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Goal of this lecture

@ So far we approximated the value or action-value function using parameters 6 (e.g. neural
networks)

Vg ~ V7
Qo(s,a) = V7(s)

@ A policy was generated directly from the value function e.g. using e- greedy

@ In this lecture we will directly parameterize the policy in a stochastic setting
mg(als) = Py(als)

@ and do a direct Policy search

@ Again on model-free setting
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Three approaches to RL

Value Fungtion Palicy

Value based learning: Implicit policy

@ Learn value function Qy(s, a) and from there infer policy
7(s) = argmax, Q(s, a)
Policy based learning: No value function

@ Explicitly learn policy mg(als) that implicitly maximize reward over all
policies

Actor-Critic learning: Learn both Value Function and Policy
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Advantges of Policy over Value approach

@ Advantages:

» In some cases, computing Q-values is harder than picking optimal actions
Better convergence properties

Effective in high dimensional or continuous action spaces
Exploration can be directly controlled

Can learn stochastic policies

v vy VvYy

@ Disadvantages:

» Typically converge to a local optimum rather than a global optimum
» Evaluating a policy is typically data inefficient and high variance
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@ In general, two kinds of policies:
» Deterministic policy
a=mp(s)
» Stochastic policy
P(als) = mo(als)
@ Nice thing is that they are smoother than greedy policies, and so, we can compute
gradients!






Policy Objective Functions

@ Goal: given policy mg(als) with parameters 6, find best 0
@ ... but how do we measure the quality of a policy my?

@ In episodic environments we can use the starting states value

Jstart(8) = () Exry [R7(5)]

seS

@ where p(s) is probability of starting from state s in a reset of the environment.

@ We can use other definitions, but it not not important now, we have a target function to
maximize.
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Policy optimization

@ Goal: given policy my(als) with parameters 6, find best 6
@ Policy based reinforcement learning is an optimization problem
e Find policy parameters 6 that maximize J(6)

@ Two approaches for solving the optimization problem

» Gradient-free
» Policy-gradient
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Gradient Free Policy Optimization

Goal: given parametrized method (with parameters ) to approximate policy my(al|s), find
best values for 6

Policy based reinforcement learning is an optimization problem

Find policy parameters 6 that maximize J(0)

Some approaches do not use gradient

v

Hill climbing

Simplex / amoeba / Nelder Mead
Genetic algorithms

Cross-Entropy method (CEM)
Covariance Matrix Adaptation (CMA)

vV vyVvYyy
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Hill Climbing

@ A popular implementation consist is approximating the policy using a Neural Network
where weights have a value and a standard deviation. It is initialized randomly with large
standard deviation.

@ Repeat until convergence:

© A population of N neural networks are a created from the policy by sampling the weights
from the stochastic neural network

@ Each of the N networks is evaluated and a elite of best M members is selected.

© Weights of the stochastic neural network are recomputed from statistics from the Elite

@ Simple to implement and effective

@ Try (search) and move weights towards better direction
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Cross-Entropy Method (CEM)

@ A simplified version of Evolutionary algorithm
@ Works embarrassingly well in some problems, f.i.

» Playing Tetris (Szita et al., 2006), (Gabillon et al., 2013)
» A variant of CEM called Covariance Matrix Adaptation has become standard in graphics
(Wampler et al., 2009)

@ Very simple idea:
© From current policy, sample N trials (large)
© Take the M trials with larger long-term return (we call the elite)
© Fit new policy to behave as in M best sessions
© Repeat until satisfied

@ Policy improves gradually
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Tabular Cross-Entropy

Tabular Cross-Entropy Algorithm

Given M (f.i, 20), N (f.i. 200)
Initialize matrix policy m(a|s) = As , randomly
repeat
Sample N roll-outs of the policy and collect for each R;

elite = M best samples
_[times in M samples took a in s] 4 A

als) =
m(als) [times in M samples was at s] + A|A|
until convergence

return

Notice! No value functions!
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Some possible problems and solutions:
@ If you were in an state only once, you only took one action and probabilities become 0/1

@ Solution: Introduction of A, a parameter to smooth probabilities



Tabular Cross-Entropy

Some possible problems and solutions:
@ If you were in an state only once, you only took one action and probabilities become 0/1

@ Solution: Introduction of A, a parameter to smooth probabilities

@ Due to randomness, algorithm will prefer lucky sessions (training on lucky sessions is no
good)

@ Solution: run several simulations with these state-action pairs and average the results.
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Approximated Cross-Entropy Method (CEM)

Approximated Cross-Entropy Method

Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN) depending on 6
Initialize 6 randomly
repeat

Sample N roll-outs of the policy and collect for each R;

elite = M best samples

0=0+aV Zs,aeeh’te |og 7T9(a|5)
until convergence
return
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Approximated Cross-Entropy Method (CEM)

@ No Value function involved

@ Notice that best policy is:

arg max log mp(a|s) = arg max mo(als)
max 3 max [

s,acelite s,acelite
so gradient goes in that direction

@ Intuitively, is the policy that maximizes similarity with behavior of successful samples
[Notice this is Cross-Entropy loss of output of NN and actions of the elite.]

@ | promised no gradient, but notice that gradient is for the approximation, not for the
rewards of the policy
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Approximated Cross-Entropy Method (CEM)

@ It shows problems with sparse rewards:
» It does not consider temporal structure in the episode, only cares for final reward.
» That makes difficult between bad or good trajectories when both achieve the final goal.
Solve this using discount parameter ~.
» When trajectories are large and reward sparse, it is difficult to distinguish between good or
bad trajectories only looking at final reward.

@ Works very well in some cases but it works better when:

» Training episodes have to be, preferably, short

» The total reward for the episodes should allow to separate good episodes from bad ones
(problem with sparse rewards): use v and/or penalties

» Keep elite episodes for several training loops when good trajectories are hard to be found
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Gradient-Free methods

@ Often a great simple baseline to try
@ Benefits

» Can work with any policy parameterizations, including non-differentiable
» Frequently very easy to parallelize (faster wall-clock training time)

@ Limitations
» Typically not very sample efficient because it ignores temporal structure
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Policy gradient methods

@ Policy based reinforcement learning is an optimization problem
@ Find policy parameters ¢ that maximize V7

@ We have seen gradient-free methods, but greater efficiency often possible using gradient
in the optimization
@ Pletora of methods:

» Gradient descent
» Conjugate gradient
» Quasi-newton

@ We focus on gradient ascent, many extensions possible

@ And on methods that exploit sequential structure
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Policy gradient differences wrt Value methods
@ With Value functions we use Greedy updates:
0 = argmaxE, [Q"(s, a)]
0

small change large change small change large change

e V™ T v T v

@ Potentially unstable learning process with large policy jumps because arg max is not
differentiable

@ On the other hand, Policy Gradient updates are:

aJ(6)
90

O =0+«
@ Stable learning process with smooth policy improvement
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Policy gradient method

@ Define J(0) = J™ to make explicit the dependence of the evaluation policy on the policy
parameters

@ Assume episodic MDPs

@ Policy gradient algorithms search for a local maximum in J(6) by ascending the
gradient of the policy, w.r.t parameters 6

V0 = aVyJ(0)

@ Where VyJ(0) is the policy gradient and « is a step-size parameter
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@ We now compute the policy gradient analytically

@ Assume policy is differentiable whenever it is non-zero



Computing the gradient analytically

We now compute the policy gradient analytically
Assume policy is differentiable whenever it is non-zero
and that we know the gradient Vymy(als)

Denote a state-action trajectory (or trial) 7 as

T = (S0, a0, 11,51, 31,2, ...5T—1,aT7-1, [T, ST)

Define long-term-reward to be the sum of rewards for the trajectory (R(7))

R(r) = r(s)

t=1

@ |t works also for discounted returns.
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Computing the gradient analytically

@ The value of the policy J(0) is:
J(0) = Ex, [R(D] = ) _ P(7|0)R(7)

where P(7|6) denotes the probability of trajectory 7 when following policy 7y
@ Notice that sum is for all possible trajectories

@ In this new notation, our goal is to find the policy parameters theta) that:

argmax J(0) = arg maxz P(T]|0)R(T)
0 0 -
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[Log-trick: a convenient equality]

@ In general, assume we want to compute V log f(x) :

Viegf(x) = f(lx)Vf(x)

f(x)Vlogf(x) = Vf(x)

@ It can be applied to any function and we can use the equality in any direction

@ The term sz((x)) is called likelihood ratio and is used to analytically compute the gradients

@ Btw. Notice the caveat... Assume policy is differentiable whenever it is non-zero.
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Computing the gradient analytically

@ In this new notation, our goal is to find the policy parameters 6 that:

argmax J(0) = arg maxz P(T|0)R(T)
0 0 =

@ So, taken the gradient wrt 6
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Computing the gradient analytically

@ Goal is to find the policy parameters 6 that:

argmax J(0) = arg maxz P(T|0)R(T)
0 0 -

@ So, taken the gradient wrt 6

VoJ(0) =Y P(7]0)R(7) Vg log P(7|0)

@ Of course we cannot compute all trajectories...
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Computing the gradient analytically

@ Goal is to find the policy parameters 6 that:

argmax J(0) = arg maxz P(T|0)R(T)
0 0 -

@ So, taken the gradient wrt 6

VoJ(0) =Y P(7]0)R(7) Vg log P(7|0)

@ Of course we cannot compute all trajectories...but we can sample m trajectories because
of the form of the equation

m

VoJ(6) ~ (1/m) ) R(7:)Vg log P(7il6)
i=1
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Computing the gradient analytically: at last!

@ Sample m trajectories:

VoJ(0) ~ (1/m) > R(7:)Vglog P(ri|6)
i=1

@ However, we still have a problem, we don’t know the how to compute Vg log P(7|0)
@ Fortunately, we can derive it from the stochastic policy

V@ |Og P(T‘@) = Vg |Og

T-1
1(s0) H mo(ai|si) P(si+1]si, 3/)]
i=0

T-1
= Vg |log u(so) + Z log mg(ailsi) + log P(sit1lsi, ai)]
i=0
T-1
= ) Vylogmy(ails:)
- —_—————
i=0

No dynamics model required!
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Computing the gradient analytically

@ We assumed at the beginning that policy is differentiable and that we now the derivative
wrt parameters 6

@ So, we have the desired solution:

m

Vod(0) ~ (1/m)> " | R(m) > Vglogma(ajls))

i=1 (s,31)€i
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Differentiable policies? Deep Neural Network

@ A very popular way to approximate the policy is to use a Deep NN with soft-max last
layer with so many neurons as actions.

@ In this case, use autodiff of the neural network package you use! In pytorch:
loss = - torch.mean(log_outputs * R)

where prob_outputs is the output layer of the DNN and R the long term reward.

@ Backpropagation is implemented in pytorch and will do the work for you!
@ Common approaches for stochastic policies:

» Last softmax layer in discrete case
» Last layer with i and log o in continuous case
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Continuous action space

S |1
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Continuous action space
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Continuous action space

=
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Continuous action space

Qi

Define diagonal
multivariate
Gaussian
probability
distribution

Yes!!!l Continuous actions! Big improvement in applicability of RL!
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Vanilla Policy Gradient

Vanilla Policy Gradient

Given architecture with parameters 6 to implement 7y
Initialize 8 randomly
repeat
Generate episode {s1,a1,r,...ST_1,aT-1,IT,ST} ~ Tp
Get R < long-term return for episode
for all time steps t =1to T — 1 do
0 < 0+ aVglogmp(at|st)R
end for
until convergence

Btw, notice no explicit exploration mechanism needed when policies are stochastic!
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@ Remember:

m T-1
Vod(0) = (1/m)> " R(7:) Y Vglogmo(ailsi)
i=1 i=0

@ Unbiased but very noisy
@ Fixes that can make it practical

» Temporal structure
» Baseline






REINFORCE algorithm

@ An deeper analysis shows we can consider rewards-to-go for states instead of rewards of

whole trajectory. See proof from Dont Let the Past Distract You.

REINFORCE algorithm

Given architecture with parameters 6 to implement 7y
Initialize 8 randomly
repeat
Generate episode {s1,a1,r,...ST_1,aT-1,IT,ST} ~ Tp
for all time stepst =1to T — 1 do
Get R; < long-term return from step t to T
0 < 0 + aVglog mg(at|st) Ry
end for
until convergence
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REINFORCE algorithm with baseline

@ Monte-Carlo policy gradient still has high variance because R; has a lot of variance

@ We can reduce variance subtracting a baseline to the estimator
0«0 + aVa IOg Wg(atlst)(Rt — b(St))

@ without introducing any bias when baseline does not depend on actions taken

@ A good baseline is b(s;) = V™ (s;) so we will use that
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REINFORCE algorithm with baseline

Monte-Carlo policy gradient still has high variance because R; has a lot of variance

We can reduce variance subtracting a baseline to the estimator

0«0 + aVa IOg Wg(atlst)(Rt — b(St))

without introducing any bias when baseline does not depend on actions taken

A good baseline is b(s;) = V™ (s;) so we will use that

How to estimate V797?

o We’'ll use another set of parameters w to approximate
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REINFORCE algorithm with baseline

REINFORCE algorithm with baseline |

Given architecture with parameters 6 to implement 7y and parameters w to approximate V
Initialize 8, w randomly
repeat
Generate episode {s1,a1,r,...ST-1,aT-1,IT,ST} ~ Tp
for all time stepst =1to T — 1 do
Get R; < long-term return from step t to T

d < Re — Vi (st) {Return minus baseline}

W w+ 50 VyViy(st) {Learn V from return using MSE}

0 < 0+ «ad Vylogmg(at|s:) {Standard log-pi rule with Return minus baseline}
end for

until convergence
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Actor-Critic Architectures

@ Monte-Carlo policy gradient has high variance

@ So we used a baseline to reduce the variance Ry — V/(s¢)

@ Read previous formula as "long reward obtained in current episode from s; wrt expected
following the policy"

@ This is called also Advantage of current trajectory over the policy. Notice action taken is
sampled from the policy and be different to the average action by the policy. Advantage
tells you if it was better or not!
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Actor-Critic Architectures

@ Monte-Carlo policy gradient has high variance
@ So we used a baseline to reduce the variance Ry — V/(s¢)

@ Read previous formula as "long reward obtained in current episode from s; wrt expected
following the policy"

@ This is called also Advantage of current trajectory over the policy. Notice action taken is
sampled from the policy and be different to the average action by the policy. Advantage
tells you if it was better or not!

o if Advantage is positive, gradients go on one direction, if negative, go in the opposite
direction!
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Actor-Critic Architectures

@ The Critic, evaluates the current policy and the result is used in the policy training

@ The Actor implements the policy and is trained using Policy Gradient with estimations
from the critic

state — Valu_e
Function

/

action

reward

—i Environment ‘——‘
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Actor-Critic Architectures

@ Actor-critic algorithms maintain two sets of parameters (like in REINFORCE with
baseline):
Critic parameters: approximation parameters w for action-value function under
current policy
Actor parameters: policy parameters 6

@ Actor-critic algorithms follow an approximate policy gradient:
Critic: Updates action-value function parameters w like in policy evaluation
updates (you can apply everything we saw in FA for prediction)
Actor: Updates policy gradient 0, in direction suggested by critic :
0 « 0+ aVylog mg(at|st) Ry
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@ The policy gradient has many equivalent forms

Vod(0) = Er, [Volog mp(als)Re] REINFORCE (MonteCarlo)
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@ The policy gradient has many equivalent forms

Vod(0) = Er, [Volog mp(als)Re] REINFORCE (MonteCarlo)
=E,, [Volog mp(als) Qu(s, a)] Actor-Critic (temporal differences)
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Choices

@ The policy gradient has many equivalent forms

VoJ(0) = Ex, [Vologme(als) Ry REINFORCE (MonteCarlo)
=Er, [Vglog 7T9(3|S)QW( )] Actor-Critic (temporal differences)
=Er, [Vologmy(als)(R: — Vw(s))]] Reinforce with baseline
=E,, [Vglog 7T9(3|S)(Q9( a) — Vu(s))] Advantage Actor-Critic
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Choices

@ The policy gradient has many equivalent forms

VoJ(0) = Ex, [Vologme(als) Ry REINFORCE (MonteCarlo)
=Er, [Vglog 7T9(3|S)QW( )] Actor-Critic (temporal differences)
=Er, [Vologmy(als)(R: — Vw(s))]] Reinforce with baseline
=E,, [Volog ms(als)(Qe ( a) — Vu(s))] Advantage Actor-Critic
=Er, [Vologmg(als)Acat] Generalized Advantage Actor Critic

@ Each leads to a different stochastic gradient ascent algorithm

e Critic uses policy evaluation (e.g. MC or TD learning) to estimate Q" (s, a) or V™ (s)
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Advantage Actor Critic (AAC or A2C)

@ In this critic Advantage value function is used:
A" (s,a) = Q™ (s,a) — V™(s)

@ The advantage function can significantly reduce variance of policy gradient

@ So the critic should really estimate the advantage function, for instance, estimating both
V(s) and Q using two function approximators and two parameter vectors:

VTe(s) =~ V,(s) (1)
Q™(s,a) ~ Qu(s,a) (2)
A(s,a) = Qu(s,a)— Vi(s) (3)

@ And updating both value functions by e.g. TD learning

@ Nice thing, you only punish policy when not optimal (why?) Do you see resemblance with
REINFORCE with baseline?
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Other versions of A2C

@ One way to implement A2C method without two different networks to estimate Qy (s, a)
and V,(s) is to use estimators of Q, (s, a).

@ For instance, TD Advantage estimator:

AT (s, a) Q™ (s,a) — V™ (s)

Er, [r+V™(s)]s,a] — V™(s)

@ or MonteCarlo Advantage estimator:

A (s,a) = Q™(s,a)— V™(s)
= Eg, [R]s,a] — V™(s)

@ In practice these approaches only require one set of critic parameters v to approximate
TD error
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Generalized Advantage Estimator (GAE)

@ Generalized Advantage Estimator (Schulman et al. 2016). [nice review]

@ Use a version of Advantage that consider weighted average of n-steps estimators of
advantage like in TD(\):

GAE = Z()\V)t/ft [rer1 + VG (ser41) — Vi (s)]
t'=t M

t'-step advantage

@ Used in continuous setting for locomotion tasks
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https://danieltakeshi.github.io/2017/04/02/notes-on-the-generalized-advantage-estimation-paper/
https://sites.google.com/site/gaepapersupp/

Asyncrhonous Advantage Actor Critic (A3C)

@ A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of
the same agent

» use N copies of the agents (workers) working in parallel collecting samples and computing
gradients for policy and value function

» After some time, pass gradients to a main network that updates actor and critic using the
gradients of all

» After some time the worker copy the weights of the global network

@ This parallelism decorrelates the agents data, so no Experience Replay Buffer needed

@ Even one can explicitly use different exploration policies in each actor-learner to maximize
diversity

@ Asynchronism can be extended to other update mechanisms (Sarsa, Q-learning...) but it
works better in Advantage Actor critic setting
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Asyncrhonous Advantage Actor Critic (A3C)

@ What about exploration in Policy Gradient methods?

@ Policy is stochastic, so naturally it explores

o But degree of exploration usually converges too fast

@ Usually, in the loss function, a term is added that encourages exploration
°

This is done computing the Entropy of the policy:

H(m(-|s))=—) m(als)logm(alst)

acA
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@ Notice that all these algorithms are on-policy!



All these algorithms are on-policy!

@ Notice that all these algorithms are on-policy!
@ They implement some informed kind of Hill Climbing

@ Data cannot be reused like in off-policy methods because we need the log-prob gradients
that generated the action. When policy changes, probs of generating data change

@ Notice we don't use Experience Replay

@ More sensible to local minima than off-policy methods
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Problems with Policy Gradient Directions

@ Goal: Each step of policy gradient yields an updated policy ' whose value is greater than
or equal to the prior policy =: VT > ym
o Several inefficiencies:

» Gradient ascent approaches update the weights a small step in direction of gradient
» Gradient is First order / linear approximation of the value function’s dependence on the
policy parameterization instead of actual policy?

A policy can often be reparameterized without changing action probabilities (f.i., increasing score of all
actions in a softmax policy). Vanilla gradient is sensitive to these reparameterizations.
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About step size

@ Step size is important in any problem involving finding the optima of a function
@ Supervised learning: Step too far — next updates will fix it
@ But in Reinforcement learning
» Step too far — bad policy
Next batch: collected under bad policy
Policy is determining data collect! Essentially controlling exploration and exploitation

trade o due to particular policy parameters and the stochasticity of the policy
May not be able to recover from a bad choice, collapse in performance!

v

v

v
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About

step size

@ Step size is important in any problem involving finding the optima of a function

@ Supervised learning: Step too far — next updates will fix it

e But
>
>
»

in Reinforcement learning

Step too far — bad policy

Next batch: collected under bad policy

Policy is determining data collect! Essentially controlling exploration and exploitation
trade o due to particular policy parameters and the stochasticity of the policy

May not be able to recover from a bad choice, collapse in performance!

Small learning rates do not solve the problem because small changes in weights can change a
lot the policy (distances in weight spaces not necessarily mean small distances in policies)
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Problems with Policy gradient methods

@ Step size and Policy gradient directions
o Data inefficiency:

v

We don’t have data replay because action should be the one selected by the current policy
And policy changes after learning

(notice the difference with off-policy learning)

We cannot reuse data which lead to policy inefficiency

v vyy

@ We don't have anymore the experience Replay. Can we reuse data?

@ Yes! Let's go back to Importance Sampling
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[Importance Sampling (IS) technique]

@ Estimate the expectation of a different distribution w.r.t. the distribution used to draw
samples

Exp [f()] = Y p(x)f(x)

q(x)
N l u p(x*) o
T T4 atxn) )

where data is sampled using q distribution. That means, we can estimate E,, [f(x)]
using distribution q instead of p
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o Caution:

» Cannot use if g is zero where p is nonzero
» Importance sampling can dramatically increase variance (choose g wisely, as close to p as
possible)



@ Let’s use old policy to collect data
VI(6) = Esaym, [V 080 (a0 | 56) A(se, )]

MV log mg (ar | st) A(st, at)]

=E
(St’at)Nﬂ—eo’d TG o1q (5t7 at)
Ol



Problems with Policy gradient methods

@ Let’s use old policy to collect data

VI(O) = E(s,,a0)~mg [V 10g Tg (3t | 5¢) A(St, at)]

7o (St, a)

Vlogmg (a: | st) A(st, a
7T9o/d(5t7af) By (3c | se) Alse t)}

= E(Snat)“”reo,d [

@ Surrogate function to optimize:

_ o (Sh at)
J(e) = E(st,at)wmgo/d [WA (Sf7 at):|
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@ Cool. We can use now old datal



Problems with Policy gradient methods

Cool. We can use now old datal

However, we have a problem with Importance Sampling.

The expectations are them same, but we are using sampling method to estimate them
and variance is different.

That means that we may need to sample more data, if ratio is far away from 1 (old policy
is far from current policy)
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TRPO (Schulman et al 2017)

@ Trust Region Policy Optimization (TRPO) maximize parameters that change the policy
increasing advantage in action over wrt. old policy in proximal spaces to avoid too large
step size.

[ i mo(aelse) %
maximize E; | =222 A(s, a
6 S KW CAEY (56, 2¢)

subject to &, (KL [mg,, (-] st),mo (| se)]] <0

@ Under penalizing constraint (using KL divergence of 6 and 6,/4) that ensures
improvement of the policy in the proximity (small step size)
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https://arxiv.org/pdf/1502.05477.pdf

[ KullbackLeibler divergence (KL Divergence) |

@ Used to compute differences between distributions

Di(PQ) = [ plx)log (’”(X)> dx
q(x)
@ Examples:
KL(PI|Q) = 500.000 KL(P||Q) = 1099 402
0.200 0.200
0175 0175
0.150 0.150
0125 0125
0.100 0.100
0.075 0.075
0.050 0.050
0.025 0.025
0.000 0.000
-100 -75 -50 -25 0.0 25 5.0 75 100 -100 -75 -50 -25 0.0 25 5.0 75 100
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TRPO (Schulman et al 2017)

@ In policies Dg; :

mi(a]s)

DKL 7T1H7T2 [S] Zﬂ'l a|s Iog ( | )

acA
e So:

Sni @ mo(at|st)
maX|9m|ze ]Et [m/\(st, at):|

subject to [ [KL [mg,, (-] st),mo (- | 5:)]] <6

@ Equivalent to improve the maximum with minimum change in parameters under the KL
divergence measure.

@ It is solved using Natural Gradient (see here for a nice explanation).
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TRPO (Schulman et al 2017)

@ In policies Dg; :
Dyt (m||m2) [s] = Y mi(a]s)log E : ;
aceA
e So: (ol
. T To(at|s A

maximize E, [7@:; (;tltSt)A(st, at)}

subject to  E;[KL[mg,, (-] st),m (| s)]] <0
@ Equivalent to improve the maximum with minimum change in parameters under the KL

divergence measure.

@ It is solved using Natural Gradient (see here for a nice explanation).

@ A lot of other details. See paper for details
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Proximal Policy Optimization (Schulman et al 2017)

@ Proximal Policy Optimization (PPO) inspired in TRPO but simplifies computation.
@ New goal surrogate function is objective function clipped to limit changes around the
current solution:

LLP(9) = R, [min (rt(e)Z\t, clip(re(6),1— &, 1 +¢) Z\t)}
where

o (at | St)

()= o1 (at | st)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 65 /89


https://arxiv.org/pdf/1707.06347.pdf

A<0

1—e1

i—l—e

@ How clipping works:
0



https://arxiv.org/pdf/1707.06347.pdf

Proximal Policy Optimization (Schulman et al 2017)

@ Simple algorithm:

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,... do
for actor=1,2,..., N do
Run policy 7wy ,, in environment for 7" timesteps

old

Compute advantage cstimates ;11, LA
end for
Optimize surrogate L wrt 6, with K epochs and minibatch size M < NT
guld — 0
end for

@ N actors (in parallel) run in order to get data from old policy (from few hundred to a few
thousand samples). [ Notice iid and amount of data collected |

@ Optimization is done for K (3-10) batches reusing data (notice that at each iteration r
changes!)
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PPO conclusions

The clipped objective function prevent the policy from diverging or becoming unstable.
This allows PPO to learn from smaller amounts of data without overfitting or becoming
overly sensitive to noisy samples.

Still no use of Experience Replay, so not so sample efficient like value-based methods.

A lot of implementation details to be aware (Engstrom et al 2020) and The 32
Implementation Details of PPO

In recent versions some terms added in the Loss function (entropy and Bellman Error)

Some videos: Learning to walk in minutes from (Rudder et alt 22)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 68 /89


http://arxiv.org/abs/2005.12729
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://costa.sh/blog-the-32-implementation-details-of-ppo.html
https://leggedrobotics.github.io/legged_gym/
https://arxiv.org/abs/2109.11978

PPO conclusions

@ The clipped objective function prevent the policy from diverging or becoming unstable.
This allows PPO to learn from smaller amounts of data without overfitting or becoming
overly sensitive to noisy samples.

o Still no use of Experience Replay, so not so sample efficient like value-based methods.

@ A lot of implementation details to be aware (Engstrom et al 2020) and The 32
Implementation Details of PPO

@ In recent versions some terms added in the Loss function (entropy and Bellman Error)
@ Some videos: Learning to walk in minutes from (Rudder et alt 22)

@ ... Most popular on-policy method and famous nowadays because it has been used to
train ChatGPT!
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)

DDPG is an extension of Q-learning for continuous action spaces.
» Therefore, it is an off-policy algorithm (we can use ER!)

It is also an actor-critic algorithm (has networks Q4 and 7g.)

°
@ Uses @ and 7 target networks for stability.

@ Differently from other critic algorithms, policy is deterministic,
°

noise added for exploration: a; = my(s;) + € (where € ~ N)
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)

@ @y network is trained using standard loss function:

(s,a,r,s’)~D

L(¢,D)= E <Q¢>(5, 2) = (1 + 7 Qouarg (', M0 (57))) >

@ As action is deterministic and continuous (NN), we can easily follow the gradient in
policy network to increase future reward:

1 N
max E [Qs(s, mo(s)] = Vo _E [Qs(s,m(s))] = 1 ; VaQy (s, a)Vom(s)
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q (s, a|0?) and actor j(s|0*) with weights 0% and 6.
Initialize target network ' and ¢/ with weights 02" < 02, 94 « g»
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s
fort=1,Tdo
Select action a; = u(s,]6") + N, according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s, |
Store transition (8;, @, 7, $¢41) in R
Sample a random minibatch of N transitions (s;, a;, i, si+1) from R
Sety; = i +7Q (ss41, 1/ (s41]6")]6)
Update critic by minimizing the loss: L = & =, (y; — Q(s;, a;]09))?
Update the actor policy using the sampled policy gradient:

1
Voud & 5 3 VaQ(s,l0?) ss, (e Vors(s10”) s,

Update the target networks:
69 769 4 (1 - 7)69
O 70"+ (1 —7)0"

end for
end for
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TD3: Twin Delayed DDPG (Fujimoto et al, 2018)

@ Similar to DDPG but with the following changes:

© Pessimistic Double-Q Learning: It uses two (twin) Q networks and uses the "pessimistic" one
for current state for updating the networks

2
(énD) = E D(o@(s,a)—(r+v,.rgp2o¢,.ta,g(sca’(s’))>

(s,a,r,s")~

@ Clipped action regularization in loss: noise added like DDPG but noise bounded to fixed
range.
a'(s") = clip (mo,,,(s") + clip(e, —¢, €), aLow, arigh) , € ~N(0,0)

© Delayed Policy Updates: Updates of Critic are more frequent than of policy (fi. 2 or 3 times)
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SAC: Soft Actor Critic (Haarnoja et al, 2018)

o DDPG and TD3 are deterministic methods that add noise for exploration. In SAC,
policies are stochastic according to Soft-max:
Q(s,a)
o(%57)

m(als) = ﬂ

@ Solution to this criteria are Entropy-regularized policies: we will look for maximum
entropy policies with given data,

i’yt<"?(5t+1) + o (w(-\st)))]

7" =argmax E
T T~
t=0

where « is trade-off between reward and entropy. Entropy of a policy is defined as:

H(n([s)) = E [-logm(als)]

arr(s)
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SAC: Soft Actor Critic (Haarnoja et al, 2018)

@ However, we cannot apply the soft-max operator in the continuous space! We need an
actor that tries to guess the maximum. So the goal is, given a Q-value function Q, find

the policy that:
eQo(st))/a
29 (St)

@ With some rearrangement (see here) applying the Dk, definition, we have the loss for the
Actor.

JW((Z)) = EStND

Dxr, (7% (- I'st)

Jr(¢) = Esnp [an% [a log T (at | st) — Qo (st 3t)H
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@ Let's define value functions in this case:

Q(s.a) = E

> Y R(se1) +a > M (n( [se)) ‘50 — 5,3 = ]
t=0 t=1

@ So Bellman equations can be written as:

Q"(s,a) = E  [R()+~(Q7(s,a) + aH (n(-]s)))]

s'~P.,a' ~7


https://arxiv.org/pdf/1801.01290.pdf

SAC: Critic loss

Architecture: Networks and loss functions for actor and critic:

@ Q-value functions: Qg (s, a), Qs,(s, a) (twin like TD3) with Q-target counterpart
» Let's define the target (Bellman eq.) where a’ is sampled from the policy:

y(s.a.r.s') = r+( min Qp (s, #) — a logmy(d]s"))
i=1, i

» Then Loss for the Q-value networks is:

L(@;,'D) = E <QG,-(5a a) _y(S’ a, r,s’))

(s,a,r,s’,d)~D
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SAC: Actor loss and Reparametrization trick

@ Policy my(als). Maximize:

E [Q™(s,a) — alogmys(als)]

anTg

@ But problematic! because in gradient V, expectation follow stochastic 7.

@ Authors use a reparametrizarion trick (see here or here). It can be done when we define
the stochastic 74 as Gaussian by adding noise to the action:

3g(s,€) = tanh (pg(s) +o(s) ©€), €~ N(0,1)
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@ Reparametrization trick solves the problem of applying the gradients:

decoder model decoder model

‘ Deterministic node I

. Random node ° ~Q(Z|x)

r YR
60 So0-

encoder model encoder model

z=u+oQs¢

reparameterization
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SAC: Reparametrization Trick and Tahn

@ Reparametrization trick solves the problem of applying the gradients:

decoder model decoder model

’ Deterministic node I
~q(z]x) z=p+0Qc¢
Random node

e TN\

60 600
I I

encoder model encoder model

@ Finally, tanh is to set a limit to the actions while having exact values for 7 (notice
problem with Normal distribution and boundaries)
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SAC: Some comments

@ Now we can rewrite the term as:

E [Q™(s,a) — alogmy(als)] =

anvmg,

(L [Q7(5,36(s, ) — arlog (3o (s, €)ls)]
@ Now we can optimize the policy according to

max B [Qu(s,35(s,€)) — alogmy(3s(s,€)ls)]

and we can compute now the gradients:
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Algorithm 1 Soft Actor-Critic

1: Input: initial policy parameters 6, Q-function parameters ¢;, ¢, empty replay buffer D
2: Set target parameters equal to main parameters Grarg1 = 91, Grarg2 < 02

3: repeat
4:  Observe state s and select action a ~ 7g(:|s)
5:  Execute a in the environment
6:  Observe next state s, reward r, and done signal d to indicate whether s’ is terminal
7. Store (s,a,r, s, d) in replay buffer D
8 If s is terminal, reset environment state.
9:  if it’s time to update then
10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D
12: Compute targets for the Q functions:
) =+ 201 = ) (10 Qo (5 — alogm(@l9)) . &~ )
i=l;
13: Update Q-functions by one step of gradient descent using
Veg X @uso-ynsdf  eris12
(s.ars’d)eB
14: Update policy by one step of gradient ascent using
Vor: 3 (min @a,(s,80(5)) ~ alogma (a(s)]) ),
1B| seB =2
where @g(s) is a sample from my(-|s) which is differentiable wrt 6 via the
reparametrization trick.
15: Update target networks with
Drargi < Phrargi + (1= p)di fori=1,2
16: end for
17:  end if



SAC: Some final comments

Entropy enforces exploration (see why?), so no need to add noise to actions.

Usually « is fixed as a hyper-parameter or decreases during learning and is disabled to test
performance. Also some heuristic methods to automatically adjust it (Haarnoja et al,
2018)

State of the art during a lot of time

Very popular in robotics

Very robust in stochastic domains
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Latest methods in the family

@ TQC in (Kuznetsov, 2020) extends SAC to the Distributional approach to approximate
returns and, recently, (Farebrother et al., 2024) to Distributional losses

@ REDQ in (Chen 2021) extends SAC to an ensemble of Q-value networks and doing
several updates of the networks for each sample (high UTD ratio)from the
environment.

@ DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions and Batch
Normalization that simulate the role of the ensemble
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REDQ (Chen 2021)

» REDQ (Chen, 2021) is a sample-efficient RL method equipped with
high update-to-data (UTD) ratio and randomized ensemble.

» High UTD ratio: number of Q updates (—) per environment
interaction () is high (e.g., 20 updates per interaction).
» Randomized ensemble: a randomly selected subset ( “A3* ) of

ensemble (E) is used at the target ( Min |) in the Q update (—).
s a

reward r, state s REDQ agent

-
I ) -
-
\
Ensemble .

Environment

L

action a

Weight
¥

Update Q-functions in ensemble ([[T_1] ) to precisely predict:
r + min(Q;(s, a), Q;(s, a)) RGP
1 J
—_—

Min
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Mario Martin (Mario Martin - CS-UPC)

DroQ (Hiraoka 2022)

» DroQ is a REDQ variant using a small ensemble of dropout Q-functions (W )

in which dropout (-) and layer normalization (l_lLa; erNorm |L.are used
s a

DroQ agent

-
Ensemble
tnsemble,

4&‘) :@’;‘

1
71 Weight | Weight |
3 3
Dropout Dropout
LayerNorm LayerNorm
| ReLU | _Retu |

~ Q. Why is dropout ( ) needed ?

A. To inject Q-function uncertainty (33) to the target ((Min]), similarly to REDQ.

REDQ agent

DroQ agent

-

d’ o
3 Weight

—] Ensemble I
—>]

Ensemble .
>

N, .

N\,
N\,

» Q. Why is layer normalization ( ) needed ?

S

A. To suppress (‘) the learning instability caused by dropout.

Reinforcement Learning

‘\
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Latest methods in the family

@ TQC in (Kuznetsov, 2020) extends SAC to the Distributional approach to approximate
returns and, recently, (Farebrother et al. 2024) to Distributional losses

@ REDQ in (Chen 2021) extends SAC to an ensemble of Q-value networks and doing
several updates of the networks for each sample from the environment.

@ DroQ in (Hiraoka 2022) modifies REDQ to have dropout Q-functions

@ Not so popular neither widely used as SAC.
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Latest findings (1)

@ (Nikishin et. al 2022) discover tendency to overfitting to earlier experiences. Proposes
to reset the critic network after some time and learn from the ER and current actor
regularly. Combines with high UTD and n-steps.

@ (Schwarzer et al. 2023) Proposed BBF that combines Deep Learning techniques (ResNet
architecture) with some tricks for efficient RL in Atari games.

@ (Bhatt et al. 2024) proposes Cross-Q that removes the target network by stabilizing
the learning with BatchNorm layers applied carefully.
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Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.
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Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.

@ Some promising techniques and results but not extensively tested and theory behind is
not clear.
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Latest findings (I1)

@ (Nauman et al. 2024) BRO proposes bigger critic with a particular regularized
architecture , optimistic estimation of Q-values and exploration, and higher replay
ratios of data from ER.

o (Gallici et al. 2024) PQN removes Experience Replay (data is collected from parallel
environments) and target network (by using LayerNorm) from DQN. Speeds up
learning and it is specially effective when env. is in GPU or when using RNNs.

@ Some promising techniques and results but not extensively tested and theory behind is
not clear.

@ We have found state of the art generic model-free algorithms for RL
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@ Nice review of Policy Gradient Algorithms in Lil'Log blog

@ Good description of algorithms in Spinning Up with implementation in Pytorch and
Tensorflow

@ Understable implementations of Actor Critic methods in RL-Adventure-2


https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://spinningup.openai.com/en/latest/user/algorithms.html
https://github.com/higgsfield/RL-Adventure-2
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