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Recap

Definition of RL
Framework
Concepts learned:

▶ Model
▶ Policy: deterministic and non-deterministic
▶ Reward functions, immediate reward
▶ Discounted and undiscounted Long-term reward
▶ ... γ, π, markovian condition

Value functions
Bellman equation
Policy evaluation: Value iteration and algebraic method
Optimal policy, greedy policy and relation with Value functions
Dynamic programming methods: Value iteration, Policy iteration,
asynchronous methods
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Goal of this lecture

Problems with Dynamic Programming methods
▶ Sweep of full steps or random steps
▶ Need to know the model

We’ll see now methods that do not require a model but only
experiences to build evaluations of policies and also to find optimal
policies
Methods we’ll see:

▶ Monte-Carlo
▶ Q-learning
▶ Temporal differences; n-steps and TD(λ)
▶ Sarsa, Expected Sarsa

Off-line vs. on-line learning
Importance Sampling
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Monte-Carlo methods
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[About expectations]

Refresher about expectations:

E [f (x)] =
∑

x∈Val(X)
f (x)p(x)

Ex∼p[f (x)] =
∑

x∈Val(X)
f (x)p(x)

For continuous variables

E [f (X )] =
∫ ∞

−∞
f (x)p(x)dx

Expectation computation by sampling

Ex∼p[f (x)] ≈ 1
T

T∑
t=1

f (x t)
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[About expectations]

Expectation computation by sampling (Monte Carlo)

Ex∼p[f (x)] ≈ 1
T

T∑
t=1

f (x t)
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Monte-Carlo Policy Evaluation

Goal: learn V π from episodes of experience under policy π

S1, A1, r2, S2, A2, r3, . . . , Sk ∼ π

Recall that the return is the total discounted reward:

Rt = rt+1 + γrt+2 + . . . + γT−1rT

Recall that the value function is the expected return:

V π(s) = Eπ[Rt |St = s] =
∑

τ

Rτ pπ(τ) ≈ 1
N

N∑
i=1

Ri

where Ri is obtained from state s under π distribution (following π)
Monte-Carlo policy evaluation uses empirical mean return instead of
expected return
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Monte-Carlo reinforcement learning

MC uses the simplest possible idea: value = mean return. Instead of
computing expectations, sample the long term return under the policy
MC methods learn directly from episodes of experience
MC is model-free: no explicit knowledge of environment mechanisms
MC learns from complete episodes

▶ Caveat: can only be applied to complete episodic environments (all
episodes must terminate).
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Monte-Carlo policy evaluation

Monte Carlo policy evaluation
Given π, the policy to be evaluated, initialize V randomly
Returns(s)←− empty list, ∀ ∈ S
repeat

Generate trial using π
for each s in trial do

R ← long-term-return following s
Append R to Returns(s)
V (s)← average(Returns(s))

end for
until false
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Monte-Carlo Policy Evaluation

How to average results for V (s)? Every time-step t that state s is
visited in an episode:

▶ Increment counter N(s)← N(s) + 1
▶ Increment total return S(s)← S(s) + Rt
▶ Value is estimated by mean return V (s) = S(s)/N(s)

By law of large numbers, V (s)→ V π(s) as N(s)→∞ for all states
However, for each state you should store S and N.
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Incremental Monte-Carlo Updates

Update V (s) incrementally:

Vn(St) = 1
n

n∑
i=1

Ri

Vn(St) = 1
n

(
Rn +

n−1∑
i=1

Ri

)

Vn(St) = 1
n (Rn + (n − 1)Vn−1(St))

Vn(St) = 1
nRn + 1

n ((n − 1)Vn−1(St))

Vn(St) = 1
nRn + Vn−1(St)−

1
nVn−1(St)

Vn(St) = Vn−1(St) + 1
n (Rn − Vn−1(St))
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Incremental Monte-Carlo Updates

Compute return Rt

For each state St with return Rt

N(St)← N(St) + 1
V (St)← V (St) + α(St)(Rt − V (St))

where
α(St) = 1

N(St)
Still we have to store the number of visits to each state: N(St).
Usually a constant parameter α in (0..1) is used:

V (St)← V (St) + α(Rt − V (St))
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[Incremental Monte-Carlo Updates]

... with side effect of forgetting old episodes: as higher the value,
higher the influence of recent experiences in the estimations
Notice that:

Vn(S) = Vn−1(S) + α(Rn − Vn−1(S)) = αRn + (1− α)Vn−1(S)

So,
Vn(S) = αRn + (1− α)Vn−1(S)
Vn(S) = αRn + (1− α) (αRn−1 + (1− α)Vn−2(S))
Vn(S) = αRn + (1− α) (αRn−1 + (1− α) (αRn−2 + (1− α)Vn−2(S)))
Vn(S) = αRn + α(1− α)Rn−1 + α(1− α)2Rn−2 + . . .

Vn(S) = α
n−1∑
i=0

[
(1− α)iRn−i

]
+ (1− α)nR0
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[Incremental Monte-Carlo Updates]

Trick used not only in Monte Carlo but on all methods
Choose α carefully. Remember

Vn(S) = α
n−1∑
i=0

[
(1− α)iRn−i

]
+ (1− α)nR0

Usually α is low (0.01..0.2), but depends on the problem. Sometimes
is good to forget old Long-term-Returns, for instance, when you
change the policy !
It is also usual to use a common α for all states that decrease with
experiences (we’ll see that on notebook).
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Monte-Carlo policy learning

Can we use the MC policy evaluation to learn a policy (like with PI)?
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[from previous lecture: Policy iteration]

Policy Iteration (PI)
Initialize π,∀s ∈ S to a random action a ∈ A(s), arbitrarily
repeat

π′ ← π
Compute V π for all states using a policy evaluation method
for each state s do

π(s)← arg max
a∈A

∑
s′

Pa
ss′
[
R(s ′) + γ V π(s ′)

]
end for

until π(s) = π′(s) ∀s
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Monte-Carlo policy learning

Can we use the MC policy evaluation to learn a policy (like with PI)?
If we want to take the greedy action, like in PI, to improve the policy
then we need the model!

π(s) = arg max
a∈A

∑
s′

Pa
ss′
[
R(s ′) + γ V π(s ′)

]

Solution: estimate Qπ function instead of V π

Now we can greedify the policy without the model:

π(s) = arg max
a∈A

Qπ(s, a)
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Monte-Carlo policy learning

Another change wrt Policy iteration: We don’t sweep the whole set of
states to update the Value estimates, neither the policy
We use a asynchronous version of PI where only evaluations of some
states are updated
States updated are from the experience collected by the agent in one
learning episode
...But then we cannot go out of the learning loop never
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Monte-Carlo policy learning

Apply the improvement-of-the-policy idea to learn the optimal policy.

Caution! Monte Carlo policy learning with a subtle error
Initialize π and Q randomly:
repeat

Generate trial using π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do

π(s) = arg maxa∈A Q(s, a)
end for

until false
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Monte-Carlo policy learning

What’s wrong?
▶ Algorithm tries to implement asynchronous version of policy iteration...

but remember... there states are selected for updating randomly.
▶ Now states to be updated depend on the current policy, so we cannot

guarantee convergence.
New important concept: Exploration vs. Exploitation

▶ All pairs (s,a) should have probability non-zero to be updated.
▶ At same time, we want to evaluate the current policy

Several ways to balance two concepts.
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ϵ-greedy exploration

Simplest idea for ensuring continual exploration
All m actions are tried with non-zero probability
With probability 1 - ϵ choose the greedy action
With probability ϵ choose an action at random

π(a|s) =
{

ϵ/m + 1− ϵ, if a = arg maxa′∈A Q(s, a′)
ϵ/m, otherwise

where m = |A(s)|
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Monte-Carlo policy learning

Apply the improvement-of-the-policy idea to learn the optimal policy.

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using ϵ−greedy strategy on π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do

π(s) = arg maxa∈A Q(s, a) // ties randomly broken
end for

until false
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Monte-Carlo policy learning

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using exploration method based on π
for each s, a in trial do

R ← long-term-return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
for each s in trial do

π(s) = arg maxa∈A Q(s, a)
end for

until false
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Monte-Carlo policy learning

Monte Carlo policy learning
Initialize π and Q randomly:
repeat

Generate trial using exploration method on greedy policy derived from
Q values
for each s, a in trial do

R ← return following s, a
Q(s, a)← Q(s, a) + α(R − Q(s, a))

end for
until false
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Notes about Exploration
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About exploration

Ideally, exploration should not be constant during training.
It should be larger at the beginning and lower after a lot of experience
is accumulated (why?)...

but never disappear (why?)
This requirement is asked in convergence proofs of most RL
algorithms, f.i. in MC.
In ϵ-greedy, this is implemented with variable ϵ starting from 1 and
decreasing with number of experiences until a minimum ϵ value from
which does not decrease further, f.i:

ϵ = max(1/(αT ), 0.1)

where T is the number of Trials done and α is a constant that
controls decrease of exploration
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About exploration

Another popular way to explore is using Softmax exploration or
Gibb’s exploration or Boltzman exploration.
Idea is that probability depends on the value of actions, with bias of
exploration towards more promising actions
Softmax action selection methods grade action probabilities by
estimated values

P(s, a) = eQ(s,a)/τ∑
a′∈A eQ(s,a′)/τ

where parameter τ is called temperature and decreases with
experience
When τ is very large, all actions with roughly same probability of
being selected. When τ is low, almost certainty of selecting the
action with higher Q-value.
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About exploration

A hot topic of research
We want to explore efficiently the state space
A lot of other more complex mechanisms based on criteria

▶ Less explored state, action pairs
▶ Higher changes in value of state action pair
▶ Bases on recency of last exploration
▶ Uncertainty on estimation of values
▶ Error in an agent’s ability to predict the consequence of action

(curiosity)
▶ ...
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Temporal Differences methods: Q-learning
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Temporal Differences policy evaluation

Monte-Carlo methods compute expectation of Long-term-Reward
averaging the return of several trials.
Average is done after termination of the trial.
We saw in previous lecture that Bellman equation also allow to
estimate expectation of Long-term-Reward

Qπ(s, a) = Eπ[Rt |St = s, At = a]
= Eπ[rt+1 + γQπ(St+1, π(St+1))|St = s, At = a]

Computing expectations with world model:

Qπ(s, a) =
∑
s′

Pa
ss′
(
r(s ′) + γ Qπ(s ′, π(s ′))

)
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Temporal Differences policy evaluation

How to get rid of the world-model?
Q-value function and averaging, like in the case of MC

Q(St , a)← Q(St , a) + α(Rt(st)− Q(St , a))

But now substitute Rt with Bellman equation:

Q(St , a)← Q(St , a) + α [rt+1 + γQ(St+1, π(St+1))− Q(St , a)]

or

Q(St , a)← (1− α)Q(St , a) + α [rt+1 + γQ(St+1, π(St+1))]

This is called bootstrapping
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Temporal Differences policy evaluation

Temporal Differences policy evaluation
Given π initialize Q randomly:
repeat

s ← initial state of episode
repeat

a← π(s)
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γQ(s ′, π(s ′))− Q(s, a))
s ← s ′

until s is terminal
until convergence
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MC and TD comparison

Goal: learn Qπ online from experience under policy π

Incremental every-visit Monte-Carlo
▶ Update value Q(s, a) toward actual return Rt

Q(st , at)← Q(st , at) + α(Rt − Q(st , at))

Simplest temporal-difference learning algorithm: TD(0)
▶ Update value Q(st , at) toward estimated return rt+1 + γV (st+1)

Q(st , at)← Q(st , at) + α(rt+1 + γV (st+1)− Q(st , at))

▶ Remember that Q(st , π(st)) = V (st)
▶ rt+1 + γV (st+1) is called the TD target
▶ δt = rt+1 + γV (st+1)− Q(st , at) is called the TD error
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Advantages and disadvantages of MC vs. TD

TD can learn before knowing the final outcome
▶ TD can learn online after every step
▶ MC must wait until end of episode before return is known

TD can learn without the final outcome
▶ TD can learn from incomplete sequences
▶ MC can only learn from complete sequences
▶ TD works in continuing (non-terminating) environments
▶ MC only works for episodic (terminating) environments
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Bias/variance trade-off

Return Rt = rt+1 + rt+2 + . . . + γT−1rT is unbiased estimate of
V π(St)
True TD target rt+1 + V π(st+1) is unbiased estimate of V π(st) but,
while learning, TD target rt+1 + V (st+1) is a biased estimate of
V π(st)
TD target is much lower variance than the return:

▶ Return depends on many random actions, transitions, rewards
▶ TD target depends on one random action, transition, reward
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Temporal Differences policy evaluation

On-line learning: evaluation is embedded in generation of the
experience.
It can be applied to non-episodic tasks
You don’t need to end episode to learn
Like in MC you don’t need the World model
In practice faster: Takes profit on Markovian property
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MC vs TD learning

Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)

▶ Lower variance
▶ Online
▶ Incomplete sequences

Can we use it for policy learning?
Natural idea: use TD instead of MC in our learning loop

▶ Apply TD to Q(S, A)
▶ Use ϵ-greedy policy improvement
▶ Update every time-step
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Temporal Differences policy learning

Q-learning: Temporal Differences policy learning
Given π initialize Q randomly:
repeat

s ← initial state of episode
repeat

Set a using f.i. ϵ−greedy strategy on π
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γQ(s ′, π(s ′))− Q(s, a))
π(s) = arg maxa∈A Q(s, a) // ties randomly broken
s ← s ′

until s is terminal
until false
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Temporal Differences policy learning

Q-learning: Temporal Differences policy learning
Given π initialize Q randomly:
repeat

s ← initial state of episode
repeat

Set a using f.i. ϵ−greedy strategy based on Q values
Take action a and observe s ′ and r
Q(s, a)← Q(s, a) + α (r + γ maxa′ Q(s ′, a′)− Q(s, a))
s ← s ′

until s is terminal
until false
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Temporal Differences extended
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Temporal Differences extended

Bootstrapping in Bellman equation is done from next state:

V π
(1)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]
= Eπ[rt+1 + γV π(St+1)|St = s]

But we can obtain estimation from 2 steps in the future also:

V π
(2)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]
= Eπ[rt+1 + γrt+2 + γ2(rt+3 + . . .))|St = s]
= Eπ[rt+1 + γrt+2 + γ2Rt+2|St = s]
= Eπ[rt+1 + γrt+2 + γ2V π(St+2)|St = s]
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Temporal Differences extended

In general we could extend that to the n-steps estimator of long-term
reward.

V π
(n)(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + . . . + γn−1rn + +γnrn+1 . . . |St = s]

= Eπ

[ n∑
k=0

γk rt+k+1 + γnV π(St+n)|St = s
]
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Temporal Differences extended: n-step estimators

All estimators of expectation are valid, but different bias and variance.
Which one to use?
Any of them is Ok at the end, but different learning speed with
different value of n.
Implementation of the algorithm is easy. For each episode

1 Execute n actions, keep rewards
2 Apply update

V π(St) = αV π(St) + (1− α)
∑n

k=0 γk rt+k+1 + γnV π(St+n)
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Temporal Differences n-steps policy evaluation
All store and access operations (for St and Rt) can take their index mod n

Temporal Differences n-steps policy evaluation
Given π and n, initialize Q randomly:
for each episode do

s ← initial state of episode, and T ←∞
for t = 0, 1, 2.. do

if t < T then
Take action a← π(s) and observe and store s ′ and r
If s ′ is terminal T ← t + 1

end if
τ ← t − n + 1
if τ ≥ 0 then

R ←
∑min(τ+n,T )

i=τ+1 γ i−τ−1ri
If τ + n < T then: R ← R + γnV (sτ+n)
Q(s, a)← Q(s, a) + α (R − Q(s, a))

end if
s ← s ′

end for
end for
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Temporal Differences n-steps policy evaluation

Advantages:
▶ It generalizes Temporal-Differences and Monte Carlo methods:

⋆ when n = 1, it is equivalent to Q-learning
⋆ when n =∞ (or H) we have MC algorithm

▶ an intermediate n often learn Q-values faster
▶ applicable to both continuing and episodic problems
▶ per-step computation is small and uniform, like TD

There are some disadvantages:
▶ need to choose n value
▶ need to remember the last n states
▶ learning is delayed by n steps
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Temporal Differences extended TD(λ)

Another option. Instead of using one estimator, update using an
average of them
For practical purposes, use a geometric average (0 ≤ λ ≤ 1)

Vλ = (1− λ)
∞∑

n=1
λn−1V(n)

Can be rewritten for episodes as:

Vλ(St) = (1− λ)
T−t−1∑

n=1
λn−1V(n)(St) + λT−t−1Rt

Unifies different algorithms:
▶ When λ = 0 we have TD(0), the standard Q-learning method
▶ When λ = 1 we have the standard MC method

In general for other values of λ we use a smart incremental
implementation using eligibility traces (chapter 12, Sutton book)
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Temporal Differences intuition

Benefits of temporal differences using larger n-step than TD(0)

In general, faster propagation of rewards and, so, faster learning.
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Temporal Differences extended: conclusions

Very good to estimate values for a given policy
More difficult to apply to control, because trace of experience
describe one policy but we are estimating another one

What?
You will understand in next slides.
Let’s go now to discuss the concepts of on-policy and off-policy
learning.
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On-policy vs. Off-policy learning: Sarsa algorithm
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Off-policy vs. On-policy learning

When learning value functions of a policy, we sample using the policy
to estimate them
In Q-learning, the method tries to learn the value function of the
optimal policy (V ∗) when in fact samples are obtained from different
policy (ϵ-greedy policy)
A subtle point with implications about the convergence of the
algorithms to the optimal solution
We’ll do the following distinction:
On-policy learning: When learning the value function V π of the

current policy π
Off-policy learning: When Learning the value function V π using

another policy π′

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 20, 2025 49 / 65



Off-policy vs. On-policy learning

In this sense, Q-learning is an example of off-policy learning.

Q(s, a)← Q(s, a) + α
(
r + γQ(s ′, π(s ′))− Q(s, a)

)
Policy for which we learn values:

π∗(s) = arg max
a

Q∗(s, a)

Q(s, a)← Q(s, a) + α

(
r + γ max

a′
Q∗(s ′, a′)− Q(s, a)

)
But we use another policy (ϵ-greedy policy):

π(a|s) =
{

ϵ/m + 1− ϵ, if a = arg maxa′∈A Q(s, a′)
ϵ/m, otherwise

where m = |A(s)|
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Off-policy vs. On-policy learning

Trivia. What about MC learning? Is it on-policy or off-policy learning?
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Updating action-value functions with SARSA

Let’s try to implement an on-policy learning version of Q-learning
Sarsa: on-policy TD(0) learning
In Q-learning, update equation was:

Q(s, a)← Q(s, a) + α(r + γ

Could be not the action executed︷ ︸︸ ︷
max

a′
Q(s ′, a′) −Q(s, a))

Update equation is sarsa:

Q(s, a)← Q(s, a) + α(r + γ Q(s ′, a′)︸ ︷︷ ︸
Now a is the action executed

−Q(s, a))
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SARSA algorithm for on-policy control

SARSA: on-policy learning
Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and
Q(terminal − state, ·) = 0
for each episode do

Choose initial state s
Choose a from s using policy derived from Q (e.g., ϵ-greedy)
for each step of episode do

Execute action a, observe r , s ′

Choose a′ from s ′ using policy derived from Q (e.g., ϵ-greedy)
Q(s, a)← Q(s, a) + α(r + γQ(s ′, a′)− Q(s, a))
s ← s ′; a← a′

end for
end for
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SARSA algorithm for on-policy control
It can be proved that Sarsa converges to the optimal policy under the
following conditions:

1 Greedy in the Limit of Infinite Exploration (GLIE):
▶ All state–action pairs are explored infinitely many times:

lim
t→∞

Nk(s, a) =∞

▶ The policy converges on a greedy policy (f.i. ϵ decreases inversely
proportional to the number of experiences)

lim
t→∞

πt(a|s) = arg max
a′

Qπt (s, a′)

2 Robbins–Monro sequence of step–sizes αt
∞∑

t=1
αt = ∞

∞∑
t=1

α2
t < ∞
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Practical differences btw Sarsa and Q-learning

Cliff-Walk example (ϵ = 0.1):
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Practical differences btw Sarsa and Q-learning

Cliff-Walk example: Reward during learning

As ϵ decreases, sarsa tends to Q-learning
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Practical differences btw Sarsa and Q-learning

In the cliff–walking task:
▶ Q–learning: learns optimal policy along edge
▶ Sarsa: learns a safe non–optimal policy away from edge

ϵ–greedy algorithm
▶ For ϵ = 0 Q-learning and Sarsa are identic.

But then no exploration.
▶ For ϵ→ 0 gradually, both converge to optimal.
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Expected Sarsa

In sarsa, we use the current policy to estimate returns
However, we can do better: Expected Sarsa
In sarsa, each episode uses one sample of action taken by the policy.
... but we know the policy probabilities to select one action (f.i. in
ϵ-greedy procedure), so we can use it.
Sarsa update:

Q(s, a)← Q(s, a) + α(r + γQ(s ′, a′)− Q(s, a))

Expected sarsa update:

Q(s, a)← Q(s, a) + α(r + γ
∑

a
π(a′|s ′)Q(s ′, a′)− Q(s, a))

Same convergence guarantees and less variance than original Sarsa
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Expected SARSA

Expected SARSA
Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(s, ·) = 0, ∀s ∈ set
of terminal states.
for each episode do

Choose initial state s
for each step of episode do

Choose a from s using policy derived from Q (e.g., ϵ-greedy)
Execute action a, observe r , s ′

Q(s, a)← Q(s, a) + α(r + γ
∑

a′ π(a′|s ′)Q(s ′, a′)− Q(s, a))
s ← s ′

end for
end for
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Off-policy vs. On-policy learning

When learning value functions of a policy, we sample using the policy
to estimate them
In Q-learning, the method tries to learn the value function of the
optimal policy (V ∗) when in fact samples are obtained from different
policy (ϵ-greedy policy)
A subtle point with implications about the convergence of the
algorithms to the optimal solution
We’ll do the following distinction:
On-policy learning: When learning the value function V π of the

current policy π
Off-policy learning: When Learning the value function V π using

another policy π′
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Exercise: Off-policy vs. On-policy learning

s1 s2
a, r = 0

a1, R = 10
. . .

a2, R = 0
. . .

With this info, we know that Q(s2, a1) = 10 and Q(s2, a2) = 0
Let’s assume we obtain the following two experiences following the
exploratory policy:

▶ (s, a)→ (s2, a2)→ ...
▶ (s, a)→ (s2, a1)→ ...

Which is the value that Monte Carlo will obtain for Q(s, a)?
Which is the value that Q-learning will obtain for Q(s, a)?
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Exercise: Off-policy vs. On-policy learning

MonteCarlo estimates Q(s, a) = 5, so it actually computes the
behaviour policy, so it is on-policy

Q-learning estimates Q(s, a) = 10. This is not the long term return
from s of the behaviour policy. It is the return of the greedy policy.
So Q-learning evaluates a different policy that the one used to collect
the data. This is the definition of a off-policy algorithm.
Notice that, using Q-learning, Q-values are not affected by bad results
due to exploration. This is good because we can explore and still
evaluate the greedy policy.
In the limit, we can generate data using a random policy and still
obtain the optimal policy!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 20, 2025 62 / 65



Temporal Differences extended: conclusions

Return to Temporal Differences extended
Very good to estimate values for a given policy
More difficult to apply to control, because trace of states visited
follow one policy but we are estimating another one
Remember this conclusions?

n-steps estimators and TD(λ) can be easily implemented to control
for Sarsa and Extended Sarsa, because they are on-policy learning
methods.
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Sarsa(λ)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC February 20, 2025 64 / 65



Temporal Differences extended: conclusions

In off-policy learning, it is more difficult to implement n-steps
methods
However, n-steps still can be used in off-policy learning (f.i
Q-learning). The trick is to use a dynamic n. When an exploratory
action is taken then stop the trace of action from which to update
Peng’s Q(λ).
In some implementations, authors ignore the problem (off-policy with
n-steps) and, in some problems, it works well in practice.
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