Nearest Neighbors and Naive Bayes
Baseline algorithms

- Simple algorithms but effective
- Two different methods:
 - **Nearest Neighbor.** Non parametric method: In this case a lazy Instance Based Learning method that does not build any model.
 - **Naïve Bayes.** Parametric: It builds a probabilistic model of your data following some assumptions.
Nearest Neighbor classifier

Instance Based Learning / Lazy Methods
Lazy learning methods: they don’t build a model of the data

Assign the label to an observation depending on the labels of “closest” examples

Only requirements:
- A training set
- A similarity measure
Instance Based Learning Algorithms

- K-NN
- Distance Weighted kNN
- How to select K??
- How to solve some problems
K-Nearest neighbor algorithm

- It interprets each example as a point in a space defined by the features describing the data.
- In that space a similarity measure allows us to classify new examples.
- Class is assigned depending on the K closest examples.
1-NN example

- Two real features \((x_1, x_2)\) define the space.
- Each red point is a positive example. Black points are negative examples.

Equivalently, you can draw the Voronoi space of your data.
1-NN example

- Two real features \((x_1, x_2)\) define the space.
- Each red point is a positive example. Black points are negative examples.

Equivalent to draw the Voronoi space of your data.

X new data is classified as positive.
Distance measures

- Distance is a parameter of the algorithm
- When dataset is numeric, usually Euclidean:

\[d(x_i, x_j) = \sqrt{\sum_{k=1}^{m} (x_i(k) - x_j(k))^2} \]

- In mixed data sets, Gower or any other appropriate distance measure
- **CAVEAT**: Data should be normalized or standardized in order to ensure same relevance to each feature in the computation of distance.
Advantages:
- Fast training
- Ability to learn very complex functions

Problems:
- Very slow in testing. Needed some smart structure representation of data in trees
- Fooled by noise
- Fooled when irrelevant features
Some comments:

- Building more robust classifiers
 - Results do not depend on the closest example but on the k closest examples (so \textit{k-nearest neighbours} (kNN) name)
3-Nearest Neighbors

query point q_f

3 nearest neighbors

2x, 1o
7-Nearest Neighbors

query point qf

7 nearest neighbors

3x, 4o
K-NN algorithm

- **Parameters:**
 - Natural number k (odd number)
 - Training set
 - Distance measure

- **Algorithm:**
 1. Store all training set $<x_i, \text{label}(x_i)>$
 2. Given new observation, x_q, compute the nearest k neighbors
 3. Let vote the nearest k neighbors to assign the label to the new data.
How to select k?

- High number of k show two advantages:
 - Smother frontiers
 - Reduces sensibility to noise

- But too large values are bad because
 - We lose locality in the decision because very distant points can interfere in assigning labels
 - Computation time is increased

- K-value usually is chosen by cross-validation.
A smart variation of KNN.

When voting, all k neighbors have the same influence, but some of them are more distant than the others (so the should influence less in decisions)

\[k = 5 \]

Solution: *Given more weight to closest examples*
Distance Weighted kNN

Let's define a weight for each of the k-closest examples:

\[w_i = K(d(x_i, x_q)) \]

where \(x_q \) is the query point, \(x_i \) is the i-closest example, \(d \) is the distance function and \(K \) is the kernel (a decreasing function with respect to distance function).

Predicted label for \(x_q \) is computed according to:

\[\text{sign} \left(\sum_{i=1}^{k} w_i l(x_i) \right) \]

where \(l(x_i) \) is \{-1,1\} the label of example \(x_i \), and \(w_i \) is the weight of example \(x_i \).

In previous example, it could be something like:

\[\text{sign} \left(0.9 \times 1 + 0.8 \times 1 + 0.4 \times (-1) + 0.35 \times (-1) + 0.3 \times (-1) \right) = \text{sign}(0.65) = +1 \]
Kernel functions

Examples of kernel functions
Problems with irrelevant features

- K-NN is fooled when irrelevant features are widely present in the data set
 - For instance, examples are described using 20 attributes, but only 2 of them are relevant to the classification...

- Solution consists in **feature selection**. For instance:
 - Use weighted distance:
 \[
 d_z(x_i, x_j) = \sum_{k=1}^{n} z_k(x_i(k) - x_j(k))^2
 \]
 - Limit weights to 0 and 1. Notice that setting \(z_j = 0 \) means removing the feature
 - Find weights \(z_1, \ldots, z_n \) (one for each feature), that minimize error in a validation data set using cross-validation
Naïve Bayes

Probabilistic model
From examples in the dataset, we can estimate the likelihood of our data:

\[p(x_1, x_2, \ldots x_n | c_i) \]

read as probability to observe example with features \((x_1, x_2, \ldots x_n)\) \([x_i, represents feature i of observation x]\) in class \(c_i\)

But, for classifying an observation \((x_1, x_2, \ldots x_n)\), we should look for the class that maximizes the probability of the observation belonging to the class:

\[c_{MAP} = \arg\max_{c_j \in C} P(c_j | x_1, x_2, \ldots, x_n) \]
Naïve Bayes classifiers

We will use the Bayes’ theorem:

\[c_{MAP} = \arg\max_{c_j \in C} P(c_j \mid x_1, x_2, \ldots, x_n) = \arg\max_{c_j \in C} \frac{P(x_1, x_2, \ldots, x_n \mid c_j)P(c_j)}{P(x_1, x_2, \ldots, x_n)} \]

Bayes’ theorem:

\[
\begin{align*}
 P(A \mid B) & = \frac{P(A \cap B)}{P(B)} \\
 P(B \mid A) & = \frac{P(A \cap B)}{P(A)}
\end{align*}
\]

\[\Rightarrow P(A \cap B) = P(A \mid B) P(B) = P(B \mid A) P(A) \]

\[\Rightarrow P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} \]
Computing probabilities

- $P(c_j)$ - Simply proportion of elements in class j
- $P(x_1, x_2, \ldots, x_n | c_j)$
 - Problem $|X|^n / |C|$ parameters!
 - It can only be estimated from a very huge dataset. Impractical

Solution: **Independence assumption** (very *Naïve*): attribute values are independent. So in this case, we can easily compute

\[
P(x_1, x_2, \ldots, x_n \mid c_j) = \prod_i P(x_i \mid c_j)
\]
Computing probabilities

- \(P(x_k | c_j) \)
 - Now we only need \(n/C \) probability estimations
 - Very easy. Number of values with property \(x_k \) in class \(c_j \) over the complete number of cases in class \(c_j \)

- Solving now, \(P(x_1, x_2, \ldots, x_n | c_j) = \prod_i P(x_i | c_j) \)

the class assigned to a new observation is:

\[
c_{NB} = \arg\max_{c_j \in C} \frac{P(x_1, x_2, \ldots, x_n | c_j)P(c_j)}{P(x_1, x_2, \ldots, x_n)} = \arg\max_{c_j \in C} P(c_j)\prod_i P(x_i | c_j)
\]

Equation to be used
Practical issues

- Being probabilities in range 0..1, products quickly lead to floating-point underflow errors
- Knowing that \(\log(xy) = \log(x) + \log(y) \), it is better to work with \(\log(p) \) than with probabilities.

- Now:

\[
c_{NB} = \arg\max_{c_j \in C} \left(\log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i | c_j) \right)
\]
Example: Learning to classify texts

- Training set: X document corpus
- Each document is labeled with $f(x)=\text{like/dislike}$
- Goal: Learn function that permits given new document if you like it or not.
- Questions:
 - How do we represent documents?
 - How to compute probabilities?
How do we represent documents?

- Each document is represented as a *Bag of Words*
- **Attributes**: All words that appear in the document
- So each document is represented as a boolean vector with length N: 0 – word does not appear; 1 – word appears

Practical problem: A very huge table.

Solution: Use sparse representation of matrices
Some numbers

- 10,000 documents
- 500 words per document
- Maximum theoretical number of words: 50,000 (much less because of word repetitions)

Reducing the number of attributes

- Removing the number (sing/plural) and verbal forms (stemming)
- Remove conjunctions, propositions and articles (stop words)
- Now we have about 10,000 attributes
How to compute probabilities?

- First compute $P(v_i)$ for each class ["a priori" probability for like and dislike classes]

\[
P(v_{\text{like}}) = \frac{\#\text{documents like}}{\text{total number of documents}}
\]

\[
P(v_{\text{dislike}}) = \frac{\#\text{documents dislike}}{\text{total number of documents}}
\]
Example: Learning to classify texts

\[v_{NB} = \arg\max_{v \in \{\text{like}, \text{dislike}\}} P(v) \prod_i P(x_i = \text{word}_i \mid v) \]

How to compute probabilities?

- Second, compute \(P(x_i = \text{word}_i \mid v) \) for each word:

\[
P(\text{word}_k \mid v) = \frac{\#(\text{docs. } v \text{ in training where word}_k \text{ appears})}{\#(\text{documents } v)} = \frac{n_k}{n}
\]

- Number of parameters to estimate is not too large: 10,000 words and two classes (so about 20,000)
Example: Learning to classify texts

• Problem:

\[
P(\text{word}_k \mid v) = \frac{\#(\text{docs. } v \text{ del training on word}_k \text{ apareix})}{\#(\text{documents v})} = \frac{n_k}{n}
\]

– When \(n_k \) is low, not an accurate probability
– when \(n_k \) is 0 for \(\text{word}_k \) for one class \(v \), then any document with that word will never be assigned to \(v \) (independent of other appearing words)
Example: Learning to classify texts

• Solution: More robust computation of probabilities (Laplace smoothing)

\[P(\text{word}_k \mid v) = \frac{n_k + mp}{n + m} \]

• Where:
 – \(n_k \) is # of documents of class \(v \) in which word \(k \) appear
 – \(n \) is # of documents with label \(v \)
 – \(p \) it’s a likelihood estimation of “a priori” \(P(x_k \mid v) \) (f.i., uniform distribution)
 – \(m \) is the number of labels
Example: Learning to classify texts

Smoothing:

\[
P(x_k \mid v) = \frac{n_k + mp}{n + m}
\]

More common “a priori” uniform distribution:

1. When two classes: \(p=1/2, m=2\) (Laplace Rule)

\[
P(x_k \mid v) = \frac{n_k + 1}{n + 2}
\]

2. Generic case (\(c\) classes): \(p = 1/c, m=c\)

\[
P(x_k \mid v) = \frac{n_k + 1}{n + c}
\]
Naïve Bayes return good accuracy results even when independence assumption is not fulfilled

- In fact, Spam/not Spam implementation of Thunderbird work in this way
- Applied to document filtering (fi. *Newsgroups or incoming mails*)

Learning and testing time are linear with the number of attributes!
Extension to continuous attributes

- Assume each class follows a normal distribution for each variable

 \[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}} \]

- For instance 73 is average of feature temp. for class x, and std=6.2, we compute conditional prob in the following way:

 \[p(\text{temperature} = 66 \mid x) = \frac{1}{\sqrt{2\pi} 6.2} e^{\frac{(66-73)^2}{2(6.2)^2}} \]