
Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Generalization in
Reinforcement Learning

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Large State Spaces

• When a problem has a large state space we can
not longer represent the V or Q functions as
explicit tables

• Even if we had enough memory
– Never enough training data!
– Learning takes too long

• What to do?? …. Generalize situations

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Approximate Reinforcement
Learning

• Why?
– To learn in reasonable time and space

(avoid Bellman’s curse of dimensionality)
– To generalize to new situations

• Solutions
– Approximate the value function
– Search in the policy space

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Approximate Reinforcement
Learning

• Why?
– To learn in reasonable time and space

(avoid Bellman’s curse of dimensionality)
– To generalize to new situations

• Solutions
– Approximate the value function
– Search in the policy space

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Adapt Supervised Learning
Algorithms

Supervised Learning
SystemInputs Outputs

Training Info = desired (target) outputs

Error = (target output – actual output)

Training example = {input, target output}

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Backups as Training Examples

As a training example:

input target output

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Any FA Method?

• In principle, yes:
– artificial neural networks
– decision trees
– multivariate regression methods
– etc.

• But RL has some special requirements:
– usually want to learn while interacting
– ability to handle nonstationarity
– other?

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Descent Methods

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Performance Measures
• Many are applicable but…
• a common and simple one is the mean-squared error (MSE)

over a distribution P :

• Why P ?
• Why minimize MSE?
• Let us assume that P is always the distribution of states at

which backups are done.
• The on-policy distribution: the distribution created while

following the policy being evaluated. Stronger results are
available for this distribution.

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Descent

Iteratively move down
the gradient:

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Function Approximation
• Never enough training data!

– Must generalize what is learned from one situation to
other “similar” new situations

• Idea:
– Instead of using large table to represent U or Q, use a

parameterized function
• The number of parameters should be small compared to

number of states
– Learn parameters from experience
– When we update the parameters based on observations

in one state, then our U or Q estimate will also change
for other similar states

• I.e. the parameterization facilitates generalization of experience

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Linear Function Approximation
• Define a set of features f1(s), …, fn(s)

– The features are used as our representation of states
– States with similar feature values will be treated similarly

• A common approximation is to represent U(s) as a weighted sum of
the features features (i.e. a linear approximation)

• The approximation accuracy is fundamentally limited by the
information provided by the features

• Can we always define features that allow for a perfect linear
approximation?
– Yes. Assign each state an indicator feature.
– Of course this requires far to many features and gives no generalization.

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Example
• Consider grid problem with no obstacles
• Features for state s=(x,y): f1(s)=x, f2(s)=y
• U(s) = 0 + 1 x + 2 y
• Is there a good linear

approximation?
– Yes.
– 0 =10, 1 = -1, 2 = -1
– (note upper right is origin)

10

0

0

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

But What If…
• U(s) = 0 + 1 x + 2 y
• Is there a good linear approximation?

– No.

10

0

0

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

But What If…
• U(s) = 0 + 1 x + 2 y

10

+ 3 z

• Include new feature z
– z= |xg-x| + |yg-y|

• Does this allow a
good linear approx?
– 0 =10, 1 = 2 = 0,
0 = -1

0

0

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Linear Function Approximation
• Define a set of features f1(s), …, fn(s)

– The features are used as our representation of states
– States with similar feature values will be treated

similarly

• Our goal is to learn good parameter values
(feature weights).
– How can we do this?
– Use TD-based RL and somehow update parameters

based on each experience.

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max)
3. Update estimated model
4. Perform TD update for each parameter

5. Goto 2
What is a “TD update” for a parameter?

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Aside: Gradient Descent for Squared Error
• Suppose that we have a sequence of states and target

values/utilities for each state
– E.g. produced by the TD-based RL loop

• Our goal is minimize the squared error between our
estimated function and each example:

• Gradient descent rule tells us to update parameters by:
squared error of example j current estimate

learning rate

target utility for j’th example

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Aside: continued

learning rate

• For a linear approximation function:

• Thus the update becomes:

• For linear functions this update is guaranteed to converge
to best approximation for suitable learning rate schedule

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max)
3. Perform TD update for each parameter

4. Goto 2
What should we use for uj(s)?

• Use the TD prediction based on the next state s’

this is the same as previous TD method only with approximation

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

RL for Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, e.g. soft-max)
3. Perform TD update for each parameter

4. Goto 2

• Note that step 2 still requires model to select action using one-step look-
ahead.

• For applications such as Backgammon it is easy to get a simulation-
based model

• But we can do the same thing for model-free Q-learning

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Q-learning with Linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, i.e. soft-max)
3. Perform TD update for each parameter

4. Goto 2

• For both Q and U learning these algorithms converge to the
closest linear approximation to optimal Q or U.

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Nice Properties of Linear FA
Methods

• The gradient is very simple:
• For MSE, the error surface is simple: quadratic

surface with a single minumum.
• Linear gradient descent TD() converges:

– Step size decreases appropriately
– On-line sampling (states sampled from the on-policy

distribution)
– Converges to parameter vector with property:

best parameter vector(Tsitsiklis & Van Roy, 1997)
Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Q-l w/ Non-linear Approximators

1. Start with initial parameter values
2. Take action according to an explore/exploit policy

(should converge to greedy policy, i.e. soft-max)
3. Perform TD update for each parameter

4. Goto 2

• Typically the space has many local minima and we no
longer guarantee convergence

• Often works well in practice

is sometimes represented by a non-linear
approximator such as a neural network

calculate
closed-form

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

One of the Worlds Best Backgammon
Players

• Neural network with 80 hidden units
– Used computed features

• Used TD-updates for 300,000 games against self
• Is one of the top (2 or 3) players in the world!

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Other successful RL applications
• Checker Player
• Elevator Control (Barto & Crites)
• Space shuttle job scheduling (Zhang &

Dietterich)
• Dynamic channel allocation in cellphone

networks (Singh & Bertsekas)
• Robot Control
• Supply Chain Management

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

RL Function Approximation

• High-dimensionality addressed by
– replacing v(s) or Q(s,a) by representation

and then applying Q-learning algorithm updating
weights wi at each iteration, or

– approximating v(s) or Q(s,a) by a neural network

• Issue: choose “basis functions” i(s,a) to reflect
problem structure

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Coarse Coding

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Radial Basis Functions (RBFs)
e.g., Gaussians

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Tile Coding
• Binary feature for each tile
• Number of features present at any one

time is constant
• Binary features means weighted sum

easy to compute
• Easy to compute indices of the features

present

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Tile Coding Cont.

Irregular tilings

Hashing CMAC
“Cerebellar model arithmetic computer”

Albus 1971

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Can you beat the “curse of
dimensionality”?

• Can you keep the number of features from going up
exponentially with the dimension?

• Function complexity, not dimensionality, is the problem.
• Kanerva coding:

– Select a bunch of binary prototypes
– Use hamming distance as distance measure
– Dimensionality is no longer a problem, only complexity

• “Lazy learning” schemes:
– Remember all the data
– To get new value, find nearest neighbors and interpolate
– e.g., locally-weighted regression

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Neuro-Dynamic Programming
Reinforcement Learning

“It is unclear which algorithms and parameter settings will
work on a particular problem, and when a method does
work, it is still unclear which ingredients are actually
necessary for success. As a result, applications often
require trial and error in a long process of a parameter
tweaking and experimentation.”

van Roy - 2002

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Value Function Approximation
Convergence results

• Linear TD converges if we visit states using the on-policy
distribution

• Off policy Linear TD( and linear Q learning are known to
diverge in some cases

• Q-learning, and value iteration used with some averagers
(including k-Nearest Neighbour and decision trees) has almost
sure convergence if particular exploration policies are used

• A special case of policy iteration with Sarsa style updates and
linear function approximation converges

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Function Approximation in RL
• Represent State by a finite number of Features

(Observations)

• Represent Q-Function as a parameterized function of
these features
– (Parameter-Vector )

• Learn optimal parameter-vector * with Gradient
Descent Optimization at each time step

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Problems of Value Function
Approximation

• No Convergence Proofs
– Exception: Linear Approximators

• Instabilities in Approximation
– “Forgetting“ of Policies

• Very high Learning Time

• Still it works in many Environments
– TD-Gammon (Neural Network Approximator)

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Summary of Value Function
Approximation

• Generalization
• Adapting supervised-learning function approximation

methods
• Gradient-descent methods
• Linear gradient-descent methods

– Radial basis functions
– Tile coding
– Kanerva coding

• Nonlinear gradient-descent methods? Backpropation?
• Subleties involving function approximation,

bootstrapping and the on-policy/off-policy distinction

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Policy Search

• Why not search directly for a policy?
• Policy gradient methods and

Evolutionary methods
• Particularly good for problems with

hidden state

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Approximate Reinforcement
Learning

• Why?
– To learn in reasonable time and space

(avoid Bellman’s curse of dimensionality)
– To generalise to new situations

• Solutions
– Approximate the value function
– Search in the policy space

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

RL via Policy Search
• So far all of our RL techniques have tried to learn an exact or

approximate utility function or Q-function
– I.e. learn the optimal “value” of being in a state, or taking an action from a state.

• Another approach is to search directly in a parameterized policy
space

• This general approach has the following components
– Select a space of parameterized policies:
– Compute the gradient of the utility function of the policy wrt parameters
– Move parameters in the direction of the gradient
– Repeat these steps until we reach a local maxima

• So we must answer the following questions:
– How should we represent parameterized policies?
– How can we compute the gradient?

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Parameterized Policies
• One example of a space of parametric policies is:

where may be a linear function, e.g.

• The goal is to learn parameters  that give a good policy
• Note that it is not important that be close to the actual

Q-function
– Rather we only require is good at ranking actions in

order of goodness

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Policy Gradient Search
• Let () be the value of policy .

– () is just the expected discounted total reward for a trajectory of .
– For simplicity assume each trajectory starts at a single initial state.

• Our objective is to find a  that maximizes ()
• Policy gradient search computes the gradient

and then update the parameters by

we add the gradient since we are trying maximize ()
• In theory with the right learning rate schedule this will

converge to a locally optimal solution
• It is rare that we can compute a closed form for the gradient, so

it must be estimated

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Estimation

• Problem: for our example parametric policy

is () continuous?
• No.

– There are values of  where arbitrarily small changes, cause the
policy to change.

– Since different policies can have different values this means that
changing  can cause discontinuous jump of ().

• Computing or estimating the gradient of discontinuous
functions can be problematic.

• What can we do about this?
– Consider a space of parametric policies that smoothly vary with 

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Probabilistic Policies
• We would like to avoid policies that drastically change with small

parameter changes
• A probabilistic policy  is takes a state as input and returns a

distribution over actions
– Given a state s (s,a) returns the probability that  selects action a in s

• Note that () is still well defined for probabilistic policies
– Importantly if (s,a) is continuous relative to changing  then () is also

continuous

• A common form for probabilistic policies is the softmax function

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Estimation
• For stochastic policies it is possible to estimate the gradient of () directly

from trajectories of .
• First consider the simplified case where trials have length 1

– () is just the expected discounted total reward for a trajectory of
.

– For simplicity assume each trajectory starts at a single initial state.

where s0 is the initial state, and R(a) is reward received after taking action a.
A simple rewrite gives,

• Estimate the gradient by estimating the expected value of f(s0,a) !can get closed form f(s0,a)

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Estimation

• Estimate the gradient by estimating the expected value of
f(s0,a)R(a) !

• We already learned how to estimate expected values by
sampling (just average a set of N samples)

can get closed form f(s0,a)

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Gradient Estimation
• So for the case of a length 1 trajectories we got:

• For the general case where trajectories have length greater
than 1 we get:

• This gradient estimation converges rather slowly. There
have been many recent improvements.

Total reward in trial j
from step t to end

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Policy Gradient Theorem1

• Theorem:
If the value-function parameterization is compatible with
the policy parameterization, then the true policy gradient
can be estimated, the variance of the estimation can be
controlled by a reinforcement baseline, and policy iteration
converges to a locally optimal policy.

• Significance:
– Shows first convergence proof for policy iteration with

function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function
Approximation

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

What else exists?

• Memory-based RL
• Fuzzy RL
• Multi-objective RL
• Inverse RL
• ...

• Could all be used for
Motor Learning

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Memory-based RL
• Use a short-term Memory to store important

Observations over a long time
– Overcome Violations of Markov Property
– Avoid storing finite histories

• Memory Bits [Peshkin et.al.]
– Additional Actions that change memory bits

• Long Short-Term Memory [Bakker]
– Recurrent Neural Networks

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Fuzzy RL

• Learn a Fuzzy Logic Controller via Reinforcement
Learning [Gu, Hu]

• Optimize Parameters of Membership Functions and
Composition of Fuzzy Rules

• Adaptive Heuristic Critic Framework

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Inverse RL
• Learn the Reward Function from observation of

optimal Policy [Russell]
– Goal: Understand, which optimality principle underlies a

policy

• Problems:
– Most algorithms need full policy (not trajectories)
– Ambiguity: Many different reward functions could be

responsible for the same policy

• Few results exist until now

Mario Martin – Spring 2011 APRENENTATGE EN AGENTS I SISTEMES MULTIAGENTS

Multi-objective RL

• Reward-Function is a Vector
– Agent has to fulfill multiple tasks (e.g. reach goal and stay

alive)
– Makes design of Reward function more natural

• Algorithms are complicated and make strong
assumptions
– E.g. total ordering on reward vectors [Gabor]
– Game theoretic Principles [Shelton]

