Mario Martin

Mario Martin - CS-UPC

February 11, 2026

@ Methods we have seen so far work well when we have a tabular representation for each
state, that is, when we represent value function with a lookup table.

Goal of this lecture

@ Methods we have seen so far work well when we have a tabular representation for each
state, that is, when we represent value function with a lookup table.
@ This is not reasonable on most cases:

» In Large state spaces: There are too many states and/or actions to store in memory (f.i.
Backgammon: 10%° states, Go 1070 states)
» and in continuous state spaces (f.i. robotic examples)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 2/71

Goal of this lecture

@ Methods we have seen so far work well when we have a tabular representation for each
state, that is, when we represent value function with a lookup table.
@ This is not reasonable on most cases:

» In Large state spaces: There are too many states and/or actions to store in memory (f.i.
Backgammon: 10%° states, Go 1070 states)
» and in continuous state spaces (f.i. robotic examples)

@ In addition, we want to generalize from/to similar states to speed up learning. It is too
slow to learn the value of each state individually.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 2/71

Goal of this lecture

o We'll see now methods to learn policies for large state spaces by using function
approximation to estimate value functions:

%

Va(s) V7(s) (1)
Qe(sa a) ~ QW(57 a) (2)
@ 0 is the set of parameters of the function approximation method (with size much lower
than |S])

@ Function approximation allow to generalize from seen states to unseen states and to save
space.

@ Now, instead of storing V values, we will update 6 parameters using MC or TD learning
so they fulfill (1) or (2).

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 3/71

Which Function Approximation?

@ There are many function approximators, e.g.
Avrtificial neural network

Decision tree

Nearest neighbor

Fourier /wavelet bases

Coarse coding

v

>
>
>
>

@ In principle, any function approximator can be used. However, the choice may be affected
by some properties of RL:

» Experience is not i.i.d. Agents action affect the subsequent data it receives
» During control, value function V(s) changes with the policy (non-stationary)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 4/71

Which Function Approximation?

@ Incremental methods allow to directly apply the control methods of MC, Q-learning and
Sarsa, that is, back up is done using “on-line" sequence of data of the trial reported by

the agent following the policy.
@ Most popular method in this setting is gradient descent, because it adapts to changes in
the data (non-stationary condition)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 6/71

Gradient Descent

@ Let L(0) be a differentiable function of parameter vector 6, we want to minimize

@ Define the gradient of L(6) to be:

Vol(0) =

@ To find a local minimum of L(#), gradient descent method adjust the parameter in the
direction of negative gradient:

1
A6 = —ZaVolL(0)

where is a stepsize parameter

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 7/71

Value Function Approx. by SGD

Minimizing Loss function of the approximation
Goal: Find parameter vector # minimizing mean-squared error between approximate value
function Vj(s) and true value function V7 (s)

L(0) = Ex [(V™(s) = Va(s))*] = D u™(s) [V7(s) = Va(s)’
seS

where 1" (s) is the time spent in state s while following 7 (probability visiting s following
policy)

@ Gradient descent finds a local minimum:

NG = %Q(W(s) —Vy(s)) Vo Via(s)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

8/71

TD prediction for FA and SGD

@ In TD(0) we use Q of next state to estimate Q on the current state using Bellman
equations. So, in general,

AO; = aof Q" (s, a) — Qu(s,a))VyQy(s, a)
= a(r +7Qy(s,7(s")) — Qa(s,a))VeQu(s, a)

@ So. it seems direct to apply FA to Q-learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

9/71

Incremental Q-learning with FA

Q-learning with FA

initialize parameters 6 arbitrarily (e.g. § = 0)
for each episode do
Choose initial state s
repeat
Choose a from s using policy 7y derived from Qy (e.g., e-greedy)
Execute action a, observe r, s’
0+ 0+ a(r+ymaxy Q(s',3)) — Qu(s,a))VaQy(s, a))
s+ s
until s is terminal
end for

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 10/71

@ Sounds good oo

@ Do not blame Neural Networks and local minimum. Even with linear function
approximation, it does not work

@ Causes?

@ Sounds good ... doesn't work

Do not blame Neural Networks and local minimum. Even with linear function
approximation, it does not work

Causes?

@ Sounds good ... doesn't work

@ Do not blame Neural Networks and local minimum. Even with linear function
approximation, it does not work

o Causes?

Problems with incremental Q-learning with FA

@ Notice that TD targets are not independent of parameters. In TD(0):
r+~ymax Q(s', a)
a/

depends of 6

@ Bootstrapping methods are not true gradient descent?: they take into account the effect
of changing 6 on the estimate, but ignore its effect on the target. This produces the
effect of the moving target.

“They include only a part of the gradient and, accordingly, we call them semi-gradient methods.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 12/71

Problems with incremental Q-learning with FA

Essence of off-policy learning.
repeat
Choose a, execute it and observe r and s’ (s, a, r, s') using any probabilistic policy
0« 0+ a(r+ymaxy Q(s’,a) — Qu(s,a))VeQa(s, a))
s+ ¢
until s is terminal

@ Several problems with incremental off-policy TD learning

@ SGD does not converge because gradient does not follow true gradient. Target value is
always changing and SGD does not converge

@ Data is not even close to iid (it is strongly correlated) so another problem for SGD
convergence

@ How to solve these problems?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 13/71

Batch Reinforcement Learning

o Gradient descent is simple and appealing

» It is computationally efficient (one update per sample)
» ... But it is not sample efficient (does not take all profit from samples)

@ We can do better at the cost of more computational time

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 15/71

Batch Reinforcement Learning

o Gradient descent is simple and appealing

» It is computationally efficient (one update per sample)
» ... But it is not sample efficient (does not take all profit from samples)

@ We can do better at the cost of more computational time

o Batch methods seek to find the best fitting value function of given agents experience
(training data) in a supervised way.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 15/71

Generalizarion of off-policy learning

Let's generalize the method:

Generalizarion of off-policy learning.
Get D = {(s,a, r,s’)} using any probabilistic policy
repeat
Set 8D to N samples randomly taken from D
for each sample / in SD do
yi < r+ymaxy Qu(s/,)
end for
0 < argming > (Qo(si,a:) — yi)®> // Any ML regression method
until convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

17/71

@ Notice several differences:

© Randomly sample a set of N examples instead of only 1
© Don't use 1-step of gradient descent but compute exact solution (regression problem)

Generalizarion of off-policy learning

@ Notice several differences:

© Randomly sample a set of N examples instead of only 1
© Don't use 1-step of gradient descent but compute exact solution (regression problem)

@ Each change improves convergence

© Samples obtained randomly reduce correlation between them and stabilize Q value function
for the regression learner
@ Computation of exact solution avoid the true gradient problem

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 18/71

Fitted Q-learning

Fitted Q-learning
Given D of size T with examples (s, at, rt+1, St+1), and regression algorithm, set N to zero
and Qu(s,a) =0 for all aand s
repeat
N—N+1
Build training set TS = {((st, at), re+1 + v maxa Qu(se11,3)))4
Qpn.1 < regression algorithm on TS
until Qy = Quy1 or N > limit
return 7 based on greedy evaluation of Qy

@ Works specially well for forward Neural Networks as regressors (Neural Fitted Q-learning)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 19/71

a—

a—

V(s
s " —> Qy(s, a)
5600(5,%)

S—>

a—

S —>

0 ‘eQO(saal)
—=> (s, a)

Two possible approaches for function approximation:

©Q Incremental:
» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to catastrophic forgetting,
and (b) Moving target problem

Recap of FA solutions

Two possible approaches for function approximation:

© Incremental:
» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to catastrophic forgetting,
and (b) Moving target problem
© Batch Learning:

» Cons: Learn from collected dataset (not own experience)
» Pro: Better convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24/71

Fitted Q-learning

Fitted Q-learning

Given D of size T with examples (s, a¢, rt4+1, St+1), and regression algorithm, set N to zero
and Qu(s,a) =0 for all a and s
repeat
N+ N+1
Build training set TS = {((s¢, at), re+1 + 7 maxa Qu(se11,3)))1
Qn+1 ¢ regression algorithm on TS
until Qy =~ Qny1 or N > limit
return 7 based on greedy evaluation of Qy

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 25/71

Neural Fitted Q-learning

Initialize weights 6 for NN for regression
Collect D of size T with examples (s¢, a¢, re41, Se+1)
repeat
Sample B mini-batch of D
O 0—a) g %(St, ar) (Qo(st, ar) — [re+1 + v maxa Qo(se+1,3a")])
until convergence on learning or maximum number of steps
return 7 based on greedy evaluation of Qg

@ Does not work well

@ It's not a Batch method. Can you see why?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 26/71

Neural Fitted Q-learning (Riedmiller, 2005)

Neural Fitted Q-learning

Initialize weights 8 for NN for regression
Collect D of size T with examples (s¢, ar, re+1, St+1)
repeat
0"+ 0
repeat
Sample B mini-batch of D
00— ad,cp%a(star) (Qo(se, at) — [rey1 + v maxa Qo(ser1,4)])
until convergence on learning or maximum number of steps
until maximum limit iterations
return 7 based on greedy evaluation of @

@ Notice target does not change during supervised regression

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 27/71

https://link.springer.com/chapter/10.1007/11564096_32

Neural Fitted Q-learning: Another version

@ That works, however the update of parameters is not smooth

@ Alternative version to avoid moving target

Fitted Q-learning avoiding moving target

Initialize weights 6 for NN for regression

Collect D of size T with examples (s¢, a¢, re41, St+1)

repeat
Sample B mini-batch of D
00— s %(Stv ar) = (Qo(st; ar) — [re1 + v maxa Qo (se41,2")])
0+~ 10"+ (1—71)0

until maximum limit iterations

return 7 based on greedy evaluation of @y

@ Value of 7 close to one (f.i. 7 =0.999) reduces the “speed" of the moving target.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28/71

How to get the data?

@ So now, we have learning stabilized just any batch method but using NN.
@ However, now there is the problem of dependence of dataset D. How we obtain the data?

@ Data can be obtained using a random policy, but we want to minimize error on states
visited by the policy!

L(6) = Ex [(V"(s) - =D W () [VT(s) = Va(s)P

seS

where £17(s) is the time spent in state s while following 7

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 29/71

How to get the data?

@ Data should be generated by the policy
@ But it also has to be probabilistic (to ensure exploration)

@ So, collect data using the policy and add them to D
@ Also remove old data from D.

» Limit the size of the set
» Remove examples obtained using old policies

@ So, collect data using a buffer of limited size (we call replay buffer).

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 30/71

When to get the data?

Batch Q-learning with replay buffer and target network

Initialize weights 6 for NN for regression
Collect D of size T with examples (s¢, a:, re41, Se+1) using random policy
repeat
0 0
repeat
Collect M experiences following e-greedy procedure and add them to buffer D
repeat
Sample B mini-batch of D
00— aX,cn 2 (s, ar) (Qolst, ae) — [res1 + vy maxy Qr(ser1,a’)])
until maximum number of steps K
until maximum number of iterations N
until maximum limit iterations
return 7 based on greedy evaluation of Qj

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

31/71

DQN algorithm (Mnih, et al. 2015)

o Deep Q-Network algorithm breakthrough

» In 2015, Nature published DQN algorithm.
» It takes profit of "then-recent" Deep Neural Networks and, in particular, of Convolutional

NNs so successful for vision problems
» Applied to Atari games directly from pixels of the screen (no hand made representation of

the problem)
» Very successful on a difficult task, surpassing in some cases human performance

@ It is basically the previous algorithm with K =1, and M =1 that is applied on the
current state.

@ |t goes back to incremental learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 32/71

https://www.nature.com/articles/nature14236

DQN algorithm (Mnih, et al. 2015)

DQN algorithm

Initialize weights 6 for NN for regression
Set s to initial state, and k to zero
repeat
Choose a from s using policy 7y derived from Qy (e.g., e-greedy)
k+—k+1
Execute action a, observe r, s’, and add (s, a, r, s’ to buffer D
Sample B mini-batch of D
00—} s %(Stv a) (Qo(st, ar) — [re+1 + v maxa Qo (Se11,a")])
if k==N then
0"+ 0
k<0
end if
until maximum limit iterations
return 7 based on greedy evaluation of @y

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

33/71

https://www.nature.com/articles/nature14236

DQN algorithm on Atari

@ Atari games in the gym
@ End-to-end learning of values Q(s, a) from pixels:

State: Input state s is stack of raw pixels from last 4 frames
Actions: Output is Q(s, a) value for each of 18 joystick/button positions
Reward: Reward is direct change in score for that step

@ Network architecture and hyper-parameters fixed across all games, No tuning!

@ Clipping reward -1,0,1 to avoid problem of different magnitudes of score in each game

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 34/71

https://ale.farama.org/environments/

Fully cgnnected

T e e e e eeeee e e e eeee s

Fully cgnnocted

Convglution

Convolution
-

32 4x4 fileers 256 hidden units Fully-connected linear
output layer

Stack of 4 previous Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

EEEE i

Space Invaders -—

At human-level or above

Below human-level

1
4,500%

r T T T T T 10T
0 100 200 300 400 500 600 1,000

Pivarlhid-

DQN algorithm on Atari

Google Deepmind DQN playing
Atari Breakout

Setup:

NVIDIA GTX 690
i7-3776K - 16 GB RAM
Ubuntu 16.04 LTS
Google Deepmind DQN

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 38/71

DQN algorithm on Atari

@ What is the effect of each trick on Atari games?

DQN
Q-learning Q-learning | Q-learning Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

Mario Martin (Mario Martin - CS-UPC)

Reinforcement Learning

February 11, 2026

39/71

Double Q-learning (Hasselt, et al. 2015)

o Problem of overestimation of Q values.

@ We use max operator to compute the target in the minimization of:
L(s,a) = (Q(s,a) — (r + ymax Q(s, d)))?
a/

@ Surprisingly here is a problem.

© Suppose Q(s’,a") is 0 for all actions, so Q(s, a) should be r.

© But ymaxy Q(s,a’) > 0 because random initialization and use of the max operator.
© So estimation Q(s,a) > r, overestimating true value

© All this because for max operator:

E[max Q(s’, a")] > maxE[Q(s", a)]

@ This overestimation is propagated to other states.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 42/71

https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf

Double Q-learning

@ Solution (Hasselt, 2010): Train 2 action-value functions: Q4 and Qp, and compute
argmax with the other network

@ Do Q-learning on both, but

» never on the same time steps (Qa and Qg are independent)
» pick Qa or Qg at random to be updated on each step

@ Notice that:
r+vymax Q(s’,a) = r+vQ(s',argmax Q(s', a))
a’ al

@ When updating one network, use the values of the other network:

Qa(s,a) « r+~vQp(s’,argmax Qa(s’, a))

a/

Qs(s,a) < r +vQa(s’, arg rlnax Qs(s',a))

a

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 43 /71

Double DQN (Hasselt, et al. 2015)

@ In DQN, in fact, we have 2 value functions: Qy and Qy
@ 50, no need to add another one:

» Current Q-network 6 is used to select actions
» Older Q-network &’ is used to evaluate actions

@ Update in Double-DQN (Hasselt, et al. 2015):

Action Evaluation

A

Qo(s,a) « r+ v Qu (s, argmax Qy(s’, a'))
a/

Action Selection

@ Works well in practice.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 44 /71

https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf

Prioritized Experience Replay (Schaul, et al. 2016)

o ldea: sample transitions from replay buffer more cleverly
@ Those states with poorer estimation in buffer will be selected with preference for update

@ We will set probability for every transition. Lets use the absolute value of TD-error of
transition as a probability!

pi = |TD-error;| = |Qp(si, ai) — (ri + v Qo (Si+1,arg max Qo(sit1,2"))]

a

. p;
P(i) = S oo
k

where P(i) is probability of selecting sample i for the mini-batch, and o > 0 is a new
parameter (o = 0 implies uniform probability)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 46 /71

https://arxiv.org/abs/1511.05952

@ Do you see any problem?

https://arxiv.org/abs/1511.05952

Prioritized Experience Replay (Schaul, et al. 2016)

@ Do you see any problem?
@ Now transitions are no i.i.d. and therefore we introduce a bias.

@ Solution: we can correct the bias by using importance-sampling weights

i)

@ For numerical reasons, we also normalize weights by max; w;
@ When we put transition into experience replay, we set it to maximal priority
p: = MaXi<t Pj

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 /71

https://arxiv.org/abs/1511.05952

Prioritized Experience Replay (Schaul, et al. 2016)

Algorithm 1 Double DQN with proportional prioritization
1: Input: minibatch £, step-size), replay period K and size N, exponents o and 3, budget 7.
2: Initialize replay memory H = (0, A =0,p; = 1
3: Observe Sy and choose Ay ~ my(.Sp)
4: fort = 1to 1 do

5. Observe S;, Ry,

6: Store transition (S;_1, A;_1, Ry, Ve, S;) in H with maximal priority p; = max;; p;
7. if t =0 mod K then

8: for j = 1to k do

9: Sample transition j ~ P(j) = p§/ >, p¢'

10: Compute importance-sampling weight w; = (N - P(‘j))f‘i / max; w;

11: Compute TD-error 0; = R; + 7 Quarget (S, argmax, Q(S;,a)) — Q(S;j—1, A;_1)
12: Update transition priority p; < [0,]

13: Accumulate weight-change A <= A + w; - 6; - VoQ(S;-1. 4;_1)

14: end for

15: Update weights 6 < 0 4+ - A, reset A = 0

16: From time to time copy weights into target network Gget <— 6

17: end if

18: Choose action A; ~ my(S;)

19: end for

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 48 /71

https://arxiv.org/abs/1511.05952

Dueling Network Architectures (Wang, et al. 2016)

Until now, use of generic NN for regression of Q-value function

Now, specific Deep Architecture specific for RL

Advantage function definition:
A(S, a) = Q(57 a) - V(S)

@ So,
Q(s,a) = A(s,a) + V(s)

Intuitively, Advantage function is relative measure of importance of each action

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 50/71

 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ Dueling network:

Q(s,a)
ﬁ;

I V(s)
>.| Qs,a)

A(s a)

@ Intuitive idea is that now we don't learn Q(s, a) independently but share part that is V/(s)
that improves generalization across actions

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 51/71

 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ We have now 3 sets of parameters:

» 6: Usual weights of NN until red section
» [3: Weights to compute V/(s)
» «a: Weights to compute A(s, a)

@ Green part computes A(s, a) + V(s)

=

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 52/71

 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ However, there is a problem: one extra degree of freedom in targets!

@ Example:
i K i KL i RL

/" 2 ’,‘I 2 /’I 2
= Nl 4 > e 4 b e 4
3 3 3

2 -1 -2

4 1 0

3 0 -1

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 53/71

 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

Solution: require max, A(s, a) to be equal to zero!

So the Q-function computes as:

Qo.0,8(s,a) = Vo s(s) + (Ag}a(s, a)— maﬁ Ag o(s, a')>

a'e

In practice, the authors propose to implement

Qg,a”g(s, a) = \/9”3() (Aga S, a Z Aga S a))

a'cA

@ This variant increases stability of the optimization because now depends on softer
measure (average instead of max)

Now Q-values loses original semantics, but it not important. The important thing is a
reference between actions

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 54 /71

 http://proceedings.mlr.press/v48/wangf16.pdf

@ |dea: instead of using TD(0), use n-steps estimators like we described in lecture 2

@ In buffer we should store experiences:

n
1 ,
<5t;3tart7§ Y e +fy”ma,1ng/(st+,,,a)>
a

i=0

https://arxiv.org/abs/1606.02647

Multi-step learning

@ |dea: instead of using TD(0), use n-steps estimators like we described in lecture 2

@ In buffer we should store experiences:

n
i1 ’
<Stvaf7rf7 E ’Y’ rf+1 +’Yn m?X Q@’(Sf+nua)>
a

i=0

@ Again, there is a problem!
@ Only correct when learning on-policy! (not an issue when n=1)

@ How to fix that?

» Ignore the problem (often works well)
» Dynamically choose n to get only on-policy data (Store data until not policy action taken)
» Use importance sampling (Munos et al, 2016)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 56 /71

https://arxiv.org/abs/1606.02647

Distributional RL (Dabney et al. 2017)

@ Instead of working with Expectation of Long-term-reward, work with Distributions of

Long-term-reward

=
" State § Distribution
o
Distributional RL o
=» Distribution Expected return
after taking an action a

' State .

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 58 /71

@ Apply Bellman equation on the distribution (some theory behind necessary)

PWZ 'yP“

R+7P" II OT™Z I

Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy m, (b)
Discounting shrinks the distribution towards 0, (¢) The reward

shifts it, and (d) Projection step (Section 4).

February 11, 2026

59 /71

Distributional RL (Dabney et al. 2017)

@ Several implementations of the same idea: C51, QR-DQN, IQN, and FQF

Actions

51 QR-DQN

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

60/71

https://export.arxiv.org/abs/1710.10044
https://export.arxiv.org/abs/1710.10044
https://export.arxiv.org/abs/1806.06923
https://export.arxiv.org/abs/1911.02140

Rainbow (Hessel et al. 2017)

@ Idea: Let's try to investigate how each of the different improvements over DQN help to
improve performance on the Atari games
o Over DQN, they added the following modifications:

>
>
>
>
>
> Noisy Nets

@ They perform an ablation study where over the complete set of improvement, they disable
one an measure the performance

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 62/71

https://export.arxiv.org/abs/1710.10044

57

IS
o

N
o

number of games.

-
o

57

N
=)

N
a

number of games

10

0 50

#games > 20% human

#games > 50% human

#games > 100% human

#games > 200% human

#games > 500% human
DON

— DDON

— Prioritized DDON

~— Dueling DDQN

A

~—— Distributional DQN

— Noisy DON

— Rainbow

DON

- = no double

== no priority

== no dueling

~ - no multi-step
=~ no distribution
== no noisy

= Rainbow

100 150 200
Millions of frames

50 100 150 200
Millions of frames

50 100 150 200
Millions of frames

50 100 150 200
Millions of frames

50 100 150 200
Millions of frames

Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.

http://arxiv.org/abs/1710.02298

Rainbow (Hessel et al. 2017)

H H H

H 4 8

H £ £ £ 3 2 -

S 3 & & g 53 8

g 8 g a g a a g a & o
uoxxez

abuanassiek
JoM™j0 puezim
Jlequid oapin
umop™u~dn
weysueiny
Jojd awn
suay
punouns
Jsuun6Ie)s
siapeauradeds
suejos

Buiys

| | 3sanbeas
Auejoqos
Jauunipeos
1 plessaAL
agb

h [ek arenud
Buod

llepd

1l I xusoud
sweb siyy Bweu

=
=g =

=
=
=

1 vewded sw
= |1 sbusnar ewnzsiuow
I eysewnyTBuny
iy
ooebue
ol puogsawel
] Kaxpoy @31
Il oy
n 1eyARIB
Jaydob
il Il euasoy
Kemaauy
| n AquapBuysy
oinpua
unp~a|gnop
soene uowap
[Japuajep
JaquidAzen
J] | puewwosssddoy>
apadnuad
ol = Inoxyeasq
buixoq
o AzIaq
18pTweaq
|§ [suozspieq
i 1818y ueq
snuepe
D splossise
xuzise
I Fnesse
Jepiue
uaje

il

gE =
Hu_‘\ = u\ T u [=) u uuul—i uuuwgu

N

L=
B

=]

T |‘_H_H_“_|U T
=]

0

=

Il
I

Asouou uonnquisipou das-nwou Bugenpou Auopdou |gnop ou

1
OO0 OO O
|
DR O

64/71

February 11, 2026

Reinforcement Learning

Mario Martin (Mario Martin - CS-UPC)

http://arxiv.org/abs/1710.02298

@ Idea: Parallelize learning with several workers

/ DN
| Global Network

o After some time steps, the worker passes gradients to the global network

http://proceedings.mlr.press/v48/mniha16.pdf

Asynchronous Q-learning (Mnih et al. 2016)

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.
// Assume global shared 0, 0~ , and counter T" = 0.
Initialize thread step counter ¢ <— 0
Initialize target network weights 6~ «+ 6
Initialize network gradients df < 0
Get initial state s
repeat
Take action a with e-greedy policy based on Q(s, a; 6)
Receiye new state s” and reward 7

for terminal s’

r
y = _ .
Y r+ymax, Q(s',a’;07) for non-terminal s’

Accumulate gradients wrt 0: df < df + w

s=s"

T+ T+1landt<t+1

if I" mod Il;arget == 0 then
Update the target network 6~ <— 6

end if

ift mod IasynctUpdate == 0 or s is terminal then
Perform asynchronous update of 6 using d6.
Clear gradients df < 0.

end if

until 7" > Thnaw

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

67/71

 http://proceedings.mlr.press/v48/mniha16.pdf

Practical tricks

@ Patience. Training takes time (roughly hours to day on GPU training to see improvement)
@ Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.
@ ¢ annealing f.i. from 1 to .1 is beneficial too

@ Exploration is key: Try non-standard exploration schedules.

@ Always run at least two different seeds when experimenting

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 69 /71

Practical tricks
@ Bellman errors can be big. Clip gradients or use Huber loss on Bellman error

7(}/7';()())2, when |y — f(x)| <0
Sy — f(x)| — 5—22, otherwise

Ls(y, f(x)) = {

@ Very large 7 or set it to 1 to avoid myopic reward (very large sequences before reward)
@ n-steps return helps but careful

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 70/71

Partial Observability

@ In a lot of cases the agent has not complete information of the true state and uses its
perception as state.
@ The problem is not anymore an MDP.

@ How to solve these case?
© Formalize as a POMDP: MDP extended with set of observations O and probability of each
observation given the true state. Agent work with a belief vector of probabilities of being in
each state. Solve with dedicated algorithms
© Works with memory as a way to disambiguate the true state. Simple approaches like window
of last n perceptions (DQN), or more interesting ones using LSTM

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 71/71

http://www.pomdp.org/
https://arxiv.org/pdf/1507.06527.pdf

	Incremental methods
	Batch methods
	Fitted Q-learning
	Deep Neural Networks: DQN
	Improvements over basic DQN
	Overestimates: Double Q-learning
	Prioritized Experience Replay
	Dueling Network Architectures
	Multi-step learning
	Distributional RL
	Rainbow: Combining Improvements in Deep Reinforcement Learning
	Asynchronous Q-learning
	Practical tricks

