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Motivation and problems
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Multi-agent RL motivation

All cases we have seen assume the agent is the only one that executes
actions in the environment, but not always the case.

Some examples:

More examples: Games in general, finances, negotiation, home
assistance, multi-robot rescue, wireless networks, etc.

In cases where there are also other agents interacting with the
environment, can we learn? Is the problem different?
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Multi-agent RL setting
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Multi-agent RL differences with single RL agent

You take actions but other agents also take actions that change the
state

Naive idea: Let each agent learn its own policy assuming that the
other agents are part of the environment (no social awareness).

Surprisingly this works in some cases, but not in the most interesting
cases.

Why? Non-stationarity : T (s, a, s ′) is not constant because it also
depend on actions performed by other agents (no MDP)!

You need to know the actions the other agents will do in order to
return to the markovian property.
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Multi-agent RL problems (1)

Agent returns are correlated and cannot be maximized independently.
So we need actions executed by the other agents to compute Q values
and also for choosing the action (policy computation)

Qi : S x An −→ Ri

Usually, agent does not know the actions other agents will take. In
this case, several possibilities.

▶ Predict/Infer actions of other agents (in this case you need to know
the perception of other agents)

▶ Sharing of: perceptions / policies / actions / rewards obtained / ER
▶ Communication between agents (orders, perceptions, own action

executed)

Curse of dimensionality. Prediction should be of actions of all agents
(and each agent several actions). This scales exponentially.

▶ Fortunately in same cases no needed (factorization of reward function,
graph approaches, etc.)
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Multi-agent RL problems (2)

Moreover, while learning... Other agents may learn too!!
▶ We have to adapt continually!
▶ ”Moving target problem” central issue in multiagent learning

Ideally agents should learn in a decentralized way (every agent
working on its own).

▶ A popular solution is to train agents in a centralized way and later
apply the policies learned in a decentralized way.

▶ This solve both problems: the prediction and the moving target
problem at the same time
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Multi-agent RL problems (3)

Exploration is key in RL, but in MARL this can destabilize the
learning and confuse other agents. They expect you to do something
but you are exploring!

Possible miss-match between individual rewards and collective
goodness (f.i. the tragedy of commons).
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MARL Mathematical formulation
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Mathematical formulation: Game theory

Usually MARL problems are formalized in the Game Theory
framework.

Game Theory is well established and allows to understand
theoretically the MARL problem

It is used as a reference specially in few agents cases.

Kinds of games from simple to complex:
1 Normal-form game: one-shot games
2 Repeated game: game repeated several times (so we have history)
3 Stochastic game: generalization to MDP where state changes
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Subsection 1

Normal-form games
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Normal-form games

Normal-form games consists of:

Finite set of agents i ∈ N = {1, · · · , n}
Each agent i ∈ N has a set of actions Ai ∈ {a1, a2, · · · }
Set of joint actions A = a1 × a2 × · · · × an

Rewards function ri : A → R, where A = A1 × · · · × An

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with
probability πi (ai ), and receives reward ri (a1, · · · , an). Joint action is a.

Given policy profile (π1, · · · , πn) , expected reward to i is:

Ri (π1, · · · , πn) =
∑
a∈A

π1 (a1) ∗ π2 (a2) ∗ · · ·πn (an) ∗ ri (a)

Agents selects policy to maximise their expected reward.
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Mathematical formulation: Game theory

Normal-form games are summarized by Payoff tables.

Example of a payoff table game for 2 players with two actions (A, B)
playable:

Player 2

A B

Player 1
A (x , y) (x , y)

B (x , y) (x , y)

In red, actions playable by Player 1 and rewards for each joint action.
In blue the same for Player 2.
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Examples

Rock-Paper-Scissors: Player 2

R P S

R (0, 0) (−1, 1) (1,−1)

Player 1 P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

Prisoner’s dilemma: Player 2

C D

Player 1
C (−1,−1) (−5, 0)

D (0,−5) (−3,−3)
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Examples

Chicken’s game: Player 2

S T

Player 1
S (0, 0) (7, 2)

T (2, 7) (6, 6)

Coordination game: Player 2

A B

Player 1
A (0, 0) (10, 10)

B (10, 10) (0, 0)
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Mathematical formulation: Game theory

Classification of games:

Cooperative: Agents cooperate to achieve a goal
▶ Particular case: Shared team reward

Competitive: Agents compete against each other
▶ Particular case: Zero-sum games
▶ Individual opposing rewards

Neither: Agents maximize their utility which may require cooperating
and/or competing

▶ General-sum games
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Learning goals for a pay-off matrix

Learning is to improve performance via experience
▶ But what is goal (end-result) of learning process?
▶ How to measure success of learning?

Many learning goals proposed:
▶ Minimax/Nash/correlated equilibrium
▶ Pareto-optimality
▶ Social welfare & fairness
▶ No-regret
▶ ...
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Learning goals for a pay-off matrix

Learning goal will depend on the kind of pay-off matrix:

For instance, in a competitive two-player zero-sum game where
ui = −uj

1

▶ e.g. Rock-Paper-Scissors, Chess

Utility that can be guaranteed against worst-case opponent

Policy profile (πi , πj) is maximin/minimax profile if:

Ui (πi , πj) = max
π′
i

min
π′
j

Ui

(
π′
i , π

′
j

)
= min

π′
j

max
π′
j

Ui

(
π′
i , π

′
j

)
= −Uj (πi , πj)

1I change notation sometimes. Here u utility can be read also as reward r .
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Learning goals for a pay-off matrix

Nash equilibrium: When no unilaterally change in action help to
improve reward for any agent

▶ Every finite game has a mixed2 (probabilistic) strategy (policy) Nash
equilibrium

▶ Achievable with BestResponse (BR): the strategy with highest payoff
for a player, given knowledge of the other players’ strategies

Has become standard solution in game theory

Generalization of minimax: In two-player zero-sum game, minimax is
same as NE

Solutions to Chicken’s game, Coordination game, Prisoner’s dilemma
and Rock-Paper-Scissors.

2Versus pure (deterministic).
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Examples

Chicken’s game: Player 2

Turn St

Player 1
Turn (0, 0) (−1, 1)

St (1,−1) (−10,−10)

Coordination game: Player 2

A B

Player 1
A (0, 0) (10, 10)

B (10, 10) (0, 0)
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Examples

Prisoner’s dilemma: Player 2

C D

Player 1
C (−1,−1) (−5, 0)

D (0,−5) (−3,−3)

Rock-Paper-Scissors: Player 2

R P S

R (0, 0) (−1, 1) (1,−1)

Player 1 P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)
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Learning goals for a pay-off matrix

Has become standard solution in game theory...

But some problems!
▶ Non-uniqueness: Often multiple NE exist, how should agents choose

same one?
▶ Incompleteness: NE does not specify behaviours for off-equilibrium

paths
▶ Sub-optimality : NE not generally same as utility maximisation
▶ Rationality : NE assumes all agents are rational (= perfect utility

maximisers)
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Learning goals for a pay-off matrix

Pareto Optimum: Can’t improve one agent without making other
agent worse off

Policy profile π = (π1, . . . , πn) is Pareto-optimal if there is no other
profile π′ such that

∀i : Ui

(
π′) ≥ Ui (π) and ∃i : Ui

(
π′) > Ui (π)

Pareto-front is set of all

Pareto-optimal utilities

(red line)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22 / 81



Learning goals for a pay-off matrix

Pareto-optimality says nothing about social welfare and fairness

Welfare and fairness of profile π = (π1, . . . , πn) often defined as

Welfare (π) =
∑
i

Ui (π)

Fairness (π) =
∏
i

Ui (π)

π welfare/fairness-optimal if maximum Welfare (π)/ Fairness (π)

Any welfare/fairness-optimal π is also Pareto-optimal.
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Learning goals for a pay-off matrix

No-Regret policies.

Given history Ht =
(
a0, a1, . . . , at−1

)
, agent i’s regret for not having

taken action ai is

Ri

(
ai | Ht

)
=

t−1∑
τ=0

ui
(
ai , a

τ
−i

)
− ui

(
aτi , a

τ
−i

)
Policy πi achieves no-regret if

∀ai : lim
t→∞

1

t
Ri

(
ai | Ht

)
≤ 0

(Other variants exist)
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Learning goals for a pay-off matrix

Like Nash equilibrium, no-regret widely used in multiagent learning

But, like NE, definition of regret has conceptual issues - Regret
definition assumes other agents don’t change actions

Ri

(
ai | Ht

)
=

t−1∑
τ=0

ui
(
ai , a

τ
−i

)
− ui

(
aτi , a

τ
−i

)
⇒ But: entire history may change if different actions taken!

Thus, minimising regret not generally same as maximising utility
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Learning goals for a pay-off matrix

Many algorithms designed to achieve some version of targeted optimality
and safety:

If other agent’s policy πj non learning fixed policy, agent i’s learning
should converge to best-response

Ui (πi , πj) ≈ max
π′
i

Ui

(
π′
i , πj

)
If not in class, learning should at least achieve safety (maximin) utility

Ui (πi , πj) ≈ max
π′
i

min
π′
j

Ui

(
π′
i , π

′
j

)
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Subsection 2

Repeated game
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Normal-form game and repeated games

In normal form, the information is available to the agents, so it is
more a decision problem than a learning problem

Normal-form game consists in a single interaction. No experience!

Experience comes from repeated interactions
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Repeated Games

Repeated game:

Repeat same normal-form game: at each time t, each agent chooses
action ati and gets utility ui (a

t
1, . . . , a

t
n)

Policy πi : H× Ai → [0, 1] assigns action probabilities based on
history of interaction (experience)

H = ∪t∈N0Ht , Ht =
{
Ht =

(
a0, a1, . . . , at−1

)
| aτ ∈ A

}
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Repeated Games

What is expected utility to agent i for policy profile (π1, . . . , πn)?

Repeating game t ∈ N times:

Ui (π1, . . . , πn) =
∑

Ht∈Ht

P
(
Ht | π1, . . . , πn

) t−1∑
τ=0

ri (a
τ )

P
(
Ht | π1, . . . , πn

)
=

t−1∏
τ=0

∏
j∈N

πj
(
Hτ , aτj

)
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Repeated Games

What is expected utility to i for policy profile (π1, . . . , πn)?

Repeating game ∞ times:

Ui (π1, . . . , πn) = lim
t→∞

∑
Ht

P
(
Ht | π1, . . . , πn

)∑
τ

γτui (a
τ )

Discount factor 0 ≤ γ < 1 makes expectation finite Interpretation:
low γ is “myopic”, high γ is ”farsighted” (Or: probability that game
will end at each time is 1− γ)
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Repeated Game: Rock-Paper-Scissors

Example: Repeated Rock-Paper-Scissors

Player 2

R P S

R (0, 0) (−1, 1) (1,−1)

Player 1 P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

Compute empirical frequency of opponent actions over past 5 moves

P (aj) =
1

5

t−1∑
τ=t−5

[
aτj = aj

]
1

and take best-response action maxai
∑

aj
P (aj) ui (ai , aj)
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Algorithms

Minimax-Q (Littman, 1994)

Nash-Q (Hu and Wellman, 2003)

JAL (Claus and Boutilier, 1998)

CJAL (Banerjee and Sen, 2007)

Regret Matching (Hart and Mas-Colell, 2001, 2000)
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Minimax-Q (Littman, 1994)

Designed for competitive games (or irrational with conservative
costs): Assumes other agent will take worst action for me

Q-values are over joint actions: Q(s, a, o) where:
▶ s is state
▶ a is your action
▶ o action of the opponent

Instead of playing action with highest Q(s, a, o), play MaxMin

Q(s, a, o) =(1− α)Q(s, a, o) + α
(
r + γV

(
s ′
))

V (s) =max
πs

min
o

∑
a

Q(s, a, o)πs(a)
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[Exploration and other details]

In RL algorithms, exploration is necessary in order to improve and get
out of local minima

To study convergence of algorithms, usually exploration is reduced
with experience

Popular method in the list of algorithms is Boltzmann exploration
with temperature τ decreasing with time

π(s, a) =
eQ(s,a)/τ∑
ã e

Q(s,ã)/τ

When ties, actions are selected randomly
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Nash-Q (Littman, 1994)

Designed for general cases.

Instead of playing action with highest Q(s, a, o), sample action from
mixed exploration policy with policy derived from Nash equilibrium
extracted from Q(s, a)

From data collected from actions executed, update Q(s, a)

Q(s, a, o) =(1− α)Q(s, a, o) + α
(
r + γV

(
s ′
))

V (s) = Nash([Q(s, a, o)])

Where Nash([Q(s, a)]) consists in solving the Nash equilibrium for
Pay-off matrix Q(s, a).

That means that at each iteration we have to solve a Nash
equilibrium problem
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Algorithms: JAL and CJAL

Joint Action Learning (JAL) (Claus and Boutilier, 1998 ) and
Conditional Joint Action Learning (CJAL) (Banerjee and Sen, 2007)
learn Q-values for joint actions a ∈ A :

Qt+1
(
at
)
= (1− α)Qt

(
at
)
+ αr ti

r ti is reward received after joint action at

α ∈ [0, 1] is learning rate

Use opponent modeling to compute expected utilities of actions:

JAL: E (ai ) =
∑
aj

P (aj)Q
t+1 (ai , aj)

CJAL: E (ai ) =
∑
aj

P (aj | ai )Qt+1 (ai , aj)
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Opponent modelling

Opponent models estimated from history Ht :

JAL:

P (aj) =
1

t + 1

t∑
τ=0

[
aτj = aj

]
1

CJAL:

P (aj | ai ) =

∑t
τ=0

[
aτj = aj , a

τ
i = ai

]
1∑t

τ=0

[
aτj = aj

]
1

Given expected utilities E (ai ), use some action exploration scheme:
(e.g. ϵ-greedy)

Many other forms of opponent modelling exist

JAL and CJAL can converge to Nash equilibrium in self-play
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Algorithms: Regret Matching (RegMat) (Hart and
Mas-Colell, 2000 )

Computes conditional regret for not choosing a′i whenever ai was
chosen:

R
(
ai , a

′
i

)
=

1

t + 1

∑
τ :aτi =ai

ui
(
a′i , a

τ
j

)
− ui (a

τ )

Used to modify policy:

π̂t+1
i (ai ) =

{
1
µ max [R (aτi , ai ) , 0] ai ̸= ati
1−

∑
a′i ̸=aτi

π̂t+1
i (a′i ) ai = ati

where µ > 0 is ”inertia” parameter

Converges to correlated equilibrium in self-play.
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Some cooperative problems

Independent learners Convergence to optimal joint action for simple
cases:

Player 2

C D

Player 1
C 5 3

D 2 0

Climbing game: Independent learners stuck in (c,c), JAL gets to (b,b)

Player 2

a b c

a 11 −30 0

Player 1 b −30 7 6

c 0 0 5
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Some cooperative problems

Optimistic version of Q-learning (Lauer & Riedmiller, 00), that never
reduces Q-values due to penalties converges quickly to optimal (a,a).

However, it does not solve the Stochastic Climbing game:

Player 2

a b c

a 12/10 0/− 60 5/− 5

Player 1 b 0/− 60 14/0 8/4

c 5/− 5 5/− 5 7/3
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Some cooperative problems

Penalty game

Player 2

a b c

a 10 0 k

Player 1 b 0 2 0

c k 0 10
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Subsection 3

Stochastic game

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 43 / 81



Stochastic Game (Markov Decision Games)

In stochastic games we introduce the state in the game.

So, in practice, now we have one pay-off table for state and we add
transition dynamics (from state using joint action to state)

In addition we distinguish in general from state and observation
(Partial Observability)
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Let’s focus on cooperation problems

Most general definition of a problem is partially observable stochastic
game (POSG) that consists in a tuple:

< I ,S , {Ai} ,P, {Ri} , {Ωi} ,O >

I , a finite set of agents

S , a finite set of states with designated initial state distribution b0

Ai , each agent’s finite set of actions

P, the state transition model: P (s ′ | s, a⃗)
{Ri} the reward model for each agent: Ri (s, a⃗)

Ωi , each agent’s finite set of observations

O, the observation model: P(O⃗ | s, a⃗)
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Stochastic Game (Markov Decision Games)

Algorithms we have seen work well when few agents and also when
value functions are used to store the Q-values

How do we extend these methods to more complex scenarios like
these?

We will need function approximation, we will need to solve the Partial
Observability

May be the problem is too complex
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Latest MARL research
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Let’s focus on cooperation problems

We have seen three kinds of problems:
▶ Cooperative
▶ Competitive
▶ Mixed

We will focus now on cooperation!

Cooperation when all agents have to cooperate for the same goal

Reward is shared to all agents

We have seen them before (f.i. Coordination problem)

Why we focus on these problems? Because they are important and
because they are simpler!
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Decentralized POMDP Stochastic games

A Dec-POMDP can be defined with the tuple:

M =< I , S , {Ai} ,P,R, {Ωi} ,O >

I , a finite set of agents

S , a finite set of states with designated initial state distribution b0

Ai , each agent’s finite set of actions

P, the state transition model: P (s ′ | s, a⃗)
R, the reward model: R(s, a⃗)

Ωi , each agent’s finite set of observations

O, the observation model: P(O⃗ | s, a⃗)
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Independent Q-learners: IQL (Tan, 93)

Naive idea: Try to maximize reward of each agent independently.

Maximizing individual rewards means maximize cooperation, isn’t it?

Wrong. Only true when you know other agent’s actions (coordination
problem)

Player 2

A B

Player 1
A 5 −5

B −5 5
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Decentralized learning learning

We can model opponents but they also learn (change). So,
experiences collected in ER become obsolete!

In (Foerster et al. 18) authors use IS to maintain the ER.

In (Bansal et al. 18) authors get rid of ER and use on-policy
algorithms (PPO).

Another way to explore is communication (at different levels).

In general results are not so good as using other approaches.
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Centralized Learning

We know in MARL a given agent faces a non-stationary problem
(no longer Markovian) because other agents do changes in state (and
we don’t know how).

In addition we have the moving target problem (other agents also
learn!)

So basic RL algorithms applied in a naive way will not have
guarantees to work

Naive idea: Learn a centralized policy that control all agents

Policy gets as inputs the observations of all the agents

Non-stationarity and moving target problems solved!
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Centralized Learning

Non-stationarity and moving target problems solved!
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Centralized Learning - Decentralized actuation

... But not realistic because we need a lot of communication channels
(each agent to the ”big brain”)

In addition, we have an exponential grown in actions to control:
|A|nagents... and in variance of the gradient!

Centralized goes against the idea of multi-agent (only one agent!)

... But Decentralized idea neither worked. Any solution?

Yes! A compromise between Centralized and Decentralized

Learning will be done in a centralized way so we have the information
needed to learn

but considering than in execution time, each agent will have to act
independently of the others
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Subsection 1

Actor Critic approaches
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MADDPG (Lowe et al 2017)

Based on Actor-Critic architecture: Each agent has an actor and a
critic

Extension of DDPG for MultiAgent framework
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MADDPG (Lowe et al 2017)

During training, each critic has information about the actions taken
by all agents and their perceptions

Actions are generated by own policy of each actor according to its
perceptions

Each agent’s critic (with full information) is used to train its
associated actor (with respect its own observation)
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MADDPG (Lowe et al 2017)
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MADDPG (Lowe et al 2017)

Training is done in simulator or lab with all info available for critics

Deployment of the agents is done in the execution step where
information of perceptions of other agents is no longer necessary

Once the agents have been deployed, no more learning occurs

Critics are no longer necessary and agents work in a decentralized
way.

You may wonder why you need several agents instead of only one?

If agents are homogeneous you can work with only one critic, but in
some cases agents of the team are not all equal

In this cases having different critics help because the critic is
specialized on the specific capabilities of the agent
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COMA (Foerster et al., 17)

The Counterfactual Multi-Agent (COMA) architecture is based on
Actor Critic.

Only one Critic and n Actors.

Centralized learning. Critic is removed after training.
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COMA (Foerster et al., 17)

Actor is standard probabilistic policy trained with recurrent NN
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COMA (Foerster et al., 17)

Critic computes Q-values on on-policy and using TD(λ)

Given an agent, Critic computes Q-value for all possible joint actions
where the actions of other actions are fixed.

Actors are trained with Advantage Actor Critic (so it is on-policy!)
BUT with a counterfactual baseline:

Aa(s,u) = Q(s,u)−
∑
u′a

πa
(
u′a | τ a

)
Q
(
s,
(
u−a, u′a

))
In short, compares taken action with expected value under the current
policy

Intuitively, by using this baseline, the agent knows how much reward
this action contributes relative to all other actions it could’ve taken.

In doing so, it can better distinguish which actions will better
contribute to the overall reward across all agents.
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Subsection 2

Value based approaches
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VDN (Sunehag et al. 17)

Value Decomposition Network
(VDN) Clever idea for Value
based RL methods

Problem with IQL: Each agent
own reward, no communication
with other agents

(POMDP problem, so they use
a recurrent network for
Q-values)

We have only long term reward
for the joint action
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VDN (Sunehag et al. 17)

Idea is that each agent contributes to total long-term reward, so we
can decompose the credit to give to each agent as a sum:

Qtot

((
h1, h2, . . . , hd

)
,
(
a1, a2, . . . , ad

))
≈

d∑
i=1

Q̃i

(
hi , ai

)
This decomposition is learnt! We only have Qtot

Tricky point is that Q̃i are not true value functions because they
do not predict reward. They are used as tools and learnt decomposing
Qtot
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VDN (Sunehag et al. 17)
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VDN (Sunehag et al. 17)

VDN decomposition:

Qtot

((
h1, h2, . . . , hd

)
,
(
a1, a2, . . . , ad

))
≈

d∑
i=1

Q̃i

(
hi , ai

)
During training we use Qtot values to backpropagate and learn credit
to decisions taken by actions of agents that were selected using
greedy criteria in their Q̃i

Coherence between Q̃i and Qtot is maintained because greedifying
Qtot to obtain the joint actions and greedifying each Q̃i we obtain the
same result

After the system is trained, we go to a decentralized scheme when
deploying agents (learning is stopped).
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VDN (Sunehag et al. 17)

VDN architecture:
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Q-Mix (Rashid et al. 18)

Another cool idea and probably state-of-the-art algorithm

Extend the VDN idea

Key point in VDM is that:

argmax
u

Qtot(τ ,u) =

 argmaxu1 Q1

(
τ1, u1

)
...

argmaxun Qn (τ
n, un)


which is trivial in the case of the VDM sum

May be there could be more interesting functions that only the sum?

(Remember Qi values are not true value functions, they are only
tools)
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Q-Mix (Rashid et al. 18)

Answer is yes.

The condition to satisfy the argmax condition coherence between Qtot

and Qi is monotonicity:

∂Qtot

∂Qa
≥ 0, ∀a ∈ A

so they enforce this constraint by forcing the composition (mixing)
function to learn a possible non-linearly but monotonic function

This is done by ensuring positive weights in the mixing network that
are learnt by a hyper-network (details in paper)
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Q-Mix (Rashid et al. 18)

QMIX architecture:
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Q-Mix (Rashid et al. 18)

Results of QMIX in StarCraft minigames here
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Comparison of methods

Problems with QMix
▶ Better approximation than VDN to values but QMIX neither can solve

tasks that require significant coordination within a given time-step
(coordination is non-monotonic!)

▶ Poor exploration
▶ QMIX ranks low in training stability compared to on-policy algorithms

Based on QMIX and VDN, other approaches try to improve their
results (WQMIX, MAVEN, etc)

However, a recent unpublished papers (Papoudakis et alt. 20) and
(Hu et alt 21) shows that with QMIX, in cooperative tasks,
stat-of-the-art results are obtained in most cases.

Not always. See (Gallici et al. 23)
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Comparison of methods
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Mixed cases
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Mixed cases

We have studied basically cooperative problems

More interesting problems have mixed cooperation and competition

Special case are the Social Dilemmas: Situations where any individual
may profit from selfishness unless too many individuals choose the
selfish option, in which case the whole group loses.

Appear everywhere: Pollution, the tragedy of the commons, public
goods, resource depletion, etc.
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Some links for labs
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Some links for labs

Some test environments for MARL:
▶ Petting Zoo (highly recommended)
▶ StarCraft Multi-Agent Challenge
▶ Multi-Agent Particle Environment
▶ Arena
▶ Some Sequential Social Dilemma Games, more here and here
▶ Multi-Agent-Learning-Environments
▶ Pommerman
▶ Flatland challenge
▶ Laser Tag
▶ MicroRTS and Gym
▶ Drones? Yes drones!

Implementations: of value methods for RIIT paper and other basic
methods and from whirl Lab PyMARL
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https://github.com/wwxFromTju/deepmind_MAS_enviroment
https://github.com/social-dilemma/multiagent
https://github.com/Bigpig4396/Multi-Agent-Reinforcement-Learning-Environment
https://www.pommerman.com/
https://github.com/Wadaboa/flatland-challenge
https://github.com/younggyoseo/lasertag-v0
https://github.com/santiontanon/microrts
https://github.com/vwxyzjn/gym-microrts
https://github.com/utiasDSL/gym-pybullet-drones
https://github.com/hijkzzz/pymarl2
https://github.com/blavad/marl
https://github.com/oxwhirl/pymarl


Conclusions
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Conclusions

One of the hottest topics of RL research at the moment.

Very difficult problem (dimensionality, patial observability, exploration,
decomposition of reward, moving target problem) ... and still open!

Some results in Cooperative cases. They can be extended at some
extent to Mixed cases like Sequential Social Dilemmas.

Other kind of algorithms for competition

Two-players games are an special case. See you in next class!

Very Funny example: hide and seek
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Other lines of research in MARL

In (Hernandez-Leal , et al. 19) authors describe 4 kinds of recent
research in MARL

a Analysis of emergent behaviors: evaluate single-agent DRL algorithms
in multiagent scenarios(e.g., Atari games, social dilemmas, 3D
competitive games)

b Learning communication: agents learn communication protocols to
solve cooperative tasks.

c Learning cooperation: agents learn to cooperate using only actions and
(local) observations.

d Agents modeling agents: agents reason about others to fulfill a task
(e.g., best response learners)

We have focused in c) and d) on this slides. A lot more work done in
the area!
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