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Reinforcement Learning

“So saying, they handcuffed him, and carried
him away to the regiment. There he was
made to wheel about to the right, to the
left, to draw his rammer, to return his
rammer, to present, to fire, to march, and
they gave him thirty blows with a cane; the
next day he performed his exercise a little
better, and they gave him but twenty; the
day following he came off with ten, and was
looked upon as a young fellow of surprising
genius by all his comrades."

Candide: or, Optimism.
Voltaire (1759)
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Reinforcement Learning concept

Main characteristics of RL:
Agent-like learning:

© Goal is learning a behavior (policy), not a class
© No example dataset

© Grounded learning: Agent is actively collecting data in the environment

Informal definition

Learning about, from, and while interacting with an environment to achieve a goal (learning a
behavior).
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RL Framework

Why use reward instead of examples?:
© Usually it's easy to define a reward function (not always).

@ You don't need to know the goal behavior to train an agent (in contrast to supervised
learning).

© Behavior is grounded and efficient (optimal in some cases) given perceptual system and
possible actions of the agent.
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RL Framework

Why use reward instead of examples?:
© Usually it's easy to define a reward function (not always).

@ You don't need to know the goal behavior to train an agent (in contrast to supervised
learning).

© Behavior is grounded and efficient (optimal in some cases) given perceptual system and
possible actions of the agent.

All goals can be formalized as the outcome of maximizing a cumulative reward

See position in Reward is enough (Silver et al. 21) and On the Expressivity of Markov Reward (Abel et al. 21)
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RL Characteristics

What makes reinforcement learning harder than other machine learning paradigms?
@ Feedback is not the right action, but a sparse scalar value (reward function).
@ Relevant feedback is delayed, not instantaneous.

@ Time really matters (sequential, non i.i.d. data).

°

Environment can be stochastic and uncertain.
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Learning about, from, and while interacting with an environment to achieve a goal (Iearning a
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Learning about, from, and while interacting with an environment to achieve a goal (Iearning a
behavior).

read as

Learning a mapping from situations to actions to maximize long-term reward, without using a
model of the world.




RL Framework

‘ Action:
State: Reward: r, a
St+1 t

Agent and environment interact at discrete time steps: t =0, 1, 2, ...
@ Agent observes state at step t: s; € S
@ produces action at step t: a; € A(st)

@ gets resulting reward: r;11 € R, and resulting next state: s;y1
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Snapshot of a trial of the agent:
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RL Framework: MDP process

@ RL Problem can be formulated as a Markov Decision Process (MDP): a tuple
< S5,A, P, R > where

» S: Finite set of states
» A: Finite set of actions
» P: Transition Probabilities (Markov property):
P, =Pr{sgy1=5"|st=s,a=a}Vs,s' €S, ac A(s).
» R: Reward Probabilities:

RZ=TFE{ri1|si=s,a=as,1=5}Vs,s €8S, acA(s).
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RL Framework: MDP process

@ RL Problem can be formulated as a Markov Decision Process (MDP): a tuple
< S5,A, P, R > where

» S: Finite set of states
» A: Finite set of actions
» P: Transition Probabilities (Markov property):

P, =Pr{sgy1=5"|st=s,a=a}Vs,s' €S, ac A(s).
» R: Reward Probabilities:
RZ=TFE{ri1|si=s,a=as,1=5}Vs,s €8S, acA(s).

@ Some constraints can be relaxed later:

» Markov property (fully vs. partial observability)
» Infinite (or continuous) sets of actions and states
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RL Elements

In RL are key the following elements:

© Policy: What to do.
© Model: What follows what. Dynamics of the environment.
© Reward: What is good

@ Value function: What is good because it predicts reward.
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@ A policy is the agent's behavior

@ It is a map from current state to action to execute:

mT:se€S—ac A

@ Policy could be deterministic:
a=mn(s)

@ ... or stochastic:

m(als) = P[A; = s|S¢ = 5]



@ A model predicts next state and reward
@ Allows modeling of stochastic environments with probability transition functions:
» P predicts the next state

T(s,a,s") = P2 =P[Sey1 =5|S: = 5,Ar = 3]

@ Usually not known by the agent



Rewards

o Immediate reward r; is a scalar feedback value that depends on the current state r;
given that current state is S;.

e Reward function R determines (immediate) reward r; at each step of the agent's life

R(s) = E[rt|St = s]

@ It can be very sparse and does not evaluate of the goodness of the last action but the
goodness of the whole chain of actions (trajectory).

@ Sometimes written in the equivalent form r(s, a):

R(s,a) = E[rt4+1]St = s, Ar = a]

@ Difference in reward in post-action or pre-action execution
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Rewards: examples

Fly stunt manoeuvres in a helicopter

» —+ve reward for following desired trajectory
» -ve reward for crashing

@ Defeat the world champion at Go
» +ve/-ve reward for winning/losing a game
@ Make a humanoid robot walk

» +ve reward for forward motion
» -ve reward for falling over

@ Play Atari games better than humans
» -+ve reward for increasing/decreasing score
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[Kinds of experiences]

@ Agents will learn from experiences that in this case are sequences of actions
@ Interaction of the agent with the environment can be for organized in two different ways:
» Trials (or episodic learning): The agent has a final state after which he receive the reward.
In some cases it has to be achieved after a limited maximum time H. After he arrives to the
goal state (or surpass the maximum time allowed), a new trial is started.
» Non-ending tasks: The agent has no limit in time or it has not a clear final state. Learning
by trials can be also simulated with non-ending tasks by adding random extra-transitions
from goal state to initial states.
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Long-term reward

Formal definition of RL

Learning a mapping from situations to actions to maximize long-term reward, without using
a model of the world.

@ The agent's job is to maximise cumulative reward over an episode
@ Long term reward must be defined in terms of the goal of the agent

@ Definition of long-term reward must be derived from local rewards
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Long-term Return

First intuitive definition of long-term reward:

Finite horizon undiscounted return

H
Ri=rqi+rptrs+...+ry= Z Mt4k+1
k=0
Problem: Optimal policy depends on horizon H and becomes no-stationary

@ Sum of rewards obtained in trajectory

@ H because we want a limit in the sum of rewards to compare trajectories
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Long-term Return
Infinite horizon discounted return
The return R; is the total discounted reward from time-step t.

(o)
Rt = req1 +yre2 + 72ft+3 + 73ft+4 T oo = Z'Ykrt—&-k—i—l
k=0

@ The discount v € [0, 1] is the present value of future rewards. Usually very close to 1.
@ The value of receiving reward r after k + 1 time-steps is y<r.

@ This values immediate reward above delayed reward: ~ close to 0 leads to myopic
evaluation ~y close to 1 leads to far-sighted evaluation
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Long-term Return

@ Infinite horizon discounted return is limited by:

o0
r
R: < Z’Ykrmax = 1niax
k=0 v

@ So, also useful for learning non-ending tasks, because addition is unlimited.
@ Greedy policies are stationary

@ Elegant and convenient recursive definition (see Bellman egs. later)

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 25/53



Long-term Return

@ Infinite horizon discounted return is limited by:

o
k _ I'max
RtSZ’Y max = 1—~
k=0
@ So, also useful for learning non-ending tasks, because addition is unlimited.
@ Greedy policies are stationary
@ Elegant and convenient recursive definition (see Bellman egs. later)

@ Choice of reward function and maximization of Long-term Return should lead to desired
behavior.
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Long-term Return examples

@ Pole balancing example:

LA vertical

@ Episodic learning.

@ Three possible actions: {—F,0, F}

@ Sate is defined by (x, x, 6, 9)

@ Markovian problem because (x',x',#’,0") = F(x,x,0,6)

@ Goal: |0| bellow a threshold (similar to a Segway problem)
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Long-term Return examples

Reward definition:

A vertical

4

pole’

1 gl
e

centre

Case 1: v =1,r = 1 for each step except r = 0 when pole falls. = R = number of
time steps before failure

@ Return is maximized by avoiding failure for as long as possible.

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 27 /53



Long-term Return examples

Reward definition:

r-—r

centre

AN
7
‘ i W
—
-

Case 2: 7 < 1,r = 0 for each step, and r = —1 when pole falls. = R = —~* for k time
steps before failure

@ Return is maximized by avoiding failure for as long as possible.
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Other examples from OpenAl gym?®:

&

Documentation

Gym

Q Search

USER GUIDE
APl

Environment Creation
Spaces

Vector API

Tutorials

Wrappers

Github &

ENVIRONMENTS
Atari

MuJoCo

Toy Text
Classic Control

Acrobot

Classic Control

Mountain Car
Acrobot Cart Pole Continuous

/
LS
Mountain Car Pendulum
The unique dep ies for this set of envil can be installed via:

pip install gym[classic_control]

There are five classic control environments: Acrobot, CartPole, Mountain Car, Continuous Mountain Car,
and . All of these envil are ic in terms of their initial state, within a given
range. In addition, Acrobot has noise applied to the taken action. Also, regarding the both mountain car
environments, the cars are under powered to climb the mountain, so it takes some effort to reach the



https://gymnasium.farama.org/environments/classic_control/
https://gymnasium.farama.org/environments/classic_control/
https://farama.org/projects




Value function

@ Value function is a prediction of future reward
@ Used to evaluate goodness/badness of states
@ Depends on the agents policy...

@ ... and is used to select between actions

state-value function V™ (s)

V7 (s) is defined as the expected return starting from state s, and then following policy 7

VW(S) = }Eﬂ-[Rt|St = S] = Eﬂ {Z’}/krt+k+1 | St = 5}

k=0
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Q7 (s, a) is the expected return starting from state s, taking action a, and then following
policy 7

(ee)
Q"(s,a) = Ex[R:|S: = 5,Ar = a] = E, {Z Vorerkt1 | se=s,ar = a}
k=0




Bellman expectation equation

The value function can be decomposed into two parts:
@ immediate reward ry1

@ discounted value of successor state vV™(S¢41)

V7 (s) = E;[R:|St = s]
= Erlresr + vreso +Y2regz +...|St = 5]
= Ex[rei1 + y(res2 + 13 + .. )| St = 5]
= Ex[rer1 + yRey1] St = s]
= Er[re41 + 7V (St41)|Se = ]
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Bellman Expectation Equation for V™

So, the state-value function can again be decomposed recursively into immediate reward plus

discounted value of successor state,

Bellman equation for state-value function

Va(s) = E"[rer + YV ™(Se1)IS: = s]

Equivalent expression without the expectation operator:

V(s) = ¥ P [R(S)) + 7 V7 (s))]
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Bellman Expectation Equation for Q7

The action-value function can similarly be decomposed:

Q7 (s,a) = Ex[R:|S:t = s, Ar = 3]
=Bl rq1 +yr2+77rest .. |Se=15,Ar = 4
—~

because a following
=Ex[re41 +y(re42 + yre43 +...)|Se = s, Ar = 3]
= Ez[re41 + YRe41]St = 5, Ar = 4
= Ex[reyr + 7V (St41)|S: = 5, Ar = ]
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Notice that:
V7(St) = Q" (St, m(5t))




Notice that:
V7(St) = Q" (St, m(5t))

So,

Q"(s,a) = Ex[rei1 + 7Q"(St+1, m(St+1))|Se = 5, Ar = 2]




Maze example

Start
@ Rewards: -1 per time-step

@ Actions: N, S, W, E

@ States: Agent’s location

Goal
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Maze example: policy

- |

@ Arrows represent policy 7(s) for each state s
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Maze example: value function

EOEDDn
Eio

@ Numbers represent V7 (s) for each state s, for vy =1
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e Given 7, policy evaluation methods obtain V™ (same procedures can be used to
compute Q7).

@ First method: Algebraic solution using Bellman equations in matrix form




Policy evaluation (1)

e Given 7, policy evaluation methods obtain V™ (same procedures can be used to
compute Q™).

@ First method: Algebraic solution using Bellman equations in matrix form

VW(S) — _;'_,YZ P;TS(/S VTI’
VT = R4+~PTVT
VT _APTVT = R
(I—yP™)V™ = R

Algebraic solution

T=(-vP")7'R

e Computational cost is O(n®) where n is the number of states
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Policy evaluation (2)

@ Second method: iterative value policy evaluation
» Given arbitrary V as estimation of V™, we can tell the error using Bellman equations:

error = max Z PQS) )+ V(s)]

\{

Consider to apply iteratively Bellman equations to update V for all states (Bellman operator)

Z TOR(s') +~ V(S')]

v

Convergence can be proved: applying Bellman operator, error is reduced by a -y factor
(contraction)

So, apply updates of Bellman operator until convergence.

Solution is a fixed point of the application of this operator

v

v
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Policy evaluation (2)

Iterative value policy evaluation

Given 7, the policy to be evaluated, initialize V(s) =0 Vs € S
repeat

A<+ 0

for each s e S do

v%V
Z ss’ +PYV( )]

A+ max(A v —V(S)])
end for
until A < 6 (a small threshold)
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Policy evaluation (2)

@ Value iteration converges to optimal value: V — V7™

o Update of all states using the Bellman equation
Z P [R(s)) + 7 V(s))]

is called also the Bellman operator

@ It can be proved that iterative application of the Bellman operator is max-norm
contraction that ends in a fixed point

@ The fixed point is exactly the solution V™
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Relationship between value functions and policies

@ We can define a partial ordering of policies < in the following way:

7 <me= VT (s) < V7(s) Vs
[Remember that V™ (s) = Q™ (s, w(s)]

@ Under this ordering, we can prove that:
» There exists at least an optimal policy (7*)
Could be not unique
In the set of optimal policies some are deterministic
All share the same value function

v vy
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Relationship between value functions and policies

We say a policy 7 is greedy when:

7(S¢) = argmax Ex[Rey1]
acA

if value states are estimations of Ry, then in greedy policies:

7(s) = argmax Q" (s, a)
acA

It is easy to see that the optimal policy is greedy.
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Relationship between value functions and policies

Implementations of:
7(St) = argmax E;[Rey1]
acA

is easy when we have a finite number of actions. When we have an infinite number of
actions like in case of continuous space of actions (parametrized actions), computation is
harder!
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Finding policies

@ Knowing that optimal policy is greedy...
@ ... and using recursive Bellman equations
@ we can apply Dynamic Programming (DP) techniques to find the optimal policies

@ Main methods to find optimal policies using DP
» Policy iteration (PI)
» Value iteration (VI)
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Finding policies

Knowing that optimal policy is greedy...

. and using recursive Bellman equations

we can apply Dynamic Programming (DP) techniques to find the optimal policies

Main methods to find optimal policies using DP
» Policy iteration (PI)
» Value iteration (VI)

Model based method: In these methods, knowledge of the model is assumed.
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Finding policies: Policy iteration

@ A policy 7 can be improved iif

Js e S,ae€ Asuch that Q"(s,a) > Q"(s,7(s))
@ Obvious. In this case, 7 is not optimal and can be improved setting 7(s) = a

@ Simple idea for the algorithm:

© Start from random policy 7

@ Compute Q7

© Check for each state if the policy can be improved (and improve it)
Q@ If policy cannot be improved, stop. In other case repeat from 2.
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Finding policies: Policy iteration

Policy lteration (PI)

Initialize 7,Vs € S to a random action a € A(s), arbitrarily
repeat
7
Compute Q™ for all states using a policy evaluation method
for each state s do

7(s) < argmax Q(s, a)
acA
end for

until 7(s) = 7'(s) Vs

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning
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Finding policies: Policy iteration

Theorem

Policy iteration is guaranteed to converge and at convergence, the current policy and its value
function are the optimal policy and the optimal value function!

@ At each iteration the policy improves. This means:

» that a given policy can be encountered at most once (so number of iterations is bounded) ...

» ... and the number of possible policies is finite (|A|l°l), so it must stop at some point
(usually in polynomial time).

» At end, the policy cannot be improved. That means that the policy is optimal (because there
are not suboptimal policies that cannot be improved)
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Finding policies: Asynchronous versions

@ Pl requires exhaustive sweeps of the entire state set.
@ Asynchronous Pl does not use complete sweeps.

@ Pick a state at random and apply the appropriate backups for @ and 7. Repeat until
convergence criterion is meet:

@ Still need lots of computation, but does not get locked into hopelessly long sweeps
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