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Goal of this lecture

@ Methods we have seen so far work well when we have a tabular representation for each
state, that is, when we represent value function with a lookup table.
@ This is not reasonable on most cases:

» In Large state spaces: There are too many states and/or actions to store in memory (f.i.
Backgammon: 10%° states, Go 1070 states)
» and in continuous state spaces (f.i. robotic examples)

@ In addition, we want to generalize from/to similar states to speed up learning. It is too
slow to learn the value of each state individually.
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Goal of this lecture

o We'll see now methods to learn policies for large state spaces by using function
approximation to estimate value functions:

%

Va(s) V7(s) (1)
Qe(sa a) ~ QW(57 a) (2)
@ 0 is the set of parameters of the function approximation method (with size much lower
than |S])

@ Function approximation allow to generalize from seen states to unseen states and to save
space.

@ Now, instead of storing V values, we will update 6 parameters using MC or TD learning
so they fulfill (1) or (2).

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 3/71



Which Function Approximation?

@ There are many function approximators, e.g.
Avrtificial neural network

Decision tree

Nearest neighbor

Fourier /wavelet bases

Coarse coding

v

>
>
>
>

@ In principle, any function approximator can be used. However, the choice may be affected
by some properties of RL:

» Experience is not i.i.d. Agents action affect the subsequent data it receives
» During control, value function V(s) changes with the policy (non-stationary)
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Which Function Approximation?

@ Incremental methods allow to directly apply the control methods of MC, Q-learning and
Sarsa, that is, back up is done using “on-line" sequence of data of the trial reported by

the agent following the policy.
@ Most popular method in this setting is gradient descent, because it adapts to changes in
the data (non-stationary condition)
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Gradient Descent

@ Let L(0) be a differentiable function of parameter vector 6, we want to minimize

@ Define the gradient of L(6) to be:

Vol(0) =

@ To find a local minimum of L(#), gradient descent method adjust the parameter in the
direction of negative gradient:

1
A6 = —ZaVolL(0)

where is a stepsize parameter
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Value Function Approx. by SGD

Minimizing Loss function of the approximation
Goal: Find parameter vector # minimizing mean-squared error between approximate value
function Vj(s) and true value function V7 (s)

L(0) = Ex [(V™(s) = Va(s))*] = D u™(s) [V7(s) = Va(s)’
seS

where 1" (s) is the time spent in state s while following 7 (probability visiting s following
policy)

@ Gradient descent finds a local minimum:

NG = %Q(W(s) —Vy(s)) Vo Via(s)
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TD prediction for FA and SGD

@ In TD(0) we use Q of next state to estimate Q on the current state using Bellman
equations. So, in general,

AO; = aof Q" (s, a) — Qu(s,a))VyQy(s, a)
= a(r +7Qy(s,7(s")) — Qa(s,a))VeQu(s, a)

@ So. it seems direct to apply FA to Q-learning
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Incremental Q-learning with FA

Q-learning with FA

initialize parameters 6 arbitrarily (e.g. § = 0)
for each episode do
Choose initial state s
repeat
Choose a from s using policy 7y derived from Qy (e.g., e-greedy)
Execute action a, observe r, s’
0+ 0+ a(r+ymaxy Q(s',3)) — Qu(s,a))VaQy(s, a))
s+ s
until s is terminal
end for
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@ Sounds good oo

@ Do not blame Neural Networks and local minimum. Even with linear function
approximation, it does not work
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Problems with incremental Q-learning with FA

@ Notice that TD targets are not independent of parameters. In TD(0):
r+~ymax Q(s', a)
a/

depends of 6

@ Bootstrapping methods are not true gradient descent?: they take into account the effect
of changing 6 on the estimate, but ignore its effect on the target. This produces the
effect of the moving target.

“They include only a part of the gradient and, accordingly, we call them semi-gradient methods.
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Problems with incremental Q-learning with FA

Essence of off-policy learning.
repeat
Choose a, execute it and observe r and s’ (s, a, r, s') using any probabilistic policy
0« 0+ a(r+ymaxy Q(s’,a) — Qu(s,a))VeQa(s, a))
s+ ¢
until s is terminal

@ Several problems with incremental off-policy TD learning

@ SGD does not converge because gradient does not follow true gradient. Target value is
always changing and SGD does not converge

@ Data is not even close to iid (it is strongly correlated) so another problem for SGD
convergence

@ How to solve these problems?
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Batch Reinforcement Learning

o Gradient descent is simple and appealing

» It is computationally efficient (one update per sample)
» ... But it is not sample efficient (does not take all profit from samples)

@ We can do better at the cost of more computational time
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Batch Reinforcement Learning

o Gradient descent is simple and appealing

» It is computationally efficient (one update per sample)
» ... But it is not sample efficient (does not take all profit from samples)

@ We can do better at the cost of more computational time

o Batch methods seek to find the best fitting value function of given agents experience
(training data) in a supervised way.
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Generalizarion of off-policy learning

Let's generalize the method:

Generalizarion of off-policy learning.
Get D = {(s,a, r,s’)} using any probabilistic policy
repeat
Set 8D to N samples randomly taken from D
for each sample / in SD do
yi < r+ymaxy Qu(s/, )
end for
0 < argming > (Qo(si,a:) — yi)®>  // Any ML regression method
until convergence
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@ Notice several differences:

© Randomly sample a set of N examples instead of only 1
© Don't use 1-step of gradient descent but compute exact solution (regression problem)



Generalizarion of off-policy learning

@ Notice several differences:

© Randomly sample a set of N examples instead of only 1
© Don't use 1-step of gradient descent but compute exact solution (regression problem)

@ Each change improves convergence

© Samples obtained randomly reduce correlation between them and stabilize Q value function
for the regression learner
@ Computation of exact solution avoid the true gradient problem
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Fitted Q-learning

Fitted Q-learning
Given D of size T with examples (s, at, rt+1, St+1), and regression algorithm, set N to zero
and Qu(s,a) =0 for all aand s
repeat
N—N+1
Build training set TS = {((st, at), re+1 + v maxa Qu(se11,3)) )4
Qpn.1 < regression algorithm on TS
until Qy = Quy1 or N > limit
return 7 based on greedy evaluation of Qy

@ Works specially well for forward Neural Networks as regressors (Neural Fitted Q-learning)
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Two possible approaches for function approximation:

©Q Incremental:
» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to catastrophic forgetting,
and (b) Moving target problem



Recap of FA solutions

Two possible approaches for function approximation:

© Incremental:
» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to catastrophic forgetting,
and (b) Moving target problem
© Batch Learning:

» Cons: Learn from collected dataset (not own experience)
» Pro: Better convergence
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Fitted Q-learning

Fitted Q-learning

Given D of size T with examples (s, a¢, rt4+1, St+1), and regression algorithm, set N to zero
and Qu(s,a) =0 for all a and s
repeat
N+ N+1
Build training set TS = {((s¢, at), re+1 + 7 maxa Qu(se11,3)) )1
Qn+1 ¢ regression algorithm on TS
until Qy =~ Qny1 or N > limit
return 7 based on greedy evaluation of Qy
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Neural Fitted Q-learning

Initialize weights 6 for NN for regression
Collect D of size T with examples (s¢, a¢, re41, Se+1)
repeat
Sample B mini-batch of D
O 0—a) g %(St, ar) (Qo(st, ar) — [re+1 + v maxa Qo(se+1,3a")])
until convergence on learning or maximum number of steps
return 7 based on greedy evaluation of Qg

@ Does not work well

@ It's not a Batch method. Can you see why?
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Neural Fitted Q-learning (Riedmiller, 2005)

Neural Fitted Q-learning

Initialize weights 8 for NN for regression
Collect D of size T with examples (s¢, ar, re+1, St+1)
repeat
0"+ 0
repeat
Sample B mini-batch of D
00— ad,cp%a(star) (Qo(se, at) — [rey1 + v maxa Qo(ser1,4)])
until convergence on learning or maximum number of steps
until maximum limit iterations
return 7 based on greedy evaluation of @

@ Notice target does not change during supervised regression
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Neural Fitted Q-learning: Another version

@ That works, however the update of parameters is not smooth

@ Alternative version to avoid moving target

Fitted Q-learning avoiding moving target

Initialize weights 6 for NN for regression

Collect D of size T with examples (s¢, a¢, re41, St+1)

repeat
Sample B mini-batch of D
00— s %(Stv ar) = (Qo(st; ar) — [re1 + v maxa Qo (se41,2")])
0+~ 10"+ (1—71)0

until maximum limit iterations

return 7 based on greedy evaluation of @y

@ Value of 7 close to one (f.i. 7 =0.999) reduces the “speed" of the moving target.
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How to get the data?

@ So now, we have learning stabilized just any batch method but using NN.
@ However, now there is the problem of dependence of dataset D. How we obtain the data?

@ Data can be obtained using a random policy, but we want to minimize error on states
visited by the policy!

L(6) = Ex [(V"(s) - =D W () [VT(s) = Va(s)P

seS

where £17(s) is the time spent in state s while following 7
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How to get the data?

@ Data should be generated by the policy
@ But it also has to be probabilistic (to ensure exploration)

@ So, collect data using the policy and add them to D
@ Also remove old data from D.

» Limit the size of the set
» Remove examples obtained using old policies

@ So, collect data using a buffer of limited size (we call replay buffer).
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When to get the data?

Batch Q-learning with replay buffer and target network

Initialize weights 6 for NN for regression
Collect D of size T with examples (s¢, a:, re41, Se+1) using random policy
repeat
0 0
repeat
Collect M experiences following e-greedy procedure and add them to buffer D
repeat
Sample B mini-batch of D
00— aX,cn 2 (s, ar) (Qolst, ae) — [res1 + vy maxy Qr(ser1,a’)])
until maximum number of steps K
until maximum number of iterations N
until maximum limit iterations
return 7 based on greedy evaluation of Qj
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DQN algorithm (Mnih, et al. 2015)

o Deep Q-Network algorithm breakthrough

» In 2015, Nature published DQN algorithm.
» It takes profit of "then-recent" Deep Neural Networks and, in particular, of Convolutional

NNs so successful for vision problems
» Applied to Atari games directly from pixels of the screen (no hand made representation of

the problem)
» Very successful on a difficult task, surpassing in some cases human performance

@ It is basically the previous algorithm with K =1, and M =1 that is applied on the
current state.

@ |t goes back to incremental learning
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DQN algorithm (Mnih, et al. 2015)

DQN algorithm

Initialize weights 6 for NN for regression
Set s to initial state, and k to zero
repeat
Choose a from s using policy 7y derived from Qy (e.g., e-greedy)
k+—k+1
Execute action a, observe r, s’, and add (s, a, r, s’ to buffer D
Sample B mini-batch of D
00—} s %(Stv a) (Qo(st, ar) — [re+1 + v maxa Qo (Se11,a")])
if k==N then
0"+ 0
k<0
end if
until maximum limit iterations
return 7 based on greedy evaluation of @y
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DQN algorithm on Atari

@ Atari games in the gym
@ End-to-end learning of values Q(s, a) from pixels:

State: Input state s is stack of raw pixels from last 4 frames
Actions: Output is Q(s, a) value for each of 18 joystick/button positions
Reward: Reward is direct change in score for that step

@ Network architecture and hyper-parameters fixed across all games, No tuning!

@ Clipping reward -1,0,1 to avoid problem of different magnitudes of score in each game
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DQN algorithm on Atari

Google Deepmind DQN playing
Atari Breakout

Setup:

NVIDIA GTX 690
i7-3776K - 16 GB RAM
Ubuntu 16.04 LTS
Google Deepmind DQN
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DQN algorithm on Atari

@ What is the effect of each trick on Atari games?

DQN
Q-learning Q-learning | Q-learning Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089
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Double Q-learning (Hasselt, et al. 2015)

o Problem of overestimation of Q values.

@ We use max operator to compute the target in the minimization of:
L(s,a) = (Q(s,a) — (r + ymax Q(s, d)))?
a/

@ Surprisingly here is a problem.

© Suppose Q(s’,a") is 0 for all actions, so Q(s, a) should be r.

© But ymaxy Q(s,a’) > 0 because random initialization and use of the max operator.
© So estimation Q(s,a) > r, overestimating true value

© All this because for max operator:

E[max Q(s’, a")] > maxE[Q(s", a)]

@ This overestimation is propagated to other states.
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Double Q-learning

@ Solution (Hasselt, 2010): Train 2 action-value functions: Q4 and Qp, and compute
argmax with the other network

@ Do Q-learning on both, but

» never on the same time steps (Qa and Qg are independent)
» pick Qa or Qg at random to be updated on each step

@ Notice that:
r+vymax Q(s’,a) = r+vQ(s',argmax Q(s', a))
a’ al

@ When updating one network, use the values of the other network:

Qa(s,a) « r+~vQp(s’,argmax Qa(s’, a))

a/

Qs(s,a) < r +vQa(s’, arg rlnax Qs(s',a))

a
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Double DQN (Hasselt, et al. 2015)

@ In DQN, in fact, we have 2 value functions: Qy and Qy
@ 50, no need to add another one:

» Current Q-network 6 is used to select actions
» Older Q-network &’ is used to evaluate actions

@ Update in Double-DQN (Hasselt, et al. 2015):

Action Evaluation

A

Qo(s,a) « r+ v Qu (s, argmax Qy(s’, a'))
a/

Action Selection

@ Works well in practice.
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Prioritized Experience Replay (Schaul, et al. 2016)

o ldea: sample transitions from replay buffer more cleverly
@ Those states with poorer estimation in buffer will be selected with preference for update

@ We will set probability for every transition. Lets use the absolute value of TD-error of
transition as a probability!

pi = |TD-error;| = |Qp(si, ai) — (ri + v Qo (Si+1,arg max Qo(sit1,2"))]

a

. p;
P(i) = S oo
k

where P(i) is probability of selecting sample i for the mini-batch, and o > 0 is a new
parameter (o = 0 implies uniform probability)
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@ Do you see any problem?
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Prioritized Experience Replay (Schaul, et al. 2016)

@ Do you see any problem?
@ Now transitions are no i.i.d. and therefore we introduce a bias.

@ Solution: we can correct the bias by using importance-sampling weights

i)

@ For numerical reasons, we also normalize weights by max; w;
@ When we put transition into experience replay, we set it to maximal priority
p: = MaXi<t Pj
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Prioritized Experience Replay (Schaul, et al. 2016)

Algorithm 1 Double DQN with proportional prioritization
1: Input: minibatch £, step-size ), replay period K and size N, exponents o and 3, budget 7.
2: Initialize replay memory H = (0, A =0,p; = 1
3: Observe Sy and choose Ay ~ my(.Sp)
4: fort = 1to 1 do

5. Observe S;, Ry,

6:  Store transition (S;_1, A;_1, Ry, Ve, S;) in H with maximal priority p; = max;; p;
7. if t =0 mod K then

8: for j = 1to k do

9: Sample transition j ~ P(j) = p§/ >, p¢'

10: Compute importance-sampling weight w; = (N - P(‘j))f‘i / max; w;

11: Compute TD-error 0; = R; + 7 Quarget (S, argmax, Q(S;,a)) — Q(S;j—1, A;_1)
12: Update transition priority p; < [0,]

13: Accumulate weight-change A <= A + w; - 6; - VoQ(S;-1. 4;_1)

14: end for

15: Update weights 6 < 0 4+ - A, reset A = 0

16: From time to time copy weights into target network Gget <— 6

17:  end if

18:  Choose action A; ~ my(S;)

19: end for
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Dueling Network Architectures (Wang, et al. 2016)

Until now, use of generic NN for regression of Q-value function

Now, specific Deep Architecture specific for RL

Advantage function definition:
A(S, a) = Q(57 a) - V(S)

@ So,
Q(s,a) = A(s,a) + V(s)

Intuitively, Advantage function is relative measure of importance of each action
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 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ Dueling network:

Q(s,a)
ﬁ;

I V(s)
>.| Qs,a)

A(s a)

@ Intuitive idea is that now we don't learn Q(s, a) independently but share part that is V/(s)
that improves generalization across actions
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Dueling Network Architectures (Wang, et al. 2016)

@ We have now 3 sets of parameters:

» 6: Usual weights of NN until red section
» [3: Weights to compute V/(s)
» «a: Weights to compute A(s, a)

@ Green part computes A(s, a) + V(s)

=
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Dueling Network Architectures (Wang, et al. 2016)

@ However, there is a problem: one extra degree of freedom in targets!

@ Example:
i K i KL i RL

/" 2 ’,‘I 2 /’I 2
= Nl 4 > e 4 b e 4
3 3 3

2 -1 -2

4 1 0

3 0 -1
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Dueling Network Architectures (Wang, et al. 2016)

Solution: require max, A(s, a) to be equal to zero!

So the Q-function computes as:

Qo.0,8(s,a) = Vo s(s) + (Ag}a(s, a)— maﬁ Ag o(s, a')>

a'e

In practice, the authors propose to implement

Qg,a”g(s, a) = \/9”3( ) (Aga S, a Z Aga S a))

a'cA

@ This variant increases stability of the optimization because now depends on softer
measure (average instead of max)

Now Q-values loses original semantics, but it not important. The important thing is a
reference between actions
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@ |dea: instead of using TD(0), use n-steps estimators like we described in lecture 2

@ In buffer we should store experiences:

n
1 ,
<5t;3tart7§ Y e +fy”ma,1ng/(st+,,,a)>
a

i=0


https://arxiv.org/abs/1606.02647

Multi-step learning

@ |dea: instead of using TD(0), use n-steps estimators like we described in lecture 2

@ In buffer we should store experiences:

n
i1 ’
<Stvaf7rf7 E ’Y’ rf+1 +’Yn m?X Q@’(Sf+nua)>
a

i=0

@ Again, there is a problem!
@ Only correct when learning on-policy! (not an issue when n=1)

@ How to fix that?

» Ignore the problem (often works well)
» Dynamically choose n to get only on-policy data (Store data until not policy action taken)
» Use importance sampling (Munos et al, 2016)
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Distributional RL (Dabney et al. 2017)

@ Instead of working with Expectation of Long-term-reward, work with Distributions of

Long-term-reward

=
" State § Distribution
o
Distributional RL o
=» Distribution Expected return
after taking an action a

' State .
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@ Apply Bellman equation on the distribution (some theory behind necessary)

PWZ 'yP“

R+7P" II OT™Z I

Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy m, (b)
Discounting shrinks the distribution towards 0, (¢) The reward

shifts it, and (d) Projection step (Section 4).
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Distributional RL (Dabney et al. 2017)

@ Several implementations of the same idea: C51, QR-DQN, IQN, and FQF

Actions

51 QR-DQN
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Rainbow (Hessel et al. 2017)

@ Idea: Let's try to investigate how each of the different improvements over DQN help to
improve performance on the Atari games
o Over DQN, they added the following modifications:

>
>
>
>
>
> Noisy Nets

@ They perform an ablation study where over the complete set of improvement, they disable
one an measure the performance
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.
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Rainbow (Hessel et al. 2017)
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@ Idea: Parallelize learning with several workers

/ DN
| Global Network

o After some time steps, the worker passes gradients to the global network


http://proceedings.mlr.press/v48/mniha16.pdf

Asynchronous Q-learning (Mnih et al. 2016)

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.
// Assume global shared 0, 0~ , and counter T" = 0.
Initialize thread step counter ¢ <— 0
Initialize target network weights 6~ «+ 6
Initialize network gradients df < 0
Get initial state s
repeat
Take action a with e-greedy policy based on Q(s, a; 6)
Receiye new state s” and reward 7

for terminal s’

r
y = _ .
Y r+ymax, Q(s',a’;07) for non-terminal s’

Accumulate gradients wrt 0: df < df + w

s=s"

T+ T+1landt<t+1

if I" mod Il;arget == 0 then
Update the target network 6~ <— 6

end if

ift mod IasynctUpdate == 0 or s is terminal then
Perform asynchronous update of 6 using d6.
Clear gradients df < 0.

end if

until 7" > Thnaw
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Practical tricks

@ Patience. Training takes time (roughly hours to day on GPU training to see improvement)
@ Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.
@ ¢ annealing f.i. from 1 to .1 is beneficial too

@ Exploration is key: Try non-standard exploration schedules.

@ Always run at least two different seeds when experimenting
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Practical tricks
@ Bellman errors can be big. Clip gradients or use Huber loss on Bellman error

7(}/7';()())2, when |y — f(x)| <0
Sy — f(x)| — 5—22, otherwise

Ls(y, f(x)) = {

@ Very large 7 or set it to 1 to avoid myopic reward (very large sequences before reward)
@ n-steps return helps but careful
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Partial Observability

@ In a lot of cases the agent has not complete information of the true state and uses its
perception as state.
@ The problem is not anymore an MDP.

@ How to solve these case?
© Formalize as a POMDP: MDP extended with set of observations O and probability of each
observation given the true state. Agent work with a belief vector of probabilities of being in
each state. Solve with dedicated algorithms
© Works with memory as a way to disambiguate the true state. Simple approaches like window
of last n perceptions (DQN), or more interesting ones using LSTM
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