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Goal of this lecture

Methods we have seen so far work well when we have a tabular
representation for each state, that is, when we represent value
function with a lookup table.

This is not reasonable on most cases:
▶ In Large state spaces: There are too many states and/or actions to

store in memory (f.i. Backgammon: 1020 states, Go 10170 states)
▶ and in continuous state spaces (f.i. robotic examples)

In addition, we want to generalize from/to similar states to speed up
learning. It is too slow to learn the value of each state individually.
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Goal of this lecture

We’ll see now methods to learn policies for large state spaces by using
function approximation to estimate value functions:

Vθ(s) ≈ V π(s) (1)
Qθ(s, a) ≈ Qπ(s, a) (2)

θ is the set of parameters of the function approximation method (with
size much lower than |S|)
Function approximation allow to generalize from seen states to unseen
states and to save space.
Now, instead of storing V values, we will update θ parameters using
MC or TD learning so they fulfill (1) or (2).
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Which Function Approximation?

There are many function approximators, e.g.
▶ Artificial neural network
▶ Decision tree
▶ Nearest neighbor
▶ Fourier/wavelet bases
▶ Coarse coding

In principle, any function approximator can be used. However, the
choice may be affected by some properties of RL:

▶ Experience is not i.i.d. – Agent’s action affect the subsequent data it
receives

▶ During control, value function V(s) changes with the policy
(non-stationary)
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Incremental methods
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Which Function Approximation?

Incremental methods allow to directly apply the control methods of
MC, Q-learning and Sarsa, that is, back up is done using “on-line”
sequence of data of the trial reported by the agent following the
policy.
Most popular method in this setting is gradient descent, because it
adapts to changes in the data (non-stationary condition)
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Gradient Descent

Let L(θ) be a differentiable function of parameter vector θ, we want
to minimize
Define the gradient of L(θ) to be:

∇θL(θ) =


∂L(θ)
∂θ1...

∂L(θ)
∂θn


To find a local minimum of L(θ), gradient descent method adjust the
parameter in the direction of negative gradient:

∆θ = −1
2α∇θL(θ)

where is a stepsize parameter
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Gradient Descent

∆θ = −1
2α∇θL(θ)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 29, 2024 7 / 38



Value Function Approx. by SGD

Minimizing Loss function of the approximation
Goal: Find parameter vector θ minimizing mean-squared error between
approximate value function Vθ(s) and true value function V π(s)

L(θ) = Eπ

[
(V π(s)− Vθ(s))2

]
=

∑
s∈S

µπ(s) [V π(s)− Vθ(s)]2

where µπ(s) is the time spent in state s while following π (probability
visiting s following policy)

Gradient descent finds a local minimum:

∆θ = −1
2α∇θL(θ)

= Eπ [(V π(s)− Vθ(s)) ∇θVθ(s)]

Stochastic gradient descent (SGD) samples the gradient

∆θ = α(V π(s)− Vθ(s)) ∇θVθ(s)
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Subsection 1

Linear approximation
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Linear representation of the state

Represent state by a feature vector:

ϕ(s) =

ϕ1(s)
...

ϕn(s)


Represent value function by a linear combination of features:

Vθ(s) = ϕ(s)T θ =
n∑

j=1
ϕj(s)θj (3)
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Linear representation of the state

For example:
▶ Distance of robot from landmarks
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Example: RoboCup soccer keepaway (Stone, Sutton
& Kuhlmann, 2005)
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Example: RoboCup soccer keepaway (Stone, Sutton
& Kuhlmann, 2005)

State is encoded in 13 continuous
variables:

11 distances among the players,
ball, and the center of the field
2 angles to takers along passing
lanes
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Linear representation of the state

Table lookup is a special case of linear value function approximation.
Using table lookup features:

ϕtable(S) =

1(S = s1)
...

1(S = sn)


Parameter vector is exactly value of each individual state

Vθ(S) =

1(S = s1)
...

1(S = sn)


T

·

θ1
...

θn
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Coarse coding using Tiles

RBFs return a real value for each feature. Tiles define a binary
feature for each tile.

▶ Binary features means weighted sum easy to compute
▶ Number of features present at any time step is constant
▶ Easy to compute indexes of features active

You can use irregular tilings or superposition of different tilings
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Going back to SGD

First nice property of SGD in linear F.A. (in policy evaluation)
In the case of linear function approximation, objective function is
quadratic:

L(θ) = Eπ

[
(V π(s)− ϕ(s)T θ)2

]
so SGD converges to global optimum:

Notice equation (3).

Why it converges?

Quadratic problem (parabola) has no local minimum.
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Going back to SGD

Second nice property of SGD in linear F.A.
Gradient vector of value function is vector of feature values:

∂Vθ(s)
∂θi

=
∂

∑n
j=1 ϕj(s)θj

∂θi
= ϕi(s)

So, update rule is particularly simple:

∆θi = α(V π(s)− Vθ(s)) ϕi(s)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 29, 2024 18 / 38



TD prediction algorithm for the linear case

Changes applying TD to the linear case:

1 Function approximation is now for the Q value function:

Qπ(s, a) ≈ Qθ(s, a) = ϕ(s, a)T θ =
n∑

j=1
ϕj(s, a)θj

2 Loss function is also now for Q value function:

L(θ) = Eπ

[
(Qπ(s, a)− ϕ(s, a)T θ)2

]
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TD prediction algorithm for the linear case

In TD(0) we use Q of next state to estimate Q on the current state
using Bellman equations. So, in general,

∆θi =α( Qπ(s, a) − Qθ(s, a))∇θQθ(s, a)
=α(r + γQθ(s ′, π(s ′))− Qθ(s, a))∇θQθ(s, a)

And, in particular, for the linear case:

∂Qθ(s, a)
∂θi

=
∂

( ∑n
j=1 ϕj(s, a)θj

)
∂θi

= ϕi(s, a)

and so,

∆θi = α(r + γQθ(s ′, π(s ′))− Qθ(s, a)) ϕi(s, a)
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TD prediction algorithm for the linear case

Caution!
No same guarantees that MC had when bootstrapping estimate of
Q(St , a) is used as the target
Notice that TD targets are not independent of parameters. In TD(0):

r + γQθ(s ′, π(s ′))

depends of θ

Bootstrapping methods are not true gradient descent: they take into
account the effect of changing θ on the estimate, but ignore its
effect on the target. They include only a part of the gradient and,
accordingly, we call them semi-gradient methods.

However, it can be proved that linear TD(0) policy evaluation
converges (close) to global optimum.
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Subsection 2

Control algorithms for the linear case
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TD(0) prediction algorithm for the linear case

Like the Control methods we used in tabular learning algorithms, we
will build algorithms that iterate the two following steps:

1 Policy evaluation - Follow a method for approximate policy evaluation
Qθ ≈ Qπ

2 Policy improvement - do policy improvement of the policy
Depending on the Policy evaluation procedure used (MC, TD, etc.),
we have a different method
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Examples of Control using PI

Linear FA Monte Carlo
Initialize parameters θ as appropriate (e.g., θ = 0)
repeat

Generate trial using ϵ-greedy policy derived from Qθ

for each st in trial do
Rt ← long-term return from st
θ ← θ + α(Rt − Qθ(st , at))ϕ(st , at)

end for
until false

Function Qθ(s, a)
Given θ, state s and action a

return θT ϕ(s, a)
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Select action following policy

Function πθ(s)
Given θ and state s

return arg maxa θT ϕ(s, a)

Function implementing ϵ-greedy
Given θ, ϵ ≤ 1 and state s

Select p number from uniform distribution in range [0, 1]
if p ≤ ϵ then

a← Random action from A
else

a← πθ(s)
end if
return a

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 29, 2024 25 / 38



Examples of Control using PI

Linear FA Q-learning
initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ϵ-greedy)
Execute action a, observe r , s ′

θ ← θ + α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a)) ϕ(s, a)
s ← s ′

until s is terminal
end for
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Convergence of Gradient methods

We have examples of TD divergence even when exact solution is
representable with linear function
Fortunately, in practice, TD(0) works well... but we don’t have
guarantees
Problem can be solved if we update parameters following an on-policy
distribution (we have a proof of that). Good for Sarsa.
Unfortunately convergence guarantees on TD incremental methods
only work for linear approximation
Main cause is that TD does not follow true gradient.
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Deadly triad

The risk of divergence arises whenever we combine three things:

Function approximation: Significantly generalizing from large
numbers of examples.

Bootstrapping: Learning value estimates from other value estimates,
as in dynamic programming and temporal-difference
learning.

Off-policy learning: Learning about a policy from data not due to
that policy, as in Q-learning, where we learn about the
greedy policy from data with a necessarily more
exploratory policy.

Any two without the third is ok.
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Convergence of incremental Gradient methods for
control
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Conclusions and final notes about convergence

Value-function approximation by stochastic gradient descent enables
RL to be applied to arbitrarily large state spaces
Most algorithms just carry over the Targets from the tabular case
With bootstrapping (TD), we don’t get true gradient descent methods

▶ this complicates the analysis
▶ but the linear, on-policy case is still guaranteed convergent
▶ and learning is still much faster

For continuous state spaces, coarse/tile coding is a good strategy

Still some possible approaches: Gradient-TD (convergence in off-line
linear FA) and Batch methods
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Batch methods
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Batch Reinforcement Learning

Gradient descent is simple and appealing
▶ It is computationally efficient (one update per sample)
▶ ... But it is not sample efficient (does not take all profit from samples)

We can do better at the cost of more computational time

Batch methods seek to find the best fitting value function of given
agent’s experience (“training data”) in a supervised way.
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Fitted Q-learning: Non-linear approximation
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Incremental Q-learning with FA

Q-learning with FA
initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ϵ-greedy)
Execute action a, observe r , s ′

Qθ(s, a)← Qθ(s, a)+α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal
end for
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Problems with incremental Q-learning with FA

Essence of off-policy learning.
repeat

Choose a, execute it and observe r and s ′ (s, a, r , s ′) using any
probabilistic policy
Qθ(s, a)← Qθ(s, a) + α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal

Several problems with incremental off-policy TD learning
▶ SGD does not converge because gradient does not follow true gradient
▶ Target value is always changing and SGD does not converge
▶ Data is not even close to iid (it is strongly correlated) so another

problem for SGD convergence
How to solve all these problems?
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Generalizarion of off-policy learning

Let’s generalize the method:

Generalizarion of off-policy learning.
Get D = {⟨s, a, r , s ′⟩} using any probabilistic policy
repeat

Set SD to N samples randomly taken from D
for each sample i in SD do

yi ← r + γ maxa Qθ(s ′
i a)

end for
θ ← arg minθ

∑
(Qθ(si , ai)− yi)2 // Any ML regression method

until convergence
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Generalizarion of off-policy learning

Notice several differences:
1 Sample a set of N examples instead of only 1
2 Don’t use 1-step of gradient descent but compute exact solution

(regression problem)

Each difference improves convergence
1 Samples obtained randomly reduce correlation between them and

stabilize Q value function for the regression learner
2 Computation of exact solution avoid the true gradient problem
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Fitted Q-learning

Fitted Q-learning
Given D of size T with examples (st , at , rt+1, st+1), and regression
algorithm, set N to zero and QN(s, a) = 0 for all a and s
repeat

N ← N + 1
Build training set TS = {⟨(st , at), rt+1 + γ maxa QN(st+1, a)⟩}Tt=1
QN+1 ← regression algorithm on TS

until QN ≈ QN+1 or N > limit
return π based on greedy evaluation of QN

Works specially well for forward Neural Networks as regressors
(Neural Fitted Q-learning)
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