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Generalization in 
Reinforcement Learning
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Large State Spaces

• When a problem has a large state space we can 
not longer represent the V or Q functions as 
explicit tables

• Even if we had enough memory 
– Never enough training data!
– Learning takes too long

• What to do??   ….  Generalize situations
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Approximate Reinforcement 
Learning

• Why?
– To learn in reasonable time and space

(avoid Bellman’s curse of dimensionality)
– To generalize to new situations

• Solutions
– Approximate the value function
– Search in the policy space
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Adapt Supervised Learning 
Algorithms

Supervised Learning 
SystemInputs Outputs

Training Info  =  desired (target) outputs

Error  =  (target output  – actual output)

Training example  =  {input, target output}
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Backups as Training Examples

As a training example:

input target output
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Any FA Method?

• In principle, yes:
– artificial neural networks
– decision trees
– multivariate regression methods
– etc.

• But RL has some special requirements:
– usually want to learn while interacting
– ability to handle nonstationarity
– other?
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Gradient Descent Methods
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Performance Measures
• Many are applicable but…
• a common and simple one is the mean-squared error (MSE) 

over a distribution P :

• Why P ?
• Why minimize MSE?
• Let us assume that P is always the distribution of states at 

which backups are done.
• The on-policy distribution: the distribution created while 

following the policy being evaluated. Stronger results are 
available for this distribution.
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Gradient Descent

Iteratively move down 
the gradient: 
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Function Approximation
• Never enough training data!

– Must generalize what is learned from one situation to 
other “similar” new situations

• Idea: 
– Instead of using large table to represent U or Q, use a 

parameterized function
• The number of parameters should be small compared to 

number of states
– Learn parameters from experience
– When we update the parameters based on observations 

in one state, then our U or Q estimate will also change 
for other similar states

• I.e. the parameterization facilitates generalization of experience
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Linear Function Approximation
• Define a set of features f1(s), …, fn(s)

– The features are used as our representation of states
– States with similar feature values will be treated similarly

• A common approximation is to represent U(s) as a weighted sum of 
the features features (i.e. a linear approximation) 

• The approximation accuracy is fundamentally limited by the 
information provided by the features

• Can we always define features that allow for a perfect linear 
approximation?
– Yes. Assign each state an indicator feature.
– Of course this requires far to many features and gives no generalization.
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Example
• Consider grid problem with no obstacles 
• Features for state s=(x,y):   f1(s)=x, f2(s)=y
• U(s) = 0 + 1 x + 2 y
• Is there a good linear 

approximation?
– Yes. 
– 0 =10, 1 = -1, 2 = -1
– (note upper right is origin)
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0

0
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But What If…
• U(s) = 0 + 1 x + 2 y
• Is there a good linear approximation?

– No. 

10

0

0
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But What If…
• U(s) = 0 + 1 x + 2 y

10

+ 3 z

• Include new feature z
– z= |xg-x| + |yg-y| 

• Does this allow a 
good linear approx?
– 0 =10, 1 = 2 = 0,
0 = -1

0

0
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Linear Function Approximation
• Define a set of features f1(s), …, fn(s)

– The features are used as our representation of states
– States with similar feature values will be treated 

similarly

• Our goal is to learn good parameter values 
(feature weights). 
– How can we do this?
– Use TD-based RL and somehow update parameters 

based on each experience.
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RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max) 
3. Update estimated model
4. Perform TD update for each parameter

5. Goto 2
What is a “TD update” for a parameter?
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Aside: Gradient Descent for Squared Error
• Suppose that we have a sequence of states and target 

values/utilities for each state
– E.g. produced by the TD-based RL loop

• Our goal is minimize the squared error between our 
estimated function and each example:

• Gradient descent rule tells us to update parameters by:
squared error of example j current estimate

learning rate

target utility for j’th example 
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Aside: continued

learning rate

• For a linear approximation function:

• Thus the update becomes:

• For linear functions this update is guaranteed to converge
to best approximation for suitable learning rate schedule 
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RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max) 
3. Perform TD update for each parameter

4. Goto 2
What should we use for uj(s)?

• Use the TD prediction based on the next state s’

this is the same as previous TD method only with approximation
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RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max) 
3. Perform TD update for each parameter

4. Goto 2

• Note that step 2 still requires model to select action using one-step look-
ahead.

• For applications such as Backgammon it is easy to get a simulation-
based model

• But we can do the same thing for model-free Q-learning
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Q-learning with Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, i.e. soft-max) 
3. Perform TD update for each parameter

4. Goto 2

• For both Q and U learning these algorithms converge to the
closest linear approximation to optimal Q or U.
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Nice Properties of Linear FA 
Methods

• The gradient is very simple:
• For MSE, the error surface is simple: quadratic 

surface with a single minumum.
• Linear gradient descent TD() converges:

– Step size decreases appropriately
– On-line sampling (states sampled from the on-policy 

distribution)
– Converges to parameter vector       with property:

best parameter vector(Tsitsiklis & Van Roy, 1997)
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Q-l w/ Non-linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, i.e. soft-max) 
3. Perform TD update for each parameter

4. Goto 2

• Typically the space has many local minima and we no 
longer guarantee convergence

• Often works well in practice

is sometimes represented by a non-linear
approximator such as a neural network

calculate 
closed-form
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One of the Worlds Best Backgammon 
Players

• Neural network with 80 hidden units
– Used computed features

• Used TD-updates for 300,000 games against self
• Is one of the top (2 or 3) players in the world!
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Other successful RL applications
• Checker Player
• Elevator Control (Barto & Crites)
• Space shuttle job scheduling (Zhang & 

Dietterich)
• Dynamic channel allocation in cellphone 

networks (Singh & Bertsekas)
• Robot Control
• Supply Chain Management
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RL Function Approximation

• High-dimensionality addressed by
– replacing v(s) or Q(s,a) by representation

and then applying Q-learning algorithm updating 
weights wi at each iteration, or

– approximating v(s) or Q(s,a) by a neural network

• Issue: choose “basis functions” i(s,a) to reflect 
problem structure
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Coarse Coding
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Radial Basis Functions (RBFs)
e.g., Gaussians
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Tile Coding
• Binary feature for each tile
• Number of features present at any one 

time is constant
• Binary features means weighted sum 

easy to compute
• Easy to compute indices of the features 

present
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Tile Coding Cont.

Irregular tilings

Hashing CMAC
“Cerebellar model arithmetic computer”

Albus 1971
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Can you beat the “curse of 
dimensionality”?

• Can you keep the number of features from going up 
exponentially with the dimension?

• Function complexity, not dimensionality, is the problem.
• Kanerva coding:

– Select a bunch of binary prototypes
– Use hamming distance as distance measure
– Dimensionality is no longer a problem, only complexity

• “Lazy learning” schemes:
– Remember all the data
– To get new value, find nearest neighbors and interpolate
– e.g., locally-weighted regression
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Neuro-Dynamic Programming 
Reinforcement Learning

“It is unclear which algorithms and parameter settings will 
work on a particular problem, and when a method does 
work, it is still unclear which ingredients are actually 
necessary for success. As a result, applications often 
require trial and error in a long process of a parameter 
tweaking and experimentation.”

van Roy - 2002
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Value Function Approximation 
Convergence results

• Linear TD converges if we visit states using the on-policy 
distribution

• Off policy Linear TD( and linear Q learning are known to 
diverge in some cases

• Q-learning, and value iteration used with some averagers 
(including k-Nearest Neighbour and decision trees) has almost 
sure convergence if particular exploration policies are used

• A special case of policy iteration with Sarsa style updates and 
linear function approximation converges
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Function Approximation in RL
• Represent State by a finite number of Features 

(Observations)

• Represent Q-Function as a parameterized function of 
these features 
– (Parameter-Vector )

• Learn optimal parameter-vector * with Gradient 
Descent Optimization at each time step
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Problems of Value Function 
Approximation

• No Convergence Proofs
– Exception: Linear Approximators

• Instabilities in Approximation
– “Forgetting“ of Policies

• Very high Learning Time

• Still it works in many Environments
– TD-Gammon (Neural Network Approximator)
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Summary of Value Function 
Approximation

• Generalization
• Adapting supervised-learning function approximation 

methods
• Gradient-descent methods
• Linear gradient-descent methods

– Radial basis functions
– Tile coding
– Kanerva coding

• Nonlinear gradient-descent methods? Backpropation?
• Subleties involving function approximation, 

bootstrapping and the on-policy/off-policy distinction
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Policy Search

• Why not search directly for a policy?
• Policy gradient methods and 

Evolutionary methods
• Particularly good for problems with 

hidden state

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Approximate Reinforcement 
Learning

• Why?
– To learn in reasonable time and space

(avoid Bellman’s curse of dimensionality)
– To generalise to new situations

• Solutions
– Approximate the value function
– Search in the policy space
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RL via Policy Search
• So far all of our RL techniques have tried to learn an exact or 

approximate utility function or Q-function
– I.e. learn the optimal “value” of being in a state, or taking an action from a state.  

• Another approach is to search directly in a parameterized policy 
space

• This general approach has the following components
– Select a space of parameterized policies: 
– Compute the gradient of the utility function of the policy wrt parameters
– Move parameters in the direction of the gradient
– Repeat these steps until we reach a local maxima

• So we must answer the following questions:
– How should we represent parameterized policies?
– How can we compute the gradient?
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Parameterized Policies
• One example of a space of parametric policies is:

where                 may be a linear function, e.g.

• The goal is to learn parameters  that give a good policy
• Note that it is not important that            be close to the actual 

Q-function
– Rather we only require                    is good at ranking actions in 

order of goodness
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Policy Gradient Search
• Let () be the value of policy . 

– () is just the expected discounted total reward for a trajectory of . 
– For simplicity assume each trajectory starts at a single initial state.

• Our objective is to find a  that maximizes ()
• Policy gradient search computes the gradient

and then update the parameters by

we add the gradient since we are trying maximize ()
• In theory with the right learning rate schedule this will 

converge to a locally optimal solution
• It is rare that we can compute a closed form for the gradient, so 

it must be estimated
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Gradient Estimation

• Problem: for our example parametric policy 

is () continuous? 
• No. 

– There are values of  where arbitrarily small changes, cause the 
policy to change.

– Since different policies can have different values this means that 
changing  can cause discontinuous jump of ().

• Computing or estimating the gradient of discontinuous 
functions can be problematic. 

• What can we do about this?
– Consider a space of parametric policies that smoothly vary with 
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Probabilistic Policies
• We would like to avoid policies that drastically change with small 

parameter changes
• A probabilistic policy  is takes a state as input and returns a 

distribution over actions
– Given a state s  (s,a) returns the probability that  selects action a in s 

• Note that () is still well defined for probabilistic policies
– Importantly if (s,a) is continuous relative to changing  then () is also 

continuous 

• A common form for probabilistic policies is the softmax function
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Gradient Estimation
• For stochastic policies it is possible to estimate the gradient of () directly 

from trajectories of .
• First consider the simplified case where trials have length 1 

– () is just the expected discounted total reward for a trajectory of 
. 

– For simplicity assume each trajectory starts at a single initial state.

where s0 is the initial state, and R(a) is reward received after taking action a.  
A simple rewrite gives,

• Estimate the gradient by estimating the expected value of f(s0,a) !can get closed form f(s0,a)
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Gradient Estimation

• Estimate the gradient by estimating the expected value of 
f(s0,a)R(a) !

• We already learned how to estimate expected values by 
sampling (just average a set of N samples)

can get closed form f(s0,a) 
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Gradient Estimation
• So for the case of a length 1 trajectories we got:

• For the general case where trajectories have length greater 
than 1 we get:

• This gradient estimation converges rather slowly. There 
have been many recent improvements.

Total reward in trial j
from step t to end
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Policy Gradient Theorem1

• Theorem:
If the value-function parameterization is compatible with 
the policy parameterization, then the true policy gradient 
can be estimated, the variance of the estimation can be 
controlled by a reinforcement baseline, and policy iteration 
converges to a locally optimal policy. 

• Significance:
– Shows first convergence proof for policy iteration with 

function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function 
Approximation
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What else exists?

• Memory-based RL
• Fuzzy RL
• Multi-objective RL
• Inverse RL
• ...

• Could all be used for 
Motor Learning
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Memory-based RL
• Use a short-term Memory to store important 

Observations over a long time
– Overcome Violations of Markov Property
– Avoid storing finite histories

• Memory Bits [Peshkin et.al.]
– Additional Actions that change memory bits

• Long Short-Term Memory [Bakker]
– Recurrent Neural Networks
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Fuzzy RL

• Learn a Fuzzy Logic Controller via Reinforcement 
Learning [Gu, Hu]

• Optimize Parameters of Membership Functions and 
Composition of Fuzzy Rules

• Adaptive Heuristic Critic Framework
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Inverse RL
• Learn the Reward Function from observation of 

optimal Policy [Russell]
– Goal: Understand, which optimality principle underlies a 

policy

• Problems:
– Most algorithms need full policy (not trajectories)
– Ambiguity: Many different reward functions could be 

responsible for the same policy

• Few results exist until now
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Multi-objective RL

• Reward-Function is a Vector
– Agent has to fulfill multiple tasks (e.g. reach goal and stay 

alive)
– Makes design of Reward function more natural

• Algorithms are complicated and make strong 
assumptions
– E.g. total ordering on reward vectors [Gabor]
– Game theoretic Principles [Shelton]


