Generalization in
Reinforcement Learning
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Large State Spaces

» When a problem has a large state space we can

not longer represent the V or Q functions as
explicit tables

* Even if we had enough memory
— Never enough training data!
— Learning takes too long

 What to do?? .... Generalize situations
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Approximate Reinforcement
Learning

o Why?
— To learn in reasonable time and space
(avoid Bellman’s curse of dimensionality)

— To generalize to new situations
 Solutions

— Approximate the value function

— Search in the policy space
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Adapt Supervised Learning
Algorithms

Training Info = desired (target) outputs

Supervised Learnin
Inputs [ >l St S > Outputs

Training example = {input, target output}

Error = (target output — actual output)
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Backups as Training Examples

e.g., the TD(0) backup :
V(s) € V(s)+an, +y Vis.) = VGs)]

As a training example:

{description of s,, r,+yV(s,., )}

/ \

input target output
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Any FA Method?

* In principle, yes:
— artificial neural networks
— decision trees
— multivariate regression methods
— etc.
» But RL has some special requirements:
— usually want to learn while interacting
— ability to handle nonstationarity
— other?

Mario Martin — Spring 2011 APRENENTATGE EN AGENTS | SISTEMES MULTIAGENTS

Gradient Descent Methods

6, =(0.(1),6,2).....6.(n)

Assume V 1s a (sufficiently smooth) differentiable function

of 6_?“ forall s €.

Assume, for now, training examples of this form :

{description of s,, V* (SI)}
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Performance Measures

* Many are applicable but...

» acommon and simple one is the mean-squared error (MSE)
over a distribution P :

MSE(6,) = ZP(s)[V “(s)-, (S)T

s el
e WhyP?
* Why minimize MSE?
» Letusassume that P is always the distribution of states at
which backups are done.

» The on-policy distribution: the distribution created while
following the policy being evaluated. Stronger results are
available for this distribution.
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Gradient Descent

Let f be any function of the parameter space.
Its gradient at any point é, in this space is:

v ,z(oﬁé) 7(6) @"(é,)]"
or 20(1)” 20(2)" " dd(n))

Iteratively move down
the gradient:

éHl = éf _avéf(é;)
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Function Approximation

* Never enough training data!
— Must generalize what is learned from one situation to
other “similar” new situations
* ldea:

— Instead of using large table to represent U or Q, use a
parameterized function

» The number of parameters should be small compared to
number of states

— Learn parameters from experience

— When we update the parameters based on observations
in one state, then our U or Q estimate will also change
for other similar states

« |.e. the parameterization facilitates generalization of experience
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Linear Function Approximation

Define a set of features f1(s), ..., fn(s)
— The features are used as our representation of states
— States with similar feature values will be treated similarly

A common approximation is to represent U(s) as a weighted sum of
the features features (i.e. a linear approximation)

Uy(5)=0,1,(5)+6,£,(s) +...+ 6,1, (s)

The approximation accuracy is fundamentally limited by the
information provided by the features
Can we always define features that allow for a perfect linear
approximation?

— Yes. Assign each state an indicator feature.

— Of course this requires far to many features and gives no generalization.
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Example

» Consider grid problem with no obstacles
 Features for state s=(x,y): f1(s)=x, f2(s)=y
* U(s)=06p+ 0, x+0,y
* |s there a good linear 10]0

approximation?

- Yes.

- 0,=10,0,=-1,0,=-1

— (note upper right is origin)
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But What If...

* U(S) =6+, x+08,y
* |s there a good linear approximation?
- No. 0

10
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But What If...
e U(S)=0,+6,Xx+0,y+6,2

* Include new feature z 0
= 2= [XgX| + lyg-Yl
* Does this allow a
good linear approx?
- 0,=10,0,=6,=0,
0,=-1

10
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Linear Function Approximation

» Define a set of features f1(9), ..., fn(s)
— The features are used as our representation of states

— States with similar feature values will be treated
similarly

U,(5)=6,f,(5)+ 0, £,(s) +...+ 6, £, (s)

* Our goal is to learn good parameter values
(feature weights).
— How can we do this?
— Use TD-based RL and somehow update parameters
based on each experience.
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RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, e.g. soft-max)

3. Update estimated model
4. Perform TD update for each parameter

0 «?
5. Goto 2
What is a “TD update” for a parameter?
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Aside: Gradient Descent for Squared Error

» Suppose that we have a sequence of states and target
values/utilities for each state

— E.g. produced by the TD-based RL loop

e Our goal is minimize the squared error between our
estimated function and each example:

E ()= (U,()-u (s))
2 N

squared error of example | target utility for j'th example

current estimate
» Gradient descent rule tells us to update parameters by:

OF (s . 518
¢ _j“) — 0, +alu (5)-0, ()24t
00, \ , 00,
OF (s)

0«0 -«

learning rate

oU,(s)
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Aside: continued
oU ,(s)

OE (s) ( )
=0, +alu,(s) —Ua(s))—

\ OF (s)

learning rate 8[}9 (s)

0«0 +a

i !

* For a linear approximation function:

Uy(5)=6,£,(5)+ 0. /() +...+6, £, (5)
00,
« Thus the update becomes: 0, < 0, +a(z{_j(.s~) —09(5))1”,. (s)

= fi(s)

* For linear functions this update is guaranteed to converge
to best approximation for suitable learning rate schedule
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RL for Linear Approximators

Start with initial parameter values

Take action according to an explore/exploit policy
(should converge to greedy policy, e.g. soft-max)

Perform TD update for each parameter

0«0+ a(u_;. (S)—L}Q(S))j}(s)
Goto 2
What should we use for uy(s)?

u,(s) = R(s)+ BU, (s')
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RL for Linear Approximators

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, e.g. soft-max)

3. Perform TD update for each parameter
0, 0, +a(R(s)+ BU,(s)-U,(5))f,(s)
4. Goto 2

* Note that step 2 still requires model to select action using one-step look-

ahead.

« For applications such as Backgammon it is easy to get a simulation-
based model

* But we can do the same thing for model-free Q-learning
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Q-learning with Linear Approximators

QA{)(Ssa) = glﬁ(sv a)+t92f2(s,a)+...+ grrﬁr(sva)

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. soft-max)

3. Perform TD update for each parameter
0, « 0, +alR(s)+ Bmax 0,(s',a) - 0, (s,a) )/, (s)
4, Goto 2

* For both Q and U learning these algorithms converge to the
closest linear approximation to optimal Q or U.
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Nice Properties of Linear FA
Methods

« The gradient is very simple: V. V(s) =,

» For MSE, the error surface is simple: quadratic
surface with a single minumum.

 Linear gradient descent TD(L) converges:

— Step size decreases appropriately

— On-line sampling (states sampled from the on-policy
distribution) B

— Converges to parameter vector 0, with property:
1=y A 7
= ,.w.su()\

best parameter vector

MSE(0,) <

(Tsitsiklis & Van Roy, 1997)
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Q-1 w/ Non-linear Approximators

Q (s,a) Is sometimes represented by a non-linear
o377 approximator such as a neural network

1. Start with initial parameter values

2. Take action according to an explore/exploit policy
(should converge to greedy policy, i.e. soft-max)

3. Perform TD update for each parameter

0, « 6, + ar(R(x)+ S max Qﬁ(s’,a')_ Q”(.\‘,a))CQ’L{i;’a}
" o6
4. Goto 2 \
« Typically the space has many local minima and we no calculate
Ionger guarantee convergence closed-form

 Often works well in practice
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One of the Worlds Best Backgammon
Players

* Neural network with 80 hidden units
— Used computed features

e Used TD-updates for 300,000 games against self
* |s one of the top (2 or 3) players in the world!

Other successful RL applications

» Checker Player
 Elevator Control (Barto & Crites)

 Space shuttle job scheduling (Zhang &
Dietterich)

» Dynamic channel allocation in cellphone
networks (Singh & Bertsekas)

* Robot Control
» Supply Chain Management
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RL Function Approximation Coarse Coding
» High-dimensionality addressed by N N
— replacing v(s) or Q(s,a) by representation ANV AR

k

O(s.a) =Y wg,(s,a)

i=1

and then applying Q-learning algorithm updating
weights w; at each iteration, or
— approximating v(s) or Q(s,a) by a neural network
* Issue: choose “basis functions” ¢;(s,a) to reflect
problem structure

Mario Martin — Spring 2011 APRENENTATGE EN AGENTS | SISTEMES MULTIAGENTS

...........

expanded

original wfle- 1 zpresentation,

representation many features

UL )]
VP
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Radial Basis Functions (RBFs)

e.g., Gaussians

4. = exp| - II II
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Tile Coding

 Binary feature for each tile

* Number of features present at any one
time is constant

» Binary features means weighted sum
easy to compute

» Easy to compute indices of the features

tling #1 ———= resent

>

tiling #2 —

2D state Shape of tiles =» Generalization

space g

A
-

#Tllings = Resolution of final approximation

Mariovrarum= Sprmng Zull APRENENTATGE ENAGENTS TSISTEVMES MULTTAGENTS

Tile Coding Cont.

Irregular tilings | "L 1)

a) Irregular b) Log stripes c) Diagonal stripes
Hashin
ashing O CMAC
“Cerebellar model arithmetic computer”
' ;l Albus 1971
= iy
O
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Can you beat the “curse of
dimensionality”?

» Can you keep the number of features from going up
exponentially with the dimension?

» Function complexity, not dimensionality, is the problem.
» Kanerva coding:

— Select a bunch of binary prototypes

— Use hamming distance as distance measure

— Dimensionality is no longer a problem, only complexity
» *“Lazy learning” schemes:

— Remember all the data

— To get new value, find nearest neighbors and interpolate

— e.g., locally-weighted regression
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Neuro-Dynamic Programming
Reinforcement Learning

“It is unclear which algorithms and parameter settings will
work on a particular problem, and when a method does
work, it is still unclear which ingredients are actually
necessary for success. As a result, applications often
require trial and error in a long process of a parameter
tweaking and experimentation.”

van Roy - 2002
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Value Function Approximation
Convergence results

» Linear TD(L) converges if we visit states using the on-policy
distribution

» Off policy Linear TD(A) and linear Q learning are known to
diverge in some cases

* Q-learning, and value iteration used with some averagers
(including k-Nearest Neighbour and decision trees) has almost
sure convergence if particular exploration policies are used

» A special case of policy iteration with Sarsa style updates and
linear function approximation converges
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Function Approximation in RL

» Represent State by a finite number of Features
(Observations)

» Represent Q-Function as a parameterized function of
these features
— (Parameter-Vector 0)

 Learn optimal parameter-vector 6* with Gradient
Descent Optimization at each time step
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Problems of VValue Function
Approximation

No Convergence Proofs
— Exception: Linear Approximators

Instabilities in Approximation
— “Forgetting” of Policies

Very high Learning Time

Still it works in many Environments
— TD-Gammon (Neural Network Approximator)
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Summary of Value Function

Approximation

» Generalization
» Adapting supervised-learning function approximation
methods
 Gradient-descent methods
 Linear gradient-descent methods
— Radial basis functions
— Tile coding
— Kanerva coding
* Nonlinear gradient-descent methods? Backpropation?

 Subleties involving function approximation,
bootstrapping and the on-policy/off-policy distinction
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Policy Search

» Why not search directly for a policy?

 Policy gradient methods and
Evolutionary methods

« Particularly good for problems with
hidden state

Mario Martin — Spring 2011 APRENENTATGE EN AGENTS | SISTEMES MULTIAGENTS

Approximate Reinforcement
Learning

o Why?
— To learn in reasonable time and space
(avoid Bellman’s curse of dimensionality)
— To generalise to new situations
 Solutions
— Approximate the value function
— Search in the policy space
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RL via Policy Search

So far all of our RL techniques have tried to learn an exact or
approximate utility function or Q-function
— l.e. learn the optimal “value” of being in a state, or taking an action from a state.

Another approach is to search directly in a parameterized policy
space

This general approach has the following components
— Select a space of parameterized policies:
— Compute the gradient of the utility function of the policy wrt parameters
— Move parameters in the direction of the gradient
— Repeat these steps until we reach a local maxima

So we must answer the following questions:
— How should we represent parameterized policies?
— How can we compute the gradient?

Mario Martin — Spring 2011 APRENENTATGE EN AGENTS | SISTEMES MULTIAGENTS




Parameterized Policies

» One example of a space of parametric policies is:

7,(s) = argmax Q, (s, a)
where 0,(s,a) may be a linear function, e.g.

0, (s,a) = 0,1, (s,a) + 6, f,(s,a) +...+ 6, f, (s, a)

» The goal is to learn parameters 0 that give a good policy

« Note that it is not important that 0,(s,a)be close to the actual
Q-function

— Rather we only require 0,(s,a) is good at ranking actions in
order of goodness
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Policy Gradient Search

» Let p(B) be the value of policy .
— p(B) is just the expected discounted total reward for a trajectory of n,.
— For simplicity assume each trajectory starts at a single initial state.

» Our objective is to find a 0 that maximizes p(0)
 Policy gradient search computes the gradient  v,p(0)
and then update the parameters by 0 0+aV,p0)

we add the gradient since we are trying maximize p(6)

 In theory with the right learning rate schedule this will
converge to a locally optimal solution

 ltisrare that we can compute a closed form for the gradient, so
it must be estimated
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Gradient Estimation

Problem: for our example parametric policy

7,(s)=argmaxQ,(s,a
is p(0) continuous? o(5) =arg a Qy(s,a)
* No.

— There are values of 6 where arbitrarily small changes, cause the
policy to change.

— Since different policies can have different values this means that
changing 6 can cause discontinuous jump of p(6).

Computing or estimating the gradient of discontinuous
functions can be problematic.

What can we do about this?
— Consider a space of parametric policies that smoothly vary with 6
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Probabilistic Policies

We would like to avoid policies that drastically change with small
parameter changes

A probabilistic policy =, is takes a state as input and returns a
distribution over actions
— Given a state s my(s,a) returns the probability that r, selects actionain s

Note that p(0) is still well defined for probabilistic policies

— Importantly if wy(s,a) is continuous relative to changing 6 then p(0) is also
continuous

A common form for probabilistic policies is the softmax function

exp (Qﬂfi(s,a))
Z exp (Q()(Saa’))

a'e A

Te(s,a)="Pr(als)=
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Gradient Estimation

 For stochastic policies it is possible to estimate the gradient of p(6) directly
from trajectories of .

* First consider the simplified case where trials have length 1
— p(0) is just the expected discounted total reward for a trajectory of
oy
— For simplicity assume each trajectory starts at a single initial state.

Vop(0)=V,> 7,(s,.a)R(a) =Y (Vy7,(s,.a))R(a)

a

where s, is the initial state, and R(a) is reward received after taking action a.
A simp?e rewrite gives,

V,p(0) = Z 7T,(s,,a) (vﬁﬁf)(sma))R(G)
a C 7, (s,,a)
N

an, I
» Estimate the gradient by estlmatl eexcpé)c eeéj vaﬁue oq‘(? O? !
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Gradient Estimation

(Vaﬁe(s ,a))
% - s 0
sP(0) ;:rg(sf,,a) o @
N J
Y

can get closed form f(s,,a)

 Estimate the gradient by estimating the expected value of
f(s0,a)R(a) !

» We already learned how to estimate expected values by
sampling (just average a set of N samples)

Vop®)x 12 £(5,a,)R(@)
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Gradient Estimation

 So for the case of a length 1 trajectories we got:

V,0(0)~~ 3 f(s,.a,)R(@)
N 4

 For the general case where trajectories have length greater
than 1 we get:

vgp(g) ~ %Z Z ,r 1 IJ )RI (S.N)

J(: =l

Total reward in trial j
from step t to end

 This gradient estimation converges rather slowly. There
have been many recent improvements.
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Policy Gradient Theorem?

e Theorem:

If the value-function parameterization is compatible with
the policy parameterization, then the true policy gradient
can be estimated, the variance of the estimation can be
controlled by a reinforcement baseline, and policy iteration
converges to a locally optimal policy.

« Significance:
— Shows first convergence proof for policy iteration with
function approximation.

1 Sutton,McAllester, Singh, Mansour: Policy Gradient Methods for RL with Function
Approximation
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What else exists?

Memory-based RL
Fuzzy RL
Multi-objective RL
Inverse RL

Could all be used for
Motor Learning
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Memory-based RL

» Use a short-term Memory to store important
Observations over a long time
— Overcome Violations of Markov Property
— Avoid storing finite histories

* Memory Bits [Peshkin et.al.]
— Additional Actions that change memory bits

» Long Short-Term Memory [Bakker]
— Recurrent Neural Networks
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Fuzzy RL

e Learn a Fuzzy Logic Controller via Reinforcement
Learning [Gu, Hu]

» Optimize Parameters of Membership Functions and
Composition of Fuzzy Rules

» Adaptive Heuristic Critic Framework
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Inverse RL

 Learn the Reward Function from observation of
optimal Policy [Russell]
— Goal: Understand, which optimality principle underlies a
policy

* Problems:
— Most algorithms need full policy (not trajectories)

— Ambiguity: Many different reward functions could be
responsible for the same policy

e Few results exist until now
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Multi-objective RL

e Reward-Function is a VVector

— Agent has to fulfill multiple tasks (e.g. reach goal and stay
alive)

— Makes design of Reward function more natural

» Algorithms are complicated and make strong
assumptions
— E.g. total ordering on reward vectors [Gabor]
— Game theoretic Principles [Shelton]
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