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What is reinforcement learning?: RL Framework
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Some Literature

“So saying, they handcuffed him, and carried
him away to the regiment. There he was
made to wheel about to the right, to the
left, to draw his rammer, to return his
rammer, to present, to fire, to march, and
they gave him thirty blows with a cane; the
next day he performed his exercise a little
better, and they gave him but twenty; the
day following he came off with ten, and was
looked upon as a young fellow of surprising
genius by all his comrades."

Candide: or, Optimism.
Voltaire (1759)
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Reinforcement Learning concept

Main characteristics of RL:
Agent-like learning:

1 Goal is learning a behavior (policy), not a class
2 No example dataset
3 Grounded learning: Agent is actively collecting data in the environment

Informal definition
Learning about, from, and while interacting with an environment to achieve a goal (learning a
behavior).
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RL Framework
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RL Framework
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RL Framework

Why use reward instead of examples?:
1 Usually it’s easy to define a reward function (not always).
2 You don’t need to know the goal behavior to train an agent (in contrast to supervised

learning).
3 Behavior is grounded and efficient (optimal in some cases) given perceptual system and

possible actions of the agent.

Reward assumption
All goals can be formalized as the outcome of maximizing a cumulative reward

See position in Reward is enough (Silver et al. 21) and On the Expressivity of Markov Reward (Abel et al. 21)
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RL Characteristics

What makes reinforcement learning harder than other machine learning paradigms?
Feedback is not the right action, but a sparse scalar value (reward function).
Relevant feedback is delayed, not instantaneous.
Time really matters (sequential, non i.i.d. data).
Environment can be stochastic and uncertain.
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RL Definition

Informal definition
Learning about, from, and while interacting with an environment to achieve a goal (learning a
behavior).

read as

Formal definition
Learning a mapping from situations to actions to maximize long-term reward, without using a
model of the world.
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RL Framework

Agent and environment interact at discrete time steps: t = 0, 1, 2, . . .
Agent observes state at step t: st ∈ S
produces action at step t: at ∈ A(st)

gets resulting reward: rt+1 ∈ R, and resulting next state: st+1
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RL Framework

Snapshot of a trial of the agent:
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RL Framework: MDP process

RL Problem can be formulated as a Markov Decision Process (MDP): a tuple
< S,A,P,R > where

I S: Finite set of states
I A: Finite set of actions
I P: Transition Probabilities (Markov property):

Pa
ss′ = Pr {st+1 = s ′ | st = s, at = a} ∀s, s ′ ∈ S, a ∈ A(s).

I R: Reward Probabilities:

Ra
s = E {rt+1 | st = s, at = a, st+1 = s ′ } ∀s, s ′ ∈ S, a ∈ A(s).

Some constraints can be relaxed later:
I Markov property (fully vs. partial observability)
I Infinite (or continuous) sets of actions and states
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RL elements:
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RL Elements

In RL are key the following elements:

1 Policy: What to do.
2 Model: What follows what. Dynamics of the environment.
3 Reward: What is good
4 Value function: What is good because it predicts reward.
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Policy

A policy is the agent’s behavior
It is a map from current state to action to execute:

π : s ∈ S −→ a ∈ A

Policy could be deterministic:
a = π(s)

... or stochastic:

π(a|s) = P[At = s|St = s]
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Model

A model predicts next state and reward
Allows modeling of stochastic environments with probability transition functions:

I P predicts the next state

T (s, a, s ′) = Pa
ss′ = P[St+1 = s ′|St = s,At = a]

Usually not known by the agent
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Rewards

Immediate reward rt is a scalar feedback value that depends on the current state rt
given that current state is St .
Reward function R determines (immediate) reward rt at each step of the agent’s life

R(s) = E[rt |St = s]

It can be very sparse and does not evaluate of the goodness of the last action but the
goodness of the whole chain of actions (trajectory).
Sometimes written in the equivalent form r(s, a):

R(s, a) = E[rt+1|St = s,At = a]

Difference in reward in post-action or pre-action execution

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 18 / 53



Rewards: examples

Fly stunt manoeuvres in a helicopter
I +ve reward for following desired trajectory
I -ve reward for crashing

Defeat the world champion at Go
I +ve/-ve reward for winning/losing a game

Make a humanoid robot walk
I +ve reward for forward motion
I -ve reward for falling over

Play Atari games better than humans
I +ve reward for increasing/decreasing score
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[Kinds of experiences]

Agents will learn from experiences that in this case are sequences of actions
Interaction of the agent with the environment can be for organized in two different ways:

I Trials (or episodic learning): The agent has a final state after which he receive the reward.
In some cases it has to be achieved after a limited maximum time H. After he arrives to the
goal state (or surpass the maximum time allowed), a new trial is started.

I Non-ending tasks: The agent has no limit in time or it has not a clear final state. Learning
by trials can be also simulated with non-ending tasks by adding random extra-transitions
from goal state to initial states.
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Long-term reward

Formal definition of RL
Learning a mapping from situations to actions to maximize long-term reward, without using
a model of the world.

The agent’s job is to maximise cumulative reward over an episode
Long term reward must be defined in terms of the goal of the agent
Definition of long-term reward must be derived from local rewards
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Long-term Return

First intuitive definition of long-term reward:

Finite horizon undiscounted return

Rt = rt+1 + rt+2 + rt+3 + . . .+ rH =
H∑

k=0
rt+k+1

Problem: Optimal policy depends on horizon H and becomes no-stationary

Sum of rewards obtained in trajectory
H because we want a limit in the sum of rewards to compare trajectories
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Long-term Return

Infinite horizon discounted return
The return Rt is the total discounted reward from time-step t.

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . =
∞∑

k=0
γk rt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards. Usually very close to 1.
The value of receiving reward r after k + 1 time-steps is γk r .
This values immediate reward above delayed reward: γ close to 0 leads to myopic
evaluation γ close to 1 leads to far-sighted evaluation
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Long-term Return

γ = 0.7

S1

S2

S3 S4 S5

a=A1, r=5

a=A2, r=0

a=A1,A2, r=0 a=A1,A2, r=10
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Long-term Return

Infinite horizon discounted return is limited by:

Rt ≤
∞∑

k=0
γk rmax =

rmax
1− γ

So, also useful for learning non-ending tasks, because addition is unlimited.
Greedy policies are stationary
Elegant and convenient recursive definition (see Bellman eqs. later)
Choice of reward function and maximization of Long-term Return should lead to desired
behavior.
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Long-term Return examples

Pole balancing example:

Episodic learning.
Three possible actions: {−F , 0,F}
Sate is defined by (x , ẋ , θ, θ̇)
Markovian problem because (x ′, ẋ ′, θ′, θ̇′) = F (x , ẋ , θ, θ̇)
Goal: |θ| bellow a threshold (similar to a Segway problem)
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Long-term Return examples

Reward definition:

Case 1: γ = 1, r = 1 for each step except r = 0 when pole falls. =⇒ R = number of
time steps before failure

Return is maximized by avoiding failure for as long as possible.
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Long-term Return examples

Reward definition:

Case 2: γ < 1, r = 0 for each step, and r = −1 when pole falls. =⇒ R = −γk for k time
steps before failure

Return is maximized by avoiding failure for as long as possible.
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Long-term Return examples
Other examples from OpenAI gym1:

1New version gymnasium from farama.org
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Value functions
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Value function

Value function is a prediction of future reward
Used to evaluate goodness/badness of states
Depends on the agents policy...
... and is used to select between actions

state-value function V π(s)
V π(s) is defined as the expected return starting from state s, and then following policy π

V π(s) = Eπ[Rt |St = s] = Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s
}
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Q-Value function

action-value function Qπ(s, a)
Qπ(s, a) is the expected return starting from state s, taking action a, and then following
policy π

Qπ(s, a) = Eπ[Rt |St = s,At = a] = Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s, at = a
}
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Bellman expectation equation

The value function can be decomposed into two parts:
immediate reward rt+1

discounted value of successor state γV π(St+1)

V π(s) = Eπ[Rt |St = s]
= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]
= Eπ[rt+1 + γ(rt+2 + γrt+3 + . . .)|St = s]
= Eπ[rt+1 + γRt+1|St = s]
= Eπ[rt+1 + γV π(St+1)|St = s]
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Bellman Expectation Equation for V π

So, the state-value function can again be decomposed recursively into immediate reward plus
discounted value of successor state,

Bellman equation for state-value function

Vπ(s) = Eπ[rt+1 + γV π(St+1)|St = s]

Equivalent expression without the expectation operator:

V π(s) =
∑
s′

Pπ(s)
ss′ [R(s ′) + γV π(s ′)]
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Bellman Expectation Equation for Qπ

The action-value function can similarly be decomposed:

Qπ(s, a) = Eπ[Rt |St = s,At = a]
= Eπ[ rt+1︸︷︷︸

because a

+ γrt+2 + γ2rt+3 + . . .︸ ︷︷ ︸
following π

|St = s,At = a]

= Eπ[rt+1 + γ(rt+2 + γrt+3 + . . .)|St = s,At = a]
= Eπ[rt+1 + γRt+1|St = s,At = a]
= Eπ[rt+1 + γV π(St+1)|St = s,At = a]
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Bellman Expectation Equation for Qπ

Notice that:
V π(St) = Qπ(St , π(St))

So,

Bellman equation for state-action value function

Qπ(s, a) = Eπ[rt+1 + γQπ(St+1, π(St+1))|St = s,At = a]
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Maze example

Rewards: -1 per time-step
Actions: N, S, W, E
States: Agent’s location
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Maze example: policy

Arrows represent policy π(s) for each state s
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Maze example: value function

Numbers represent V π(s) for each state s, for γ = 1
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Policy evaluation (1)

Given π, policy evaluation methods obtain V π (same procedures can be used to
compute Qπ).
First method: Algebraic solution using Bellman equations in matrix form

V π(s) = R(s, π(s)) + γ
∑

s′
Pπ(s)

ss′ V π(s ′)

V π = R + γPπ V π

V π − γPπ V π = R
(I − γPπ)V π = R

Algebraic solution

V π = (I − γPπ)−1R

Computational cost is O(n3) where n is the number of states
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Policy evaluation (2)

Second method: iterative value policy evaluation
I Given arbitrary V as estimation of V π, we can tell the error using Bellman equations:

error = max
s∈S

∣∣∣∣∣V (s)−
∑

s′
Pπ(s)

ss′ [R(s ′) + γV (s ′)]

∣∣∣∣∣
I Consider to apply iteratively Bellman equations to update V for all states (Bellman operator)

V (s)←
∑

s′
Pπ(s)

ss′ [R(s ′) + γV (s ′)]

I Convergence can be proved: applying Bellman operator, error is reduced by a γ factor
(contraction)

I So, apply updates of Bellman operator until convergence.
I Solution is a fixed point of the application of this operator
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Policy evaluation (2)

Iterative value policy evaluation
Given π, the policy to be evaluated, initialize V (s) = 0 ∀s ∈ S
repeat
∆← 0
for each s ∈ S do

v ← V (s)
V (s)←

∑
s′

Pπ(s)
ss′

[
R(s ′) + γV (s ′)

]
∆← max(∆, |v − V (S)|)

end for
until ∆ < θ (a small threshold)
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Policy evaluation (2)

Value iteration converges to optimal value: V → V π

Update of all states using the Bellman equation

V (s)←
∑

s′
Pπ(s)

ss′
[
R(s ′) + γV (s ′)

]
is called also the Bellman operator
It can be proved that iterative application of the Bellman operator is max-norm
contraction that ends in a fixed point
The fixed point is exactly the solution V π
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Optimal Policies
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Relationship between value functions and policies

We can define a partial ordering of policies ≤ in the following way:

π′ ≤ π ⇐⇒ V π′
(s) ≤ V π(s) ∀s

[Remember that V π(s) ≡ Qπ(s, π(s)]

Under this ordering, we can prove that:
I There exists at least an optimal policy (π∗)
I Could be not unique
I In the set of optimal policies some are deterministic
I All share the same value function
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Relationship between value functions and policies

We say a policy π is greedy when:

π(St) = argmax
a∈A

Eπ[Rt+1]

if value states are estimations of Rt , then in greedy policies:

π(s) = argmax
a∈A

Qπ(s, a)

It is easy to see that the optimal policy is greedy.
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Relationship between value functions and policies

Infinite number of actions (f.i. continuous space of actions)
Implementations of:

π(St) = argmax
a∈A

Eπ[Rt+1]

is easy when we have a finite number of actions. When we have an infinite number of
actions like in case of continuous space of actions (parametrized actions), computation is
harder!

Mario Martin (Mario Martin - CS-UPC) Reinforcement Learning February 11, 2026 47 / 53



Finding Policies: Model based methods
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Finding policies

Knowing that optimal policy is greedy...
... and using recursive Bellman equations
we can apply Dynamic Programming (DP) techniques to find the optimal policies
Main methods to find optimal policies using DP

I Policy iteration (PI)
I Value iteration (VI)

Model based method : In these methods, knowledge of the model is assumed.
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Finding policies: Policy iteration

A policy π can be improved iif

∃ s ∈ S, a ∈ A such that Qπ(s, a) > Qπ(s, π(s))

Obvious. In this case, π is not optimal and can be improved setting π(s) = a

Simple idea for the algorithm:
1 Start from random policy π
2 Compute Qπ

3 Check for each state if the policy can be improved (and improve it)
4 If policy cannot be improved, stop. In other case repeat from 2.
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Finding policies: Policy iteration

Policy Iteration (PI)
Initialize π, ∀s ∈ S to a random action a ∈ A(s), arbitrarily
repeat
π′ ← π
Compute Qπ for all states using a policy evaluation method
for each state s do
π(s)← argmax

a∈A
Q(s, a)

end for
until π(s) = π′(s) ∀s
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Finding policies: Policy iteration

Theorem
Policy iteration is guaranteed to converge and at convergence, the current policy and its value
function are the optimal policy and the optimal value function!

At each iteration the policy improves. This means:
I that a given policy can be encountered at most once (so number of iterations is bounded) ...
I ... and the number of possible policies is finite (|A||S|), so it must stop at some point

(usually in polynomial time).
I At end, the policy cannot be improved. That means that the policy is optimal (because there

are not suboptimal policies that cannot be improved)
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Finding policies: Asynchronous versions

PI requires exhaustive sweeps of the entire state set.
Asynchronous PI does not use complete sweeps.
Pick a state at random and apply the appropriate backups for Q and π. Repeat until
convergence criterion is meet:
Still need lots of computation, but does not get locked into hopelessly long sweeps
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