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Goal of this lecture

Methods we have seen so far work well when we have a tabular representation for each
state, that is, when we represent value function with a lookup table.
This is not reasonable on most cases:

I In Large state spaces: There are too many states and/or actions to store in memory (f.i.
Backgammon: 1020 states, Go 10170 states)

I and in continuous state spaces (f.i. robotic examples)
In addition, we want to generalize from/to similar states to speed up learning. It is too
slow to learn the value of each state individually.
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Goal of this lecture

We’ll see now methods to learn policies for large state spaces by using function
approximation to estimate value functions:

Vθ(s) ≈ V π(s) (1)
Qθ(s, a) ≈ Qπ(s, a) (2)

θ is the set of parameters of the function approximation method (with size much lower
than |S|)
Function approximation allow to generalize from seen states to unseen states and to save
space.
Now, instead of storing V values, we will update θ parameters using MC or TD learning
so they fulfill (1) or (2).
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Which Function Approximation?

There are many function approximators, e.g.
I Artificial neural network
I Decision tree
I Nearest neighbor
I Fourier/wavelet bases
I Coarse coding

In principle, any function approximator can be used. However, the choice may be affected
by some properties of RL:

I Experience is not i.i.d. Agents action affect the subsequent data it receives
I During control, value function V(s) changes with the policy (non-stationary)
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Incremental methods
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Which Function Approximation?

Incremental methods allow to directly apply the control methods of MC, Q-learning and
Sarsa, that is, back up is done using “on-line" sequence of data of the trial reported by
the agent following the policy.
Most popular method in this setting is gradient descent, because it adapts to changes in
the data (non-stationary condition)
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Gradient Descent

Let L(θ) be a differentiable function of parameter vector θ, we want to minimize
Define the gradient of L(θ) to be:

∇θL(θ) =


∂L(θ)
∂θ1...
∂L(θ)
∂θn


To find a local minimum of L(θ), gradient descent method adjust the parameter in the
direction of negative gradient:

∆θ = −1
2α∇θL(θ)

where is a stepsize parameter
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Value Function Approx. by SGD

Minimizing Loss function of the approximation
Goal: Find parameter vector θ minimizing mean-squared error between approximate value
function Vθ(s) and true value function V π(s)

L(θ) = Eπ

[
(V π(s)− Vθ(s))2] =∑

s∈S
µπ(s) [V π(s)− Vθ(s)]2

where µπ(s) is the time spent in state s while following π (probability visiting s following
policy)

Gradient descent finds a local minimum:

∆θ =
1
2α(V

π(s)− Vθ(s)) ∇θVθ(s)
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TD prediction for FA and SGD

In TD(0) we use Q of next state to estimate Q on the current state using Bellman
equations. So, in general,

∆θi = α( Qπ(s, a) − Qθ(s, a))∇θQθ(s, a)
= α(r + γQθ(s ′, π(s ′))− Qθ(s, a))∇θQθ(s, a)

So. it seems direct to apply FA to Q-learning
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Incremental Q-learning with FA

Q-learning with FA
initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ε-greedy)
Execute action a, observe r , s ′
θ ← θ + α (r + γmaxa′ Q(s ′, a′))− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal
end for
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FA and Q-learning

Sounds good ... doesn’t work
Do not blame Neural Networks and local minimum. Even with linear function
approximation, it does not work
Causes?
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Problems with incremental Q-learning with FA

Caution!
Notice that TD targets are not independent of parameters. In TD(0):

r + γmax
a′

Q(s ′, a′)

depends of θ
Bootstrapping methods are not true gradient descenta: they take into account the effect
of changing θ on the estimate, but ignore its effect on the target. This produces the
effect of the moving target.

aThey include only a part of the gradient and, accordingly, we call them semi-gradient methods.
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Problems with incremental Q-learning with FA

Essence of off-policy learning.
repeat

Choose a, execute it and observe r and s ′ (s, a, r , s ′) using any probabilistic policy
θ ← θ + α (r + γmaxa′ Qθ(s ′, a′)− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal

Several problems with incremental off-policy TD learning
1 SGD does not converge because gradient does not follow true gradient. Target value is

always changing and SGD does not converge
2 Data is not even close to iid (it is strongly correlated) so another problem for SGD

convergence
How to solve these problems?
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Batch methods
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Batch Reinforcement Learning

Gradient descent is simple and appealing
I It is computationally efficient (one update per sample)
I ... But it is not sample efficient (does not take all profit from samples)

We can do better at the cost of more computational time

Batch methods seek to find the best fitting value function of given agents experience
(training data) in a supervised way.
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Fitted Q-learning
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Generalizarion of off-policy learning

Let’s generalize the method:

Generalizarion of off-policy learning.
Get D = {〈s, a, r , s ′〉} using any probabilistic policy
repeat

Set SD to N samples randomly taken from D
for each sample i in SD do

yi ← r + γmaxa′ Qθ(s ′i , a′)
end for
θ ← argminθ

∑
(Qθ(si , ai)− yi)

2 // Any ML regression method
until convergence
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Generalizarion of off-policy learning

Notice several differences:
1 Randomly sample a set of N examples instead of only 1
2 Don’t use 1-step of gradient descent but compute exact solution (regression problem)

Each change improves convergence
1 Samples obtained randomly reduce correlation between them and stabilize Q value function

for the regression learner
2 Computation of exact solution avoid the true gradient problem
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Fitted Q-learning

Fitted Q-learning
Given D of size T with examples (st , at , rt+1, st+1), and regression algorithm, set N to zero
and QN(s, a) = 0 for all a and s
repeat

N ← N + 1
Build training set TS = {〈(st , at), rt+1 + γmaxa QN(st+1, a)〉}Tt=1
QN+1 ← regression algorithm on TS

until QN ≈ QN+1 or N > limit
return π based on greedy evaluation of QN

Works specially well for forward Neural Networks as regressors (Neural Fitted Q-learning)
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Deep Neural Networks:
DQN
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Use of Neural Networks for regression
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Use of Neural Networks for regression
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Recap of FA solutions

Two possible approaches for function approximation:

1 Incremental:
I Pro: Learning on-line
I Cons: No convergence due to (a) Data not i.i.d., that can lead to catastrophic forgetting,

and (b) Moving target problem
2 Batch Learning:

I Cons: Learn from collected dataset (not own experience)
I Pro: Better convergence
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Neural Fitted Q-learning

Neural Fitted Q-learning: Wrong version. Why?
Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ(st+1, a′)])
until convergence on learning or maximum number of steps
return π based on greedy evaluation of Qθ

Does not work well
It’s not a Batch method. Can you see why?
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Neural Fitted Q-learning (Riedmiller, 2005)

Neural Fitted Q-learning
Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat

θ′ ← θ
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a′)])
until convergence on learning or maximum number of steps

until maximum limit iterations
return π based on greedy evaluation of Q′

θ

Notice target does not change during supervised regression
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Neural Fitted Q-learning: Another version

That works, however the update of parameters is not smooth
Alternative version to avoid moving target

Fitted Q-learning avoiding moving target
Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at)− (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a′)])
θ′ ← τθ′ + (1− τ)θ

until maximum limit iterations
return π based on greedy evaluation of Q′

θ

Value of τ close to one (f.i. τ = 0.999) reduces the “speed" of the moving target.
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How to get the data?

So now, we have learning stabilized just any batch method but using NN.
However, now there is the problem of dependence of dataset D. How we obtain the data?
Data can be obtained using a random policy, but we want to minimize error on states
visited by the policy!

L(θ) = Eπ

[
(V π(s)− Vθ(s))2] =∑

s∈S
µπ(s) [V π(s)− Vθ(s)]2

where µπ(s) is the time spent in state s while following π
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How to get the data?

Data should be generated by the policy
But it also has to be probabilistic (to ensure exploration)
So, collect data using the policy and add them to D
Also remove old data from D.

I Limit the size of the set
I Remove examples obtained using old policies

So, collect data using a buffer of limited size (we call replay buffer).
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When to get the data?

Batch Q-learning with replay buffer and target network
Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1) using random policy
repeat

θ′ ← θ
repeat

Collect M experiences following ε-greedy procedure and add them to buffer D
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ
∂θ

(st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a′)])
until maximum number of steps K

until maximum number of iterations N
until maximum limit iterations
return π based on greedy evaluation of Q′

θ

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 31 / 71



DQN algorithm (Mnih, et al. 2015)

Deep Q-Network algorithm breakthrough
I In 2015, Nature published DQN algorithm.
I It takes profit of "then-recent" Deep Neural Networks and, in particular, of Convolutional

NNs so successful for vision problems
I Applied to Atari games directly from pixels of the screen (no hand made representation of

the problem)
I Very successful on a difficult task, surpassing in some cases human performance

It is basically the previous algorithm with K = 1, and M = 1 that is applied on the
current state.
It goes back to incremental learning
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DQN algorithm (Mnih, et al. 2015)

DQN algorithm
Initialize weights θ for NN for regression
Set s to initial state, and k to zero
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ε-greedy)
k ← k + 1
Execute action a, observe r , s ′, and add 〈s, a, r , s ′〉 to buffer D
Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a′)])
if k==N then

θ′ ← θ
k ← 0

end if
until maximum limit iterations
return π based on greedy evaluation of Q′

θ
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DQN algorithm on Atari

Atari games in the gym
End-to-end learning of values Q(s, a) from pixels:

State: Input state s is stack of raw pixels from last 4 frames
Actions: Output is Q(s, a) value for each of 18 joystick/button positions
Reward: Reward is direct change in score for that step

Network architecture and hyper-parameters fixed across all games, No tuning!
Clipping reward -1,0,1 to avoid problem of different magnitudes of score in each game
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DQN algorithm on Atari
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DQN algorithm on Atari
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DQN algorithm on Atari
What is the effect of each trick on Atari games?
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Improvements over basic DQN
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Overestimates: Double Q-learning
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Double Q-learning (Hasselt, et al. 2015)

Problem of overestimation of Q values.
We use max operator to compute the target in the minimization of:

L(s, a) = (Q(s, a)− (r + γmax
a′

Q(s ′, a′)))2

Surprisingly here is a problem.
1 Suppose Q(s ′, a′) is 0 for all actions, so Q(s, a) should be r .
2 But γmaxa′ Q(s ′, a′) ≥ 0 because random initialization and use of the max operator.
3 So estimation Q(s, a) ≥ r , overestimating true value
4 All this because for max operator:

E[max
a′

Q(s ′, a′)] ≥ max
a′

E[Q(s ′, a′)]

This overestimation is propagated to other states.
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Double Q-learning

Solution (Hasselt, 2010): Train 2 action-value functions: QA and QB, and compute
argmax with the other network
Do Q-learning on both, but

I never on the same time steps (QA and QB are independent)
I pick QA or QB at random to be updated on each step

Notice that:
r + γmax

a′
Q(s ′, a′) = r + γQ(s ′, argmax

a′
Q(s ′, a′))

When updating one network, use the values of the other network:

QA(s, a)← r + γQB(s ′, argmax
a′

QA(s ′, a′))

QB(s, a)← r + γQA(s ′, argmax
a′

QB(s ′, a′))
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Double DQN (Hasselt, et al. 2015)

In DQN, in fact, we have 2 value functions: Qθ and Qθ′

so, no need to add another one:
I Current Q-network θ is used to select actions
I Older Q-network θ′ is used to evaluate actions

Update in Double-DQN (Hasselt, et al. 2015):

Qθ(s, a)← r + γ

Action Evaluation︷ ︸︸ ︷
Qθ′(s ′, argmax

a′
Qθ(s ′, a′)︸ ︷︷ ︸

Action Selection

)

Works well in practice.
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Prioritized Experience Replay
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Prioritized Experience Replay (Schaul, et al. 2016)

Idea: sample transitions from replay buffer more cleverly
Those states with poorer estimation in buffer will be selected with preference for update
We will set probability for every transition. Lets use the absolute value of TD-error of
transition as a probability!

pi = |TD-errori | = |Qθ′(si , ai)− (ri + γQθ′(si+1, argmax
a′

Qθ(si+1, a′))|

P(i) = pα
i∑

k pα
k

where P(i) is probability of selecting sample i for the mini-batch, and α ≥ 0 is a new
parameter (α = 0 implies uniform probability)
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Prioritized Experience Replay (Schaul, et al. 2016)

Do you see any problem?
Now transitions are no i.i.d. and therefore we introduce a bias.
Solution: we can correct the bias by using importance-sampling weights

wi =

(
1
N ·

1
P(i)

)β

For numerical reasons, we also normalize weights by maxi wi

When we put transition into experience replay, we set it to maximal priority
pt = maxi<t pi
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Prioritized Experience Replay (Schaul, et al. 2016)
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Dueling Network Architectures
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Dueling Network Architectures (Wang, et al. 2016)

Until now, use of generic NN for regression of Q-value function
Now, specific Deep Architecture specific for RL
Advantage function definition:

A(s, a) = Q(s, a)− V (s)

So,
Q(s, a) = A(s, a) + V (s)

Intuitively, Advantage function is relative measure of importance of each action
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Dueling Network Architectures (Wang, et al. 2016)

Dueling network:

Intuitive idea is that now we don’t learn Q(s, a) independently but share part that is V (s)
that improves generalization across actions
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Dueling Network Architectures (Wang, et al. 2016)

We have now 3 sets of parameters:
I θ: Usual weights of NN until red section
I β: Weights to compute V (s)
I α: Weights to compute A(s, a)

Green part computes A(s, a) + V (s)
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Dueling Network Architectures (Wang, et al. 2016)

However, there is a problem: one extra degree of freedom in targets!
Example:
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Dueling Network Architectures (Wang, et al. 2016)

Solution: require maxa A(s, a) to be equal to zero!
So the Q-function computes as:

Qθ,α,β(s, a) = Vθ,β(s) +
(

Aθ,α(s, a)− max
a′∈A

Aθ,α(s, a′)
)

In practice, the authors propose to implement

Qθ,α,β(s, a) = Vθ,β(s) +
(

Aθ,α(s, a)−
1
|A|

∑
a′∈A

Aθ,α(s, a′)
)

This variant increases stability of the optimization because now depends on softer
measure (average instead of max)
Now Q-values loses original semantics, but it not important. The important thing is a
reference between actions
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Multi-step learning
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Multi-step learning

Idea: instead of using TD(0), use n-steps estimators like we described in lecture 2
In buffer we should store experiences:〈

st , at , rt ,
n∑

i=0
γ i−1rt+1 + γn max

a′
Qθ′(st+n, a′)

〉

Again, there is a problem!
Only correct when learning on-policy! (not an issue when n = 1)
How to fix that?

I Ignore the problem (often works well)
I Dynamically choose n to get only on-policy data (Store data until not policy action taken)
I Use importance sampling (Munos et al, 2016)
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Multi-step learning

Idea: instead of using TD(0), use n-steps estimators like we described in lecture 2
In buffer we should store experiences:〈

st , at , rt ,
n∑

i=0
γ i−1rt+1 + γn max

a′
Qθ′(st+n, a′)

〉

Again, there is a problem!
Only correct when learning on-policy! (not an issue when n = 1)
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Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 56 / 71

https://arxiv.org/abs/1606.02647


Distributional RL
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Distributional RL (Dabney et al. 2017)
Instead of working with Expectation of Long-term-reward, work with Distributions of
Long-term-reward

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 58 / 71



Distributional RL (Dabney et al. 2017)

Apply Bellman equation on the distribution (some theory behind necessary)
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Distributional RL (Dabney et al. 2017)

Several implementations of the same idea: C51, QR-DQN, IQN, and FQF
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Rainbow: Combining Improvements in Deep Reinforcement
Learning
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Rainbow (Hessel et al. 2017)

Idea: Let’s try to investigate how each of the different improvements over DQN help to
improve performance on the Atari games
Over DQN, they added the following modifications:

I Double Q-learning
I Prioritized replay
I Dueling networks
I Multi-step learning
I Distributional RL
I Noisy Nets

They perform an ablation study where over the complete set of improvement, they disable
one an measure the performance
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Rainbow (Hessel et al. 2017)
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Rainbow (Hessel et al. 2017)
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Asynchronous Q-learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 65 / 71



Asynchronous Q-learning (Mnih et al. 2016)

Idea: Parallelize learning with several workers

After some time steps, the worker passes gradients to the global network
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http://proceedings.mlr.press/v48/mniha16.pdf


Asynchronous Q-learning (Mnih et al. 2016)
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Practical tricks
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Practical tricks

Patience. Training takes time (roughly hours to day on GPU training to see improvement)
Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.
ε annealing f.i. from 1 to .1 is beneficial too
Exploration is key: Try non-standard exploration schedules.
Always run at least two different seeds when experimenting
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Practical tricks

Bellman errors can be big. Clip gradients or use Huber loss on Bellman error

Lδ(y , f (x)) =
{

(y−f (x))2

2 , when |y − f (x)| ≤ δ

δ|y − f (x)| − δ2

2 , otherwise

Very large γ or set it to 1 to avoid myopic reward (very large sequences before reward)
n-steps return helps but careful
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Partial Observability

In a lot of cases the agent has not complete information of the true state and uses its
perception as state.
The problem is not anymore an MDP.
How to solve these case?

1 Formalize as a POMDP: MDP extended with set of observations O and probability of each
observation given the true state. Agent work with a belief vector of probabilities of being in
each state. Solve with dedicated algorithms

2 Works with memory as a way to disambiguate the true state. Simple approaches like window
of last n perceptions (DQN), or more interesting ones using LSTM
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