
s,a∈elite

πθ(a|s)

so gradient goes in that direction
Intuitively, is the policy that maximizes similarity with behavior of successful samples
[Notice this is Cross-Entropy loss of output of NN and actions of the elite.]
I promised no gradient, but notice that gradient is for the approximation, not for the
rewards of the policy

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 17 / 89

Approximated Cross-Entropy Method (CEM)

It shows problems with sparse rewards:
I It does not consider temporal structure in the episode, only cares for final reward.
I That makes difficult between bad or good trajectories when both achieve the final goal.

Solve this using discount parameter γ.
I When trajectories are large and reward sparse, it is difficult to distinguish between good or

bad trajectories only looking at final reward.
Works very well in some cases but it works better when:

I Training episodes have to be, preferably, short
I The total reward for the episodes should allow to separate good episodes from bad ones

(problem with sparse rewards): use γ and/or penalties
I Keep elite episodes for several training loops when good trajectories are hard to be found

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 18 / 89

Gradient-Free methods

Often a great simple baseline to try
Benefits

I Can work with any policy parameterizations, including non-differentiable
I Frequently very easy to parallelize (faster wall-clock training time)

Limitations
I Typically not very sample efficient because it ignores temporal structure

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 19 / 89

Policy gradient

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 20 / 89

Policy gradient methods

Policy based reinforcement learning is an optimization problem
Find policy parameters θ that maximize V πθ

We have seen gradient-free methods, but greater efficiency often possible using gradient
in the optimization
Pletora of methods:

I Gradient descent
I Conjugate gradient
I Quasi-newton

We focus on gradient ascent, many extensions possible
And on methods that exploit sequential structure

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 21 / 89

Policy gradient differences wrt Value methods

With Value functions we use Greedy updates:

θπ′ = argmax
θ

Eπθ
[Qπ(s, a)]

V π0 small change−−−−−−−→ π1
large change−−−−−−−→ V π1 small change−−−−−−−→ π2

large change−−−−−−−→ V π2

Potentially unstable learning process with large policy jumps because argmax is not
differentiable
On the other hand, Policy Gradient updates are:

θπ′ = θπ′ + α
∂J(θ)
∂θ

Stable learning process with smooth policy improvement

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 22 / 89

Policy gradient method

Define J(θ) = Jπθ to make explicit the dependence of the evaluation policy on the policy
parameters
Assume episodic MDPs
Policy gradient algorithms search for a local maximum in J(θ) by ascending the
gradient of the policy, w.r.t parameters θ

∇θ = α∇θJ(θ)

Where ∇θJ(θ) is the policy gradient and α is a step-size parameter

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 23 / 89

Computing the gradient analytically

We now compute the policy gradient analytically
Assume policy is differentiable whenever it is non-zero
and that we know the gradient ∇θπθ(a|s)
Denote a state-action trajectory (or trial) τ as

τ = (s0, a0, r1, s1, a1, r2, . . . sT−1, aT−1, rT , sT)

Define long-term-reward to be the sum of rewards for the trajectory (R(τ))

R(τ) =
T∑

t=1
r(st)

It works also for discounted returns.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24 / 89

Computing the gradient analytically

We now compute the policy gradient analytically
Assume policy is differentiable whenever it is non-zero
and that we know the gradient ∇θπθ(a|s)
Denote a state-action trajectory (or trial) τ as

τ = (s0, a0, r1, s1, a1, r2, . . . sT−1, aT−1, rT , sT)

Define long-term-reward to be the sum of rewards for the trajectory (R(τ))

R(τ) =
T∑

t=1
r(st)

It works also for discounted returns.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24 / 89

Computing the gradient analytically

The value of the policy J(θ) is:

J(θ) = Eπθ
[R(τ)] =

∑
τ

P(τ |θ)R(τ)

where P(τ |θ) denotes the probability of trajectory τ when following policy πθ

Notice that sum is for all possible trajectories
In this new notation, our goal is to find the policy parameters theta) that:

argmax
θ

J(θ) = argmax
θ

∑
τ

P(τ |θ)R(τ)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 25 / 89

[Log-trick: a convenient equality]

In general, assume we want to compute ∇ log f (x) :

∇ log f (x) =
1

f (x)∇f (x)

f (x)∇ log f (x) = ∇f (x)

It can be applied to any function and we can use the equality in any direction
The term ∇f (x)

f (x) is called likelihood ratio and is used to analytically compute the gradients
Btw. Notice the caveat... Assume policy is differentiable whenever it is non-zero.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 26 / 89

Computing the gradient analytically
In this new notation, our goal is to find the policy parameters θ that:

argmax
θ

J(θ) = argmax
θ

∑
τ

P(τ |θ)R(τ)

So, taken the gradient wrt θ

∇θJ(θ) = ∇θ

∑
τ

P(τ |θ)R(τ)

=
∑
τ

∇θP(τ |θ)R(τ)

=
∑
τ

P(τ |θ)
P(τ |θ)

∇θP(τ |θ)R(τ)

=
∑
τ

P(τ |θ)R(τ)
∇θP(τ |θ)

P(τ |θ)

=
∑
τ

P(τ |θ)R(τ)∇θ logP(τ |θ)
Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 27 / 89

Computing the gradient analytically

Goal is to find the policy parameters θ that:

argmax
θ

J(θ) = argmax
θ

∑
τ

P(τ |θ)R(τ)

So, taken the gradient wrt θ

∇θJ(θ) =
∑
τ

P(τ |θ)R(τ)∇θ logP(τ |θ)

Of course we cannot compute all trajectories...but we can sample m trajectories because
of the form of the equation

∇θJ(θ) ≈ (1/m)
m∑

i=1
R(τi)∇θ logP(τi |θ)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28 / 89

Computing the gradient analytically

Goal is to find the policy parameters θ that:

argmax
θ

J(θ) = argmax
θ

∑
τ

P(τ |θ)R(τ)

So, taken the gradient wrt θ

∇θJ(θ) =
∑
τ

P(τ |θ)R(τ)∇θ logP(τ |θ)

Of course we cannot compute all trajectories...but we can sample m trajectories because
of the form of the equation

∇θJ(θ) ≈ (1/m)
m∑

i=1
R(τi)∇θ logP(τi |θ)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28 / 89

Computing the gradient analytically: at last!
Sample m trajectories:

∇θJ(θ) ≈ (1/m)
m∑

i=1
R(τi)∇θ logP(τi |θ)

However, we still have a problem, we don’t know the how to compute ∇θ logP(τ |θ)
Fortunately, we can derive it from the stochastic policy

∇θ logP(τ |θ) = ∇θ log

[
µ(s0)

T−1∏
i=0

πθ(ai |si)P(si+1|si , ai)

]

= ∇θ

[
logµ(s0) +

T−1∑
i=0

log πθ(ai |si) + logP(si+1|si , ai)

]

=
T−1∑
i=0

∇θ log πθ(ai |si)︸ ︷︷ ︸
No dynamics model required!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 29 / 89

Computing the gradient analytically

We assumed at the beginning that policy is differentiable and that we now the derivative
wrt parameters θ

So, we have the desired solution:

∇θJ(θ) ≈ (1/m)
m∑

i=1

R(τi)
∑

(sj ,aj)∈τi

∇θ log πθ(aj |sj)



Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 30 / 89

Differentiable policies? Deep Neural Network

A very popular way to approximate the policy is to use a Deep NN with soft-max last
layer with so many neurons as actions.
In this case, use autodiff of the neural network package you use! In pytorch:

loss = - torch.mean(log_outputs * R)

where prob_outputs is the output layer of the DNN and R the long term reward.
Backpropagation is implemented in pytorch and will do the work for you!
Common approaches for stochastic policies:

I Last softmax layer in discrete case
I Last layer with µ and log σ in continuous case

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 31 / 89

Discrete action space

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 32 / 89

Continuous action space

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 33 / 89

Continuous action space

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 34 / 89

Continuous action space

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 35 / 89

Continuous action space

Yes!!!! Continuous actions! Big improvement in applicability of RL!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 36 / 89

Continuous action space

Yes!!!! Continuous actions! Big improvement in applicability of RL!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 36 / 89

Vanilla Policy Gradient

Vanilla Policy Gradient
Given architecture with parameters θ to implement πθ
Initialize θ randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
Get R ← long-term return for episode
for all time steps t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(at |st)R

end for
until convergence

Btw, notice no explicit exploration mechanism needed when policies are stochastic!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 37 / 89

Vanilla Policy Gradient

Remember:

∇θJ(θ) ≈ (1/m)
m∑

i=1
R(τi)

T−1∑
i=0
∇θ log πθ(ai |si)

Unbiased but very noisy
Fixes that can make it practical

I Temporal structure
I Baseline

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 38 / 89

Reduce variance using temporal structure: Reinforce and
Actor-Critic architectures

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 39 / 89

REINFORCE algorithm

An deeper analysis shows we can consider rewards-to-go for states instead of rewards of
whole trajectory. See proof from Dont Let the Past Distract You.

REINFORCE algorithm
Given architecture with parameters θ to implement πθ
Initialize θ randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
for all time steps t = 1 to T − 1 do

Get Rt ← long-term return from step t to T
θ ← θ + α∇θ log πθ(at |st)Rt

end for
until convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 40 / 89

https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof1.html

REINFORCE algorithm with baseline

Monte-Carlo policy gradient still has high variance because Rt has a lot of variance
We can reduce variance subtracting a baseline to the estimator

θ ← θ + α∇θ log πθ(at |st)(Rt − b(st))

without introducing any bias when baseline does not depend on actions taken
A good baseline is b(st) = V πθ(st) so we will use that

How to estimate V πθ?
We’ll use another set of parameters w to approximate

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 41 / 89

REINFORCE algorithm with baseline

Monte-Carlo policy gradient still has high variance because Rt has a lot of variance
We can reduce variance subtracting a baseline to the estimator

θ ← θ + α∇θ log πθ(at |st)(Rt − b(st))

without introducing any bias when baseline does not depend on actions taken
A good baseline is b(st) = V πθ(st) so we will use that

How to estimate V πθ?
We’ll use another set of parameters w to approximate

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 41 / 89

REINFORCE algorithm with baseline

REINFORCE algorithm with baseline
Given architecture with parameters θ to implement πθ and parameters w to approximate V
Initialize θ, w randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
for all time steps t = 1 to T − 1 do

Get Rt ← long-term return from step t to T
δ ← Rt − Vw (st) {Return minus baseline}
w ← w + β δ ∇w Vw (st) {Learn V from return using MSE}
θ ← θ + α δ ∇θ log πθ(at |st) {Standard log-pi rule with Return minus baseline}

end for
until convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 42 / 89

Actor-Critic Architectures

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 43 / 89

Actor-Critic Architectures

Monte-Carlo policy gradient has high variance
So we used a baseline to reduce the variance Rt − V (st)

Read previous formula as "long reward obtained in current episode from st wrt expected
following the policy"
This is called also Advantage of current trajectory over the policy. Notice action taken is
sampled from the policy and be different to the average action by the policy. Advantage
tells you if it was better or not!
if Advantage is positive, gradients go on one direction, if negative, go in the opposite
direction!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 44 / 89

Actor-Critic Architectures

Monte-Carlo policy gradient has high variance
So we used a baseline to reduce the variance Rt − V (st)

Read previous formula as "long reward obtained in current episode from st wrt expected
following the policy"
This is called also Advantage of current trajectory over the policy. Notice action taken is
sampled from the policy and be different to the average action by the policy. Advantage
tells you if it was better or not!
if Advantage is positive, gradients go on one direction, if negative, go in the opposite
direction!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 44 / 89

Actor-Critic Architectures

The Critic, evaluates the current policy and the result is used in the policy training
The Actor implements the policy and is trained using Policy Gradient with estimations
from the critic

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 45 / 89

Actor-Critic Architectures

Actor-critic algorithms maintain two sets of parameters (like in REINFORCE with
baseline):

Critic parameters: approximation parameters w for action-value function under
current policy

Actor parameters: policy parameters θ

Actor-critic algorithms follow an approximate policy gradient:
Critic: Updates action-value function parameters w like in policy evaluation

updates (you can apply everything we saw in FA for prediction)
Actor: Updates policy gradient θ, in direction suggested by critic :

θ ← θ + α∇θ log πθ(at |st)Rt

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 46 / 89

Choices

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Rt] REINFORCE (MonteCarlo)

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Actor-Critic (temporal differences)

= Eπθ
[∇θ log πθ(a|s)(Rt − Vw (s))]] Reinforce with baseline

= Eπθ
[∇θ log πθ(a|s)(Qθ(s, a)− Vw (s))] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)AGAE] Generalized Advantage Actor Critic

Each leads to a different stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a) or V π(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 89

Choices

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Rt] REINFORCE (MonteCarlo)

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Actor-Critic (temporal differences)

= Eπθ
[∇θ log πθ(a|s)(Rt − Vw (s))]] Reinforce with baseline

= Eπθ
[∇θ log πθ(a|s)(Qθ(s, a)− Vw (s))] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)AGAE] Generalized Advantage Actor Critic

Each leads to a different stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a) or V π(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 89

Choices

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Rt] REINFORCE (MonteCarlo)

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Actor-Critic (temporal differences)

= Eπθ
[∇θ log πθ(a|s)(Rt − Vw (s))]] Reinforce with baseline

= Eπθ
[∇θ log πθ(a|s)(Qθ(s, a)− Vw (s))] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)AGAE] Generalized Advantage Actor Critic

Each leads to a different stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a) or V π(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 89

Choices

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Rt] REINFORCE (MonteCarlo)

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Actor-Critic (temporal differences)

= Eπθ
[∇θ log πθ(a|s)(Rt − Vw (s))]] Reinforce with baseline

= Eπθ
[∇θ log πθ(a|s)(Qθ(s, a)− Vw (s))] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)AGAE] Generalized Advantage Actor Critic

Each leads to a different stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a) or V π(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 89

Choices

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Rt] REINFORCE (MonteCarlo)

= Eπθ
[∇θ log πθ(a|s)Qw (s, a)] Actor-Critic (temporal differences)

= Eπθ
[∇θ log πθ(a|s)(Rt − Vw (s))]] Reinforce with baseline

= Eπθ
[∇θ log πθ(a|s)(Qθ(s, a)− Vw (s))] Advantage Actor-Critic

= Eπθ
[∇θ log πθ(a|s)AGAE] Generalized Advantage Actor Critic

Each leads to a different stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning) to estimate Qπ(s, a) or V π(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 89

Advantage Actor Critic (AAC or A2C)

In this critic Advantage value function is used:

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)

The advantage function can significantly reduce variance of policy gradient
So the critic should really estimate the advantage function, for instance, estimating both
V(s) and Q using two function approximators and two parameter vectors:

V πθ(s) ≈ Vv (s) (1)
Qπθ(s, a) ≈ Qw (s, a) (2)

A(s, a) = Qw (s, a)− Vv (s) (3)

And updating both value functions by e.g. TD learning
Nice thing, you only punish policy when not optimal (why?) Do you see resemblance with
REINFORCE with baseline?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 48 / 89

Other versions of A2C

One way to implement A2C method without two different networks to estimate Qw (s, a)
and Vv (s) is to use estimators of Qw (s, a).
For instance, TD Advantage estimator:

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)
= Eπθ

[
r + γV πθ(s ′)|s, a

]
− V πθ(s)

or MonteCarlo Advantage estimator:

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)
= Eπθ

[R|s, a]− V πθ(s)

In practice these approaches only require one set of critic parameters v to approximate
TD error

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 49 / 89

Generalized Advantage Estimator (GAE)

Generalized Advantage Estimator (Schulman et al. 2016). [nice review]
Use a version of Advantage that consider weighted average of n-steps estimators of
advantage like in TD(λ):

Aπ
GAE =

∞∑
t′=t

(λγ)t′−t [rt′+1 + γV π
θ (st′+1)− V π

θ (st′)]︸ ︷︷ ︸
t’-step advantage

Used in continuous setting for locomotion tasks

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 50 / 89

https://arxiv.org/pdf/1506.02438.pdf
https://danieltakeshi.github.io/2017/04/02/notes-on-the-generalized-advantage-estimation-paper/
https://sites.google.com/site/gaepapersupp/

Asyncrhonous Advantage Actor Critic (A3C)

A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of
the same agent

I use N copies of the agents (workers) working in parallel collecting samples and computing
gradients for policy and value function

I After some time, pass gradients to a main network that updates actor and critic using the
gradients of all

I After some time the worker copy the weights of the global network
This parallelism decorrelates the agents data, so no Experience Replay Buffer needed
Even one can explicitly use different exploration policies in each actor-learner to maximize
diversity
Asynchronism can be extended to other update mechanisms (Sarsa, Q-learning...) but it
works better in Advantage Actor critic setting

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 51 / 89

https://arxiv.org/pdf/1602.01783.pdf

Asyncrhonous Advantage Actor Critic (A3C)

What about exploration in Policy Gradient methods?
Policy is stochastic, so naturally it explores
But degree of exploration usually converges too fast
Usually, in the loss function, a term is added that encourages exploration
This is done computing the Entropy of the policy:

H (π (· | st)) = −
∑
a∈A

π (a | st) log π (a | st)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 52 / 89

Asyncrhonous Advantage Actor Critic (A3C)

What about exploration in Policy Gradient methods?
Policy is stochastic, so naturally it explores
But degree of exploration usually converges too fast
Usually, in the loss function, a term is added that encourages exploration
This is done computing the Entropy of the policy:

H (π (· | st)) = −
∑
a∈A

π (a | st) log π (a | st)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 52 / 89

All these algorithms are on-policy!

Notice that all these algorithms are on-policy!
They implement some informed kind of Hill Climbing
Data cannot be reused like in off-policy methods because we need the log-prob gradients
that generated the action. When policy changes, probs of generating data change
Notice we don’t use Experience Replay
More sensible to local minima than off-policy methods

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 53 / 89

All these algorithms are on-policy!

Notice that all these algorithms are on-policy!
They implement some informed kind of Hill Climbing
Data cannot be reused like in off-policy methods because we need the log-prob gradients
that generated the action. When policy changes, probs of generating data change
Notice we don’t use Experience Replay
More sensible to local minima than off-policy methods

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 53 / 89

State of the art on-policy AC methods

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 54 / 89

Problems with Policy Gradient Directions

Goal: Each step of policy gradient yields an updated policy π′ whose value is greater than
or equal to the prior policy π: V π′ ≥ V π

Several inefficiencies:
I Gradient ascent approaches update the weights a small step in direction of gradient
I Gradient is First order / linear approximation of the value function’s dependence on the

policy parameterization instead of actual policy1

1A policy can often be reparameterized without changing action probabilities (f.i., increasing score of all
actions in a softmax policy). Vanilla gradient is sensitive to these reparameterizations.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 55 / 89

About step size

Step size is important in any problem involving finding the optima of a function
Supervised learning: Step too far → next updates will fix it
But in Reinforcement learning

I Step too far → bad policy
I Next batch: collected under bad policy
I Policy is determining data collect! Essentially controlling exploration and exploitation

trade o due to particular policy parameters and the stochasticity of the policy
I May not be able to recover from a bad choice, collapse in performance!
I Small learning rates do not solve the problem because small changes in weights can change a

lot the policy (distances in weight spaces not necessarily mean small distances in policies)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 56 / 89

About step size

Step size is important in any problem involving finding the optima of a function
Supervised learning: Step too far → next updates will fix it
But in Reinforcement learning

I Step too far → bad policy
I Next batch: collected under bad policy
I Policy is determining data collect! Essentially controlling exploration and exploitation

trade o due to particular policy parameters and the stochasticity of the policy
I May not be able to recover from a bad choice, collapse in performance!
I Small learning rates do not solve the problem because small changes in weights can change a

lot the policy (distances in weight spaces not necessarily mean small distances in policies)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 56 / 89

Problems with Policy gradient methods

Step size and Policy gradient directions
Data inefficiency:

I We don’t have data replay because action should be the one selected by the current policy
I And policy changes after learning
I (notice the difference with off-policy learning)
I We cannot reuse data which lead to policy inefficiency

We don’t have anymore the experience Replay. Can we reuse data?
Yes! Let’s go back to Importance Sampling

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 57 / 89

[Importance Sampling (IS) technique]

Estimate the expectation of a different distribution w.r.t. the distribution used to draw
samples

Ex∼p [f (x)] =
∑

p(x)f (x)

=
∑

q(x)p(x)
q(x) f (x)

= Ex∼q

[
p(x)
q(x) f (x)

]
≈ 1

T

T∑
t=1

p(x t)

q(x t)
f (x t)

where data is sampled using q distribution. That means, we can estimate Ex∼p [f (x)]
using distribution q instead of p

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 58 / 89

[Importance Sampling (IS) technique]

Caution:
I Cannot use if q is zero where p is nonzero
I Importance sampling can dramatically increase variance (choose q wisely, as close to p as

possible)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 59 / 89

Problems with Policy gradient methods

Let’s use old policy to collect data

∇J(θ) = E(st ,at)∼πθ
[∇ log πθ (at | st)A (st , at)]

= E(st ,at)∼πθold

[
πθ (st , at)

πθold (st , at)
∇ log πθ (at | st)A (st , at)

]

Surrogate function to optimize:

J(θ) = E(st ,at)∼πθold

[
πθ (st , at)

πθold (st , at)
A (st , at)

]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 60 / 89

Problems with Policy gradient methods

Let’s use old policy to collect data

∇J(θ) = E(st ,at)∼πθ
[∇ log πθ (at | st)A (st , at)]

= E(st ,at)∼πθold

[
πθ (st , at)

πθold (st , at)
∇ log πθ (at | st)A (st , at)

]

Surrogate function to optimize:

J(θ) = E(st ,at)∼πθold

[
πθ (st , at)

πθold (st , at)
A (st , at)

]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 60 / 89

Problems with Policy gradient methods

Cool. We can use now old data!
However, we have a problem with Importance Sampling.
The expectations are them same, but we are using sampling method to estimate them
and variance is different.
That means that we may need to sample more data, if ratio is far away from 1 (old policy
is far from current policy)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 61 / 89

Problems with Policy gradient methods

Cool. We can use now old data!
However, we have a problem with Importance Sampling.
The expectations are them same, but we are using sampling method to estimate them
and variance is different.
That means that we may need to sample more data, if ratio is far away from 1 (old policy
is far from current policy)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 61 / 89

TRPO (Schulman et al 2017)

Trust Region Policy Optimization (TRPO) maximize parameters that change the policy
increasing advantage in action over wrt. old policy in proximal spaces to avoid too large
step size.

maximize
θ

Êt
[

πθ(at |st)
πθold (at |st)

Â(st , at)
]

subject to Êt [KL [πθold (· | st) , πθ (· | st)]] ≤ δ

Under penalizing constraint (using KL divergence of θ and θold) that ensures
improvement of the policy in the proximity (small step size)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 62 / 89

https://arxiv.org/pdf/1502.05477.pdf

[KullbackLeibler divergence (KL Divergence)]

Used to compute differences between distributions

DKL(P‖Q) =

∫
p(x) log

(
p(x)
q(x)

)
dx

Examples:

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 63 / 89

TRPO (Schulman et al 2017)

In policies DKL:
DKL (π1||π2) [s] =

∑
a∈A

π1(a | s) log
π1(a | s)
π2(a | s)

So:
maximize

θ
Êt
[

πθ(at |st)
πθold (at |st)

Â(st , at)
]

subject to Êt [KL [πθold (· | st) , πθ (· | st)]] ≤ δ

Equivalent to improve the maximum with minimum change in parameters under the KL
divergence measure.
It is solved using Natural Gradient (see here for a nice explanation).
A lot of other details. See paper for details

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 64 / 89

https://arxiv.org/pdf/1502.05477.pdf
https://gebob19.github.io/natural-gradient/

TRPO (Schulman et al 2017)

In policies DKL:
DKL (π1||π2) [s] =

∑
a∈A

π1(a | s) log
π1(a | s)
π2(a | s)

So:
maximize

θ
Êt
[

πθ(at |st)
πθold (at |st)

Â(st , at)
]

subject to Êt [KL [πθold (· | st) , πθ (· | st)]] ≤ δ

Equivalent to improve the maximum with minimum change in parameters under the KL
divergence measure.
It is solved using Natural Gradient (see here for a nice explanation).
A lot of other details. See paper for details

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 64 / 89

https://arxiv.org/pdf/1502.05477.pdf
https://gebob19.github.io/natural-gradient/

Proximal Policy Optimization (Schulman et al 2017)

Proximal Policy Optimization (PPO) inspired in TRPO but simplifies computation.
New goal surrogate function is objective function clipped to limit changes around the
current solution:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât , clip (rt(θ), 1− ε, 1 + ε) Ât

)]
where

rt(θ) =
πθ (at | st)

πθold (at | st)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 65 / 89

https://arxiv.org/pdf/1707.06347.pdf

Proximal Policy Optimization (Schulman et al 2017)

How clipping works:

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 66 / 89

https://arxiv.org/pdf/1707.06347.pdf

Proximal Policy Optimization (Schulman et al 2017)

Simple algorithm:

N actors (in parallel) run in order to get data from old policy (from few hundred to a few
thousand samples). [Notice iid and amount of data collected]
Optimization is done for K (3-10) batches reusing data (notice that at each iteration r
changes!)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 67 / 89

https://arxiv.org/pdf/1707.06347.pdf

PPO conclusions

The clipped objective function prevent the policy from diverging or becoming unstable.
This allows PPO to learn from smaller amounts of data without overfitting or becoming
overly sensitive to noisy samples.
Still no use of Experience Replay, so not so sample efficient like value-based methods.
A lot of implementation details to be aware (Engstrom et al 2020) and The 32
Implementation Details of PPO
In recent versions some terms added in the Loss function (entropy and Bellman Error)
Some videos: Learning to walk in minutes from (Rudder et alt 22)
... Most popular on-policy method and famous nowadays because it has been used to
train ChatGPT !

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 68 / 89

http://arxiv.org/abs/2005.12729
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://leggedrobotics.github.io/legged_gym/
https://arxiv.org/abs/2109.11978

PPO conclusions

The clipped objective function prevent the policy from diverging or becoming unstable.
This allows PPO to learn from smaller amounts of data without overfitting or becoming
overly sensitive to noisy samples.
Still no use of Experience Replay, so not so sample efficient like value-based methods.
A lot of implementation details to be aware (Engstrom et al 2020) and The 32
Implementation Details of PPO
In recent versions some terms added in the Loss function (entropy and Bellman Error)
Some videos: Learning to walk in minutes from (Rudder et alt 22)
... Most popular on-policy method and famous nowadays because it has been used to
train ChatGPT !

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 68 / 89

http://arxiv.org/abs/2005.12729
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://leggedrobotics.github.io/legged_gym/
https://arxiv.org/abs/2109.11978

Off-policy AC methods

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 69 / 89

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

DDPG is an extension of Q-learning for continuous action spaces.
I Therefore, it is an off-policy algorithm (we can use ER!)

It is also an actor-critic algorithm (has networks Qφ and πθ.)
Uses Q and π target networks for stability.
Differently from other critic algorithms, policy is deterministic,
noise added for exploration: at = πθ(st) + ε (where ε ∼ N)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 70 / 89

https://arxiv.org/pdf/1509.02971.pdf

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

Qφ network is trained using standard loss function:

L(φ,D) = E
(s,a,r ,s′)∼D

(Qφ(s, a)−
(
r + γQφtarg(s ′, πθtarg(s ′))

))2


As action is deterministic and continuous (NN), we can easily follow the gradient in
policy network to increase future reward:

max
θ

E
s∼D

[Qφ(s, πθ(s))]→ ∇θ E
s∼D

[Qφ(s, πθ(s))] ≈
1
N

N∑
i=1
∇aQφ(s, a)∇θπθ(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 71 / 89

https://arxiv.org/pdf/1509.02971.pdf

DDPG: Deep Determ. PG (Lillicrap et al. 2016)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 72 / 89

https://arxiv.org/pdf/1509.02971.pdf

TD3: Twin Delayed DDPG (Fujimoto et al, 2018)

Similar to DDPG but with the following changes:
1 Pessimistic Double-Q Learning : It uses two (twin) Q networks and uses the "pessimistic" one

for current state for updating the networks

L(φi ,D) = E
(s,a,r ,s′)∼D

(
Qφi (s, a)− (r + γ min

i=1,2
Qφi,targ(s ′, a′(s ′))

)2

2 Clipped action regularization in loss: noise added like DDPG but noise bounded to fixed
range.

a′(s ′) = clip
(
πθtarg(s ′) + clip(ε,−c, c), aLow , aHigh

)
, ε ∼ N (0, σ)

3 Delayed Policy Updates: Updates of Critic are more frequent than of policy (fi. 2 or 3 times)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 73 / 89

https://arxiv.org/pdf/1802.09477.pdf

SAC: Soft Actor Critic (Haarnoja et al, 2018)

DDPG and TD3 are deterministic methods that add noise for exploration. In SAC,
policies are stochastic according to Soft-max:

π(a|s) = e
(

Q(s,a)
α

)
Z (s)

Solution to this criteria are Entropy-regularized policies: we will look for maximum
entropy policies with given data,

π∗ = argmax
π

E
τ∼π

[∞∑
t=0

γt
(

R(st+1) + αH (π(·|st))

)]
where α is trade-off between reward and entropy. Entropy of a policy is defined as:

H(π(·|s)) = E
a∼π(s)

[− log π(a|s)]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 74 / 89

https://arxiv.org/pdf/1801.01290.pdf

SAC: Soft Actor Critic (Haarnoja et al, 2018)

However, we cannot apply the soft-max operator in the continuous space! We need an
actor that tries to guess the maximum. So the goal is, given a Q-value function Q, find
the policy that:

Jπ(φ) = Est∼D

[
DKL

(
πφ (· | st)

∣∣∣∣∣∣∣∣ eQθ(st ,·)/α

Zθ (st)

)]
With some rearrangement (see here) applying the DKL definition, we have the loss for the
Actor.

Jπ(φ) = Est∼D
[
Eat∼πφ

[α log πφ (at | st)− Qθ (st , at)]
]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 75 / 89

https://arxiv.org/pdf/1801.01290.pdf
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/#sac

SAC: Soft Actor Critic (Haarnoja et al, 2018)

Let’s define value functions in this case:

Qπ(s, a) = E
τ∼π

[∞∑
t=0

γtR(st+1) + α

∞∑
t=1

γtH (π(·|st))

∣∣∣∣s0 = s, a0 = a
]

So Bellman equations can be written as:

Qπ(s, a) = E
s′∼P,a′∼π

[
R(s ′) + γ

(
Qπ(s ′, a′) + αH

(
π(·|s ′)

))]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 76 / 89

https://arxiv.org/pdf/1801.01290.pdf

SAC: Critic loss

Architecture: Networks and loss functions for actor and critic:

Q-value functions: Qθ1(s, a),Qθ2(s, a) (twin like TD3) with Q-target counterpart
I Let’s define the target (Bellman eq.) where a′ is sampled from the policy:

y(s, a, r , s ′) = r + γ
(
min
i=1,2

Qθ
′
i
(s ′, a′)− α log πφ(a′|s ′)

)
I Then Loss for the Q-value networks is:

L(θi ,D) = E
(s,a,r ,s′,d)∼D

(Qθi (s, a)− y(s, a, r , s ′)
)2


Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 77 / 89

SAC: Actor loss and Reparametrization trick

Policy πφ(a|s). Maximize:

E
a∼πφ

[Qπφ(s, a)− α log πφ(a|s)]

But problematic! because in gradient ∇φ, expectation follow stochastic πφ.
Authors use a reparametrizarion trick (see here or here). It can be done when we define
the stochastic πφ as Gaussian by adding noise to the action:

ãφ(s, ξ) = tanh (µφ(s) + σφ(s)� ξ) , ξ ∼ N (0, I)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 78 / 89

http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
https://gabrielhuang.gitbooks.io/machine-learning/content/reparametrization-trick.html

SAC: Reparametrization Trick and Tahn

Reparametrization trick solves the problem of applying the gradients:

Finally, tanh is to set a limit to the actions while having exact values for π (notice
problem with Normal distribution and boundaries)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 79 / 89

SAC: Reparametrization Trick and Tahn

Reparametrization trick solves the problem of applying the gradients:

Finally, tanh is to set a limit to the actions while having exact values for π (notice
problem with Normal distribution and boundaries)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 79 / 89

SAC: Some comments

Now we can rewrite the term as:

E
a∼πφ

[Qπφ(s, a)− α log πφ(a|s)] =

E
ξ∼N

[Qπφ(s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ)|s)]

Now we can optimize the policy according to

max
φ

E
s∼D,ξ∼N

[Qθ1(s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ)|s)]

and we can compute now the gradients:

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 80 / 89

SAC: Algorithm

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 81 / 89

SAC: Some final comments

Entropy enforces exploration (see why?), so no need to add noise to actions.
Usually α is fixed as a hyper-parameter or decreases during learning and is disabled to test
performance. Also some heuristic methods to automatically adjust it (Haarnoja et al,
2018)
State of the art during a lot of time
Very popular in robotics
Very robust in stochastic domains

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 82 / 89

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905

Latest methods in the family

TQC in (Kuznetsov, 2020) extends SAC to the Distributional approach to approximate
returns and, recently, (Farebrother et al., 2024) to Distributional losses
REDQ in (Chen 2021) extends SAC to an ensemble of Q-value networks and doing
several updates of the networks for each sample (high UTD ratio)from the
environment.
DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions and Batch
Normalization that simulate the role of the ensemble

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 83 / 89

https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2101.05982
https://openreview.net/forum?id=xCVJMsPv3RT

REDQ (Chen 2021)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 84 / 89

https://arxiv.org/abs/2101.05982

DroQ (Hiraoka 2022)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 85 / 89

https://openreview.net/forum?id=xCVJMsPv3RT

Latest methods in the family

TQC in (Kuznetsov, 2020) extends SAC to the Distributional approach to approximate
returns and, recently, (Farebrother et al. 2024) to Distributional losses
REDQ in (Chen 2021) extends SAC to an ensemble of Q-value networks and doing
several updates of the networks for each sample from the environment.
DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions

Not so popular neither widely used as SAC.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 86 / 89

https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2403.03950v1
https://arxiv.org/abs/2101.05982
https://openreview.net/forum?id=xCVJMsPv3RT

Latest findings (I)

(Nikishin et. al 2022) discover tendency to overfitting to earlier experiences. Proposes
to reset the critic network after some time and learn from the ER and current actor
regularly. Combines with high UTD and n-steps.
(Schwarzer et al. 2023) Proposed BBF that combines Deep Learning techniques (ResNet
architecture) with some tricks for efficient RL in Atari games.
(Bhatt et al. 2024) proposes Cross-Q that removes the target network by stabilizing
the learning with BatchNorm layers applied carefully.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 87 / 89

https://arxiv.org/abs/2205.07802
https://arxiv.org/abs/2305.19452
https://arxiv.org/abs/1902.05605

Latest findings (II)

(Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.
(Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.

Some promising techniques and results but not extensively tested and theory behind is
not clear.

We have found state of the art generic model-free algorithms for RL

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 88 / 89

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Latest findings (II)

(Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.
(Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.

Some promising techniques and results but not extensively tested and theory behind is
not clear.

We have found state of the art generic model-free algorithms for RL

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 88 / 89

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Latest findings (II)

(Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.
(Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.

Some promising techniques and results but not extensively tested and theory behind is
not clear.

We have found state of the art generic model-free algorithms for RL

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 88 / 89

https://arxiv.org/abs/2405.16158
https://arxiv.org/abs/2407.04811

Recommended resources

Nice review of Policy Gradient Algorithms in Lil’Log blog
Good description of algorithms in Spinning Up with implementation in Pytorch and
Tensorflow
Understable implementations of Actor Critic methods in RL-Adventure-2

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 89 / 89

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://spinningup.openai.com/en/latest/user/algorithms.html
https://github.com/higgsfield/RL-Adventure-2

	Policy optimization
	Gradient Free Policy Optimization
	Policy gradient
	Reduce variance using temporal structure: Reinforce and Actor-Critic architectures
	Reinforce

	Actor-Critic Architectures
	State of the art on-policy AC methods
	Off-policy AC methods
	DDPG
	TD3
	SAC
	Latest methods

