Mario Martin

Mario Martin - CS-UPC

February 11, 2026

Goal of this lecture

@ Problems with Policy Iteration method:

» Sweep of full steps or random steps
» Need to know the model for policy evaluation

@ We'll see now methods that do not require a model but only experiences to build
evaluations of policies and also to find optimal policies

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 2/42

Monte-Carlo Policy Evaluation

@ Goal: learn V™ from episodes of experience under policy 7
$1,A1,n,5,A2,13,...,5~T
@ Recall that the return is the total discounted reward:
T-1

Ri=rip1+vyrepo+ ... +7v rr

@ Recall that the value function is the expected return:

VA (s) = Ex[RelSe = 5] = 3" Rep™(r) ~ = >

where R; is obtained from state s under 7 distribution (following)

@ Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

4/82

Monte-Carlo reinforcement learning

@ MC uses the simplest possible idea: value = mean return. Instead of computing
expectations, sample the long term return under the policy

@ MC methods learn directly from episodes of experience

o MC is model-free: no explicit knowledge of environment mechanisms
@ MC learns from complete episodes
» Caveat: can only be applied to complete episodic environments (all episodes must terminate).

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 5/42

Monte-Carlo Policy Evaluation

@ How to average results for V(s)? Every time-step t that state s is visited in an episode:
» Increment counter N(s) < N(s) +1
» Increment total return S(s) < S(s) + R:
» Value is estimated by mean return V(s) = S(s)/N(s)

@ By law of large numbers, V(s) — V7(s) as N(s) — oo for all states

@ However, for each state you should store S and N.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 6/42

Incremental Monte-Carlo Updates

e Update V/(s) incrementally:

=
o

SN—r
|

=
0

SN—
|

=
“
|

Mario Martin (Mario Martin - CS-UPC)

0

| | |
SIPS|RL,S |~k S|

(Rn+ (n—1)Vp_1(S:))

=
+
—_

—((n=1)Vh1(Sh))

1
n + Vn—l(st) - E n—l(St)

]

By

<

n,l(St) + %(Rn - vnfl(sf))

Reinforcement Learning February 11, 2026

7/42

Incremental Monte-Carlo Updates

o Compute return Ry

@ For each state S; with return Ry

@ where 1
a(Se) = 7N(5t)

@ Still we have to store the number of visits to each state: N(S;). Usually a constant
parameter « in range (0...1) is used:

V(S:) « V(S5;) + a(R: — V(5))
@ The same equation is applied to Q(s, a) value functions

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 8/42

@ Can we use the MC policy evaluation to learn a policy (like with PI)?

[from previous lecture: Policy iteration]

Policy lteration (PI)

Initialize 7,Vs € S to a random action a € A(s), arbitrarily
repeat
7
Compute Q™ for all states using a policy evaluation method
for each state s do

7(s) < argmax Q(s, a)
acA
end for

until 7(s) = 7'(s) Vs

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 10/42

Monte-Carlo policy learning

@ Can we use the MC policy evaluation to learn a policy (like with PI)?

@ Adapt Assync Policy Iteration: We don’t sweep the whole set of states to update the
Value estimates, neither the policy

@ How we select the states to update? States updated are from the experience collected by
the agent in one learning episode

o We update Q using Bellman equation

@ Apply the improvement-of-the-policy idea to learn the optimal policy.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 11/42

Monte-Carlo policy learning

Initialize 7 and @ randomly:
repeat
Generate trial using 7
for each s, a in trial do
R <+ long-term-return following s, a
Q(s,a) « Q(s,a) + a(R — Q(s, a))
end for
for each s in trial do
7(s) = arg max,c4 Q(s, a)
end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning

February 11, 2026

12/42

Monte-Carlo policy learning

@ What's wrong?

» Algorithm tries to implement asynchronous version of policy iteration... but remember...
there states are selected for updating randomly.
» Now states to be updated depend on the current policy, so we cannot guarantee convergence.

@ New important concept: Exploration vs. Exploitation

» All pairs (s,a) should have probability non-zero to be updated.
» At same time, we want to evaluate the current policy

@ Several ways to balance two concepts.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 13 /42

e-greedy exploration

@ Simplest idea for ensuring continual exploration
@ All m actions are tried with non-zero probability
@ With probability 1 - € choose the greedy action

@ With probability € choose an action at random

]. - f - / /
r(als) = {e/m+ e, ifa z.argmaxa ca Q(s, a)
e/m, otherwise

where m = | A(s)]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 14 /42

Monte-Carlo policy learning

@ Apply the improvement-of-the-policy idea to learn the optimal policy.

Monte Carlo policy learning

Initialize w and Q randomly:
repeat
Generate trial using e—greedy strategy on 7
for each s, a in trial do
R < long-term-return following s, a
Q(s,a) < Q(s,a) + a(R— Q(s, a))
end for
for each s in trial do
m(s) = argmax,c4 Q(s,a) // ties randomly broken
end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

15/42

Monte-Carlo policy learning

Monte Carlo policy learning

Initialize 7 and @ randomly:
repeat
Generate trial using exploration method based on 7
for each s, a in trial do
R < long-term-return following s, a
Q(s,a) « Q(s,a) + a(R — Q(s, a))
end for
for each s in trial do
7(s) = argmax,c4 Q(s, a)
end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 16 /42

Monte-Carlo policy learning

Monte Carlo policy learning

Initialize 7 and Q randomly:
repeat
Generate trial using exploration method on greedy policy derived from @ values
for each s, a in trial do
R < return following s, a
Q(s,a) «+ Q(s,a) + a(R — Q(s, a))
end for
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 17 /42

About exploration

@ A hot topic of research
o We want to explore efficiently the state space

@ A lot of other more complex mechanisms based on criteria

» Less explored state, action pairs

» Higher changes in value of state action pair

» Bases on recency of last exploration

» Uncertainty on estimation of values

» Error in an agent's ability to predict the consequence of action (curiosity)
>

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 19/42

https://arxiv.org/abs/1705.05363

Temporal Differences policy evaluation

@ Monte-Carlo methods compute expectation of Long-term-Reward averaging the return of

several trials.

@ Average is done after termination of the trial.

@ We saw in previous lecture that Bellman equation also allow to estimate expectation of

Long-term-Reward
Q™(s,a) = Ex[R|St=s,A: = 4]
= Exlres1 +7Q7(St41, 7(5e4+1))[St = 5, Ae = 3]

@ Computing expectations with world model:

EP ') +7Q7(s',7(s"))

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

21/42

Temporal Differences policy evaluation

How to get rid of the world-model?

Q-value function and averaging, like in the case of MC
Q(5f7 a) A Q(Sta a) + a(Rt(St) - Q(5t7 3))
@ But now substitute R; with Bellman equation:

Q(St,a) + Q(St,a) + arer1 +7Q(Sev1, m(Se11)) — Q(St, a)]

This is known as bootstrapping

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 22/42

Temporal Differences policy evaluation

Temporal Differences policy evaluation

Given 7 initialize Q randomly:
repeat
s < initial state of episode
repeat
a <+ 7(s)
Take action a and observe s’ and r
Q(s,a) < Q(s,a) + a(r +yQ(s', 7(s")) — Q(s, a))
s« ¢
until s is terminal
until convergence

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning

February 11, 2026

23/42

Advantages and disadvantages of MC vs. TD

@ TD can learn before knowing the final outcome

» TD can learn online after every step

» MC must wait until end of episode before return is known
@ TD can learn without the final outcome

» TD can learn from incomplete sequences

» MC can only learn from complete sequences

» TD works in continuing (non-terminating) environments

» MC only works for episodic (terminating) environments

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

24 /42

Advantages and disadvantages of MC vs. TD

@ TD can learn before knowing the final outcome

» TD can learn online after every step
» MC must wait until end of episode before return is known

@ TD can learn without the final outcome

» TD can learn from incomplete sequences

» MC can only learn from complete sequences

» TD works in continuing (non-terminating) environments
» MC only works for episodic (terminating) environments

@ Can we use it for policy learning?... Yes. Q-learning algorithm

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 24 /42

Update equation of Q-values when learning the policy

@ Use of Bellman equation for policy evaluation is:

Q(s,a) + Q(s,a) + « (r +9Q(s', 7(s")) — Q(s, a))

@ But when learning, we know the optimal policy is greedy

7 (s) = arg max Q*(s, a)

@ So, for the policy in the next state we assume the greedy policy wrt Q values

Q(s,a) «Q(s,a) + « (r +vQ(s';argmax Q(s', ') — Q(s, a))

Q(s,a) + « <r +ymax Q(s', ") — Q(s, a))

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

25 /42

Temporal Differences policy learning

Temporal Differences policy learning (first version)

Initialize @ and 7 randomly:
repeat
s < initial state of episode
repeat
Set a using f.i. e—greedy strategy on w
Take action a and observe s’ and r
Q(s,a) «+ Q(s,a) + a(r+ymaxy Q(s',a") — Q(s, a))
m(s) = argmax,c 4 Q(s, a) // ties randomly broken
s« ¢
until s is terminal
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

26 /42

Temporal Differences policy learning

Q-learning: Temporal Differences policy learning

Initialize @ randomly:
repeat
s < initial state of episode
repeat
Set a using f.i. e—greedy strategy based on @ values
Take action a and observe s’ and r
Q(s,a) «+ Q(s,a) + a(r+ymaxy Q(s',a") — Q(s, a))
s+ s
until s is terminal
until false

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

27 /42

Bias/variance trade-off MC an Q-learning

@ Return Ry = rey1 + reyo + ...+~ "Lrr is unbiased estimate of V™(S;)

@ True TD target rer1 + V™ (se+1) is unbiased estimate of V7 (s;) but, while learning, TD

target rey1 + V(set1) is a biased estimate of V™ (s;)
@ TD target shows much lower variance than the MC return:

» Return depends on many random actions, transitions, rewards
» TD target depends on one action, transition, reward

RrR1

R2

R3
R4
R5

A
1
1
1
]
]
1
1
1
I
|
1
1
[}

R6

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

28 /42

Bias/variance trade-off MC an Q-learning

@ Return Ry = rey1 + reyo + ...+~ "Lrr is unbiased estimate of V™(S;)

@ True TD target rer1 + V™ (se+1) is unbiased estimate of V7 (s;) but, while learning, TD
target rey1 + V(set1) is a biased estimate of V™ (s;)

@ TD target shows much lower variance than the MC return:

» Return depends on many random actions, transitions, rewards
» TD target depends on one action, transition, reward

RrR1

R2

R3
@ Lower variance allow faster learning RG

A
]
1
1
1
]
1
]
|
|
RS:
1
1
v

Ré

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 28/42

Off-policy vs. On-policy learning

@ When learning value functions of a policy, we sample using the policy to estimate them

@ In Q-learning, the method tries to learn the value function of the optimal policy (Q*)
when in fact samples are obtained from different policy (e-greedy policy)

@ A subtle point with implications about the convergence of the algorithms to the optimal
solution

o We'll do the following distinction:

On-policy learning: When learning the value function Q™ of the current policy =
Off-policy learning: When Learning the value function Q™ using another policy 7/

@ What about Q-learning and Monte-Carlo?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 30/42

Exercise: Off-policy vs. On-policy learning

al,R: 10

az7R:0

e With this info, we know that Q(sz, a1) = 10 and Q(s2,a2) =0

@ Let's assume we obtain the following two experiences following the exploratory policy:
> (s1,a) = (s2,32) = ...
> (s1,a) = (s2,31) = ...

@ Which is the value that Monte Carlo will obtain for Q(sy, a)?
@ Which is the value that Q-learning will obtain for Q(s1,a)?

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 31/42

Two observed episodes (from an exploratory behavior policy)

The behavior policy is exploratory, so from s, it sometimes picks a; and sometimes a,.
Assume y= 1. Two sample episodes starting from (s, a):

Q (s1,3) > (s2,a2) — -~
Return from (s;,a): R=0+4+~0=0

Q (s1,a) — (s2,a1) = -+~
Return from (s;,a): R=0+~10=10

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 32/42

Monte Carlo update (On-policy)

Monte Carlo estimates the action-value by averaging observed returns under the same
policy that generated the data (the behavior policy).

Q@uc(st;a) = Er, [R | s1, 3]
With two equally-likely observed returns:

0410
— =

Qmc(st,a) = 5

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 33/42

Q-learning update (Off-policy)

Q-learning uses a greedy target regardless of what happens in the whole episode (so valid for
both episodes!):

QaL(s1;a) + Qqu(si,a) +afr+v max Q(s2,a") — QqL(s1, a)}

Here the one-step target is:

r+ymax Q(sz,a’) = 0+ vymax(10,0)
a/

because v = 1:

Target =10 = Qqu(s1,a) is pushed toward 10

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 34 /42

Exercise: Off-policy vs. On-policy learning

@ MonteCarlo estimates Q(s, a) = 5, so it actually computes the behaviour policy, so it is
on-policy

@ Q-learning estimates Q(s, a) = 10. This is not the long term return from s of the
behaviour policy. It is the return of the greedy policy.

@ So Q-learning evaluates a different policy that the one used to collect the data. This is
the definition of a off-policy algorithm.

@ Notice that, using Q-learning, Q-values are not affected by bad results due to exploration.
This is good because we can explore and still evaluate the greedy policy.

@ In the limit, we can generate data using a random policy and still obtain the optimal
policy!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 35/42

Temporal Differences extended

@ Bootstrapping in Bellman equation is done from next state:

V(1)(s) = Ex[Re|St = 5]
=Ex[res1 +vres2 + 72rt+3 +...|5: =5s]
= Er[re41 + 7V (Se41)[Se = 5]
@ But we can obtain estimation from 2 steps in the future also:
V(Z)(S) = Ex[Re|St = 5]

= Erlresr +yres2 +V2ress + ... |Se = 5]

= Erlreser + rer2 + 72 (reqs +...))[Se = 5]

= Erlres1 + vres2 + 7 Req2|Se = 5]

= Er[res1 + vres2 + V2 V7 (Se42)|Se = 5]

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

37/42

@ In general we could extend that to the n-steps estimator of long-term reward.

V(T,)(S) = Eﬂ-[Rt|5t = S]
=Erlreer + 2+ A"+ 47 g1 |Se =]

=E, Z’Ykrt—',—k—',—l +"VT(St4n)|Se = s
k=0

Temporal Differences extended: n-step estimators

@ All estimators of expectation are valid, but different bias and variance.
@ Which one to use?
@ Any of them is Ok at the end, but different learning speed with different value of n.

@ Implementation of the algorithm is easy. For each episode

@ Execute n actions, keep rewards
© Apply update V™(5;) = aV™(5;) + (1 — «) ZZ:O Yoreskir +Y"V™(Sein)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 39/42

Temporal Differences extended TD()\)

Another option. Instead of using one estimator, update using an average of them

For practical purposes, use a geometric average (0 < A < 1)

Vi=(1-X\ ZA” "V(n)

@ Can be rewritten for episodes as:

T—t-1
Vi(Se) = Z ATV (Se) + AT IR,

Unifies different algorithms:

» When A = 0 we have TD(0), the standard Q-learning method
» When A = 1 we have the standard MC method

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 40/ 42

Temporal Differences intuition

@ Benefits of temporal differences using larger n-step than TD(0)

(.

= — - -4

: ¥ * * 1y

£ | b<=
Monte-Carlo Q-learning TD(N)

@ In general, faster propagation of rewards and, so, faster learning.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026

41/42

Temporal Differences extended: conclusions

@ Very good to estimate values for a given policy
o Difficult to implement
@ It is a mix between on-policy and off-policy

@ You need more parameters to guess (n or \)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 42 /42

	Monte-Carlo
	Notes about Exploration
	Temporal Differences methods: Q-learning
	On-policy vs. Off-policy learning: A subtle but important distinction
	Temporal Differences extended

