
Reinforcement Learning
Free model Algorithms

Mario Martin

Mario Martin - CS-UPC

February 11, 2026

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 1 / 42

Goal of this lecture

Problems with Policy Iteration method:
I Sweep of full steps or random steps
I Need to know the model for policy evaluation

We’ll see now methods that do not require a model but only experiences to build
evaluations of policies and also to find optimal policies

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 2 / 42

Monte-Carlo

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 3 / 42

Monte-Carlo Policy Evaluation

Goal: learn V π from episodes of experience under policy π

S1,A1, r2, S2,A2, r3, . . . , Sk ∼ π

Recall that the return is the total discounted reward:

Rt = rt+1 + γrt+2 + . . .+ γT−1rT

Recall that the value function is the expected return:

V π(s) = Eπ[Rt |St = s] =
∑
τ

Rτpπ(τ) ≈ 1
N

N∑
i=1

Ri

where Ri is obtained from state s under π distribution (following π)
Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 4 / 42

Monte-Carlo reinforcement learning

MC uses the simplest possible idea: value = mean return. Instead of computing
expectations, sample the long term return under the policy
MC methods learn directly from episodes of experience
MC is model-free: no explicit knowledge of environment mechanisms
MC learns from complete episodes

I Caveat: can only be applied to complete episodic environments (all episodes must terminate).

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 5 / 42

Monte-Carlo Policy Evaluation

How to average results for V (s)? Every time-step t that state s is visited in an episode:
I Increment counter N(s)← N(s) + 1
I Increment total return S(s)← S(s) + Rt
I Value is estimated by mean return V (s) = S(s)/N(s)

By law of large numbers, V (s)→ V π(s) as N(s)→∞ for all states
However, for each state you should store S and N.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 6 / 42

Incremental Monte-Carlo Updates

Update V (s) incrementally:

Vn(St) =
1
n

n∑
i=1

Ri

Vn(St) =
1
n

(
Rn +

n−1∑
i=1

Ri

)

Vn(St) =
1
n (Rn + (n − 1)Vn−1(St))

Vn(St) =
1
nRn +

1
n ((n − 1)Vn−1(St))

Vn(St) =
1
nRn + Vn−1(St)−

1
nVn−1(St)

Vn(St) = Vn−1(St) +
1
n (Rn − Vn−1(St))

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 7 / 42

Incremental Monte-Carlo Updates

Compute return Rt

For each state St with return Rt

N(St)← N(St) + 1
V (St)← V (St) + α(St)(Rt − V (St))

where
α(St) =

1
N(St)

Still we have to store the number of visits to each state: N(St). Usually a constant
parameter α in range (0 . . . 1) is used:

V (St)← V (St) + α(Rt − V (St))

The same equation is applied to Q(s, a) value functions

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 8 / 42

Monte-Carlo policy learning

Can we use the MC policy evaluation to learn a policy (like with PI)?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 9 / 42

[from previous lecture: Policy iteration]

Policy Iteration (PI)
Initialize π, ∀s ∈ S to a random action a ∈ A(s), arbitrarily
repeat
π′ ← π
Compute Qπ for all states using a policy evaluation method
for each state s do
π(s)← argmax

a∈A
Q(s, a)

end for
until π(s) = π′(s) ∀s

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 10 / 42

Monte-Carlo policy learning

Can we use the MC policy evaluation to learn a policy (like with PI)?
Adapt Assync Policy Iteration: We don’t sweep the whole set of states to update the
Value estimates, neither the policy
How we select the states to update? States updated are from the experience collected by
the agent in one learning episode
We update Q using Bellman equation
Apply the improvement-of-the-policy idea to learn the optimal policy.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 11 / 42

Monte-Carlo policy learning

Caution! Monte Carlo policy learning with a subtle error
Initialize π and Q randomly:
repeat

Generate trial using π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do
π(s) = argmaxa∈A Q(s, a)

end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 12 / 42

Monte-Carlo policy learning

What’s wrong?
I Algorithm tries to implement asynchronous version of policy iteration... but remember...

there states are selected for updating randomly.
I Now states to be updated depend on the current policy, so we cannot guarantee convergence.

New important concept: Exploration vs. Exploitation
I All pairs (s,a) should have probability non-zero to be updated.
I At same time, we want to evaluate the current policy

Several ways to balance two concepts.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 13 / 42

ε-greedy exploration

Simplest idea for ensuring continual exploration
All m actions are tried with non-zero probability
With probability 1 - ε choose the greedy action
With probability ε choose an action at random

π(a|s) =
{
ε/m + 1− ε, if a = argmaxa′∈A Q(s, a′)
ε/m, otherwise

where m = |A(s)|

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 14 / 42

Monte-Carlo policy learning

Apply the improvement-of-the-policy idea to learn the optimal policy.

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using ε−greedy strategy on π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do
π(s) = argmaxa∈A Q(s, a) // ties randomly broken

end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 15 / 42

Monte-Carlo policy learning

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using exploration method based on π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do
π(s) = argmaxa∈A Q(s, a)

end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 16 / 42

Monte-Carlo policy learning

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using exploration method on greedy policy derived from Q values
for each s, a in trial do

R ← return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 17 / 42

Notes about Exploration

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 18 / 42

About exploration

A hot topic of research
We want to explore efficiently the state space
A lot of other more complex mechanisms based on criteria

I Less explored state, action pairs
I Higher changes in value of state action pair
I Bases on recency of last exploration
I Uncertainty on estimation of values
I Error in an agent’s ability to predict the consequence of action (curiosity)
I ...

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 19 / 42

https://arxiv.org/abs/1705.05363

Temporal Differences methods: Q-learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 20 / 42

Temporal Differences policy evaluation

Monte-Carlo methods compute expectation of Long-term-Reward averaging the return of
several trials.
Average is done after termination of the trial.
We saw in previous lecture that Bellman equation also allow to estimate expectation of
Long-term-Reward

Qπ(s, a) = Eπ[Rt |St = s,At = a]
= Eπ[rt+1 + γQπ(St+1, π(St+1))|St = s,At = a]

Computing expectations with world model:

Qπ(s, a) =
∑

s′
Pa

ss′
(
r(s ′) + γQπ(s ′, π(s ′))

)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 21 / 42

Temporal Differences policy evaluation

How to get rid of the world-model?
Q-value function and averaging, like in the case of MC

Q(St , a)← Q(St , a) + α(Rt(st)− Q(St , a))

But now substitute Rt with Bellman equation:

Q(St , a)← Q(St , a) + α [rt+1 + γQ(St+1, π(St+1))− Q(St , a)]

This is known as bootstrapping

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 22 / 42

Temporal Differences policy evaluation

Temporal Differences policy evaluation
Given π initialize Q randomly:
repeat

s ← initial state of episode
repeat

a← π(s)
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γQ(s ′, π(s ′))− Q(s, a))
s ← s ′

until s is terminal
until convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 23 / 42

Advantages and disadvantages of MC vs. TD

TD can learn before knowing the final outcome
I TD can learn online after every step
I MC must wait until end of episode before return is known

TD can learn without the final outcome
I TD can learn from incomplete sequences
I MC can only learn from complete sequences
I TD works in continuing (non-terminating) environments
I MC only works for episodic (terminating) environments

Can we use it for policy learning?... Yes. Q-learning algorithm

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24 / 42

Advantages and disadvantages of MC vs. TD

TD can learn before knowing the final outcome
I TD can learn online after every step
I MC must wait until end of episode before return is known

TD can learn without the final outcome
I TD can learn from incomplete sequences
I MC can only learn from complete sequences
I TD works in continuing (non-terminating) environments
I MC only works for episodic (terminating) environments

Can we use it for policy learning?... Yes. Q-learning algorithm

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24 / 42

Update equation of Q-values when learning the policy

Use of Bellman equation for policy evaluation is:

Q(s, a)← Q(s, a) + α
(
r + γQ(s ′, π(s ′))− Q(s, a)

)
But when learning, we know the optimal policy is greedy

π∗(s) = argmax
a

Q∗(s, a)

So, for the policy in the next state we assume the greedy policy wrt Q values

Q(s, a)←Q(s, a) + α

(
r + γQ(s ′, argmax

a′
Q(s ′, a′)− Q(s, a)

)
Q(s, a) + α

(
r + γmax

a′
Q(s ′, a′)− Q(s, a)

)
Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 25 / 42

Temporal Differences policy learning

Temporal Differences policy learning (first version)
Initialize Q and π randomly:
repeat

s ← initial state of episode
repeat

Set a using f.i. ε−greedy strategy on π
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))
π(s) = argmaxa∈A Q(s, a) // ties randomly broken
s ← s ′

until s is terminal
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 26 / 42

Temporal Differences policy learning

Q-learning: Temporal Differences policy learning
Initialize Q randomly:
repeat

s ← initial state of episode
repeat

Set a using f.i. ε−greedy strategy based on Q values
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γmaxa′ Q(s ′, a′)− Q(s, a))
s ← s ′

until s is terminal
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 27 / 42

Bias/variance trade-off MC an Q-learning

Return Rt = rt+1 + rt+2 + . . .+ γT−1rT is unbiased estimate of V π(St)

True TD target rt+1 + V π(st+1) is unbiased estimate of V π(st) but, while learning, TD
target rt+1 + V (st+1) is a biased estimate of V π(st)

TD target shows much lower variance than the MC return:
I Return depends on many random actions, transitions, rewards
I TD target depends on one action, transition, reward

Lower variance allow faster learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28 / 42

Bias/variance trade-off MC an Q-learning

Return Rt = rt+1 + rt+2 + . . .+ γT−1rT is unbiased estimate of V π(St)

True TD target rt+1 + V π(st+1) is unbiased estimate of V π(st) but, while learning, TD
target rt+1 + V (st+1) is a biased estimate of V π(st)

TD target shows much lower variance than the MC return:
I Return depends on many random actions, transitions, rewards
I TD target depends on one action, transition, reward

Lower variance allow faster learning

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28 / 42

On-policy vs. Off-policy learning: A subtle but important
distinction

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 29 / 42

Off-policy vs. On-policy learning

When learning value functions of a policy, we sample using the policy to estimate them
In Q-learning, the method tries to learn the value function of the optimal policy (Q∗)
when in fact samples are obtained from different policy (ε-greedy policy)
A subtle point with implications about the convergence of the algorithms to the optimal
solution
We’ll do the following distinction:
On-policy learning: When learning the value function Qπ of the current policy π
Off-policy learning: When Learning the value function Qπ using another policy π′

What about Q-learning and Monte-Carlo?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 30 / 42

Exercise: Off-policy vs. On-policy learning

s1 s2
a, r = 0

a1,R = 10
. . .

a2,R = 0
. . .

With this info, we know that Q(s2, a1) = 10 and Q(s2, a2) = 0
Let’s assume we obtain the following two experiences following the exploratory policy:

I (s1, a)→ (s2, a2)→ ...
I (s1, a)→ (s2, a1)→ ...

Which is the value that Monte Carlo will obtain for Q(s1, a)?
Which is the value that Q-learning will obtain for Q(s1, a)?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 31 / 42

Two observed episodes (from an exploratory behavior policy)

The behavior policy is exploratory, so from s2 it sometimes picks a1 and sometimes a2.

Assume γ= 1. Two sample episodes starting from (s1, a):
1 (s1, a)→ (s2, a2)→ · · ·

Return from (s1, a): R = 0 + γ0 = 0
2 (s1, a)→ (s2, a1)→ · · ·

Return from (s1, a): R = 0 + γ10 = 10

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 32 / 42

Monte Carlo update (On-policy)

Monte Carlo estimates the action-value by averaging observed returns under the same
policy that generated the data (the behavior policy).

QMC(s1, a) ≈ Eπb [R | s1, a]

With two equally-likely observed returns:

QMC(s1, a) =
0 + 10

2 = 5

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 33 / 42

Q-learning update (Off-policy)

Q-learning uses a greedy target regardless of what happens in the whole episode (so valid for
both episodes!):

QQL(s1, a)← QQL(s1, a) + α
[
r + γmax

a′
Q(s2, a′)− QQL(s1, a)

]
Here the one-step target is:

r + γmax
a′

Q(s2, a′) = 0 + γmax(10, 0)

because γ = 1:
Target = 10 ⇒ QQL(s1, a) is pushed toward 10

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 34 / 42

Exercise: Off-policy vs. On-policy learning

MonteCarlo estimates Q(s, a) = 5, so it actually computes the behaviour policy, so it is
on-policy

Q-learning estimates Q(s, a) = 10. This is not the long term return from s of the
behaviour policy. It is the return of the greedy policy.
So Q-learning evaluates a different policy that the one used to collect the data. This is
the definition of a off-policy algorithm.
Notice that, using Q-learning, Q-values are not affected by bad results due to exploration.
This is good because we can explore and still evaluate the greedy policy.
In the limit, we can generate data using a random policy and still obtain the optimal
policy!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 35 / 42

Temporal Differences extended

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 36 / 42

Temporal Differences extended

Bootstrapping in Bellman equation is done from next state:

V π
(1)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]
= Eπ[rt+1 + γV π(St+1)|St = s]

But we can obtain estimation from 2 steps in the future also:

V π
(2)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]
= Eπ[rt+1 + γrt+2 + γ2(rt+3 + . . .))|St = s]
= Eπ[rt+1 + γrt+2 + γ2Rt+2|St = s]
= Eπ[rt+1 + γrt+2 + γ2V π(St+2)|St = s]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 37 / 42

Temporal Differences extended

In general we could extend that to the n-steps estimator of long-term reward.

V π
(n)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + . . .+ γn−1rn ++γnrn+1 . . . |St = s]

= Eπ

[n∑
k=0

γk rt+k+1 + γnV π(St+n)|St = s
]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 38 / 42

Temporal Differences extended: n-step estimators

All estimators of expectation are valid, but different bias and variance.
Which one to use?
Any of them is Ok at the end, but different learning speed with different value of n.
Implementation of the algorithm is easy. For each episode

1 Execute n actions, keep rewards
2 Apply update V π(St) = αV π(St) + (1− α)

∑n
k=0 γ

k rt+k+1 + γnV π(St+n)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 39 / 42

Temporal Differences extended TD(λ)

Another option. Instead of using one estimator, update using an average of them
For practical purposes, use a geometric average (0 ≤ λ ≤ 1)

Vλ = (1− λ)
∞∑

n=1
λn−1V(n)

Can be rewritten for episodes as:

Vλ(St) = (1− λ)
T−t−1∑

n=1
λn−1V(n)(St) + λT−t−1Rt

Unifies different algorithms:
I When λ = 0 we have TD(0), the standard Q-learning method
I When λ = 1 we have the standard MC method

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 40 / 42

Temporal Differences intuition

Benefits of temporal differences using larger n-step than TD(0)

Monte-Carlo Q-learning TD(λ)

In general, faster propagation of rewards and, so, faster learning.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 41 / 42

Temporal Differences extended: conclusions

Very good to estimate values for a given policy
Difficult to implement
It is a mix between on-policy and off-policy
You need more parameters to guess (n or λ)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 42 / 42

	Monte-Carlo
	Notes about Exploration
	Temporal Differences methods: Q-learning
	On-policy vs. Off-policy learning: A subtle but important distinction
	Temporal Differences extended

