There are still some hot topics we haven’t covered, some of them related to AGI and Long-life RL:

- Hierarchical reinforcement learning
- Transfer Learning
- Meta-Learning
- Links with neuro-physiology

Today, we’ll mention some of them

We will also see some successful applications of RL
Extended RL: towards AGI
AI and RL

- RL is well suited to the idea of AI agent
- Learns a behavior to fulfill own goals
- Is grounded in the environment
- Has the notion of optimality but with given resources (rationality)
AI and RL

- But still some problems for true AI agents
- Most important is that learning is only of one behavior defined by reward function
- When learning another task, learning has to start from scratch
- Too many interactions with env. for learning
- Not suited to the idea of long-live learning
- Some steps in solving these limitations
 - Transfer of learning
 - Multi-task learning
 - (Curriculum learning)
 - Hierarchical Learning
 - Meta-learning
Can we extend knowledge generated in one task to a different task?
Changes in the task: different dynamics, different reward and/or different actions.

Several ways to do that:

- Learn one task and start with policy and values and finetune to next task
- Randomization of the input to prepare for other scenarios or use of entropy in the policy
- MultiTask and Meta-learning (see next slides)
- Transfer of info from one task to the other (Q-values, policy, reward, samples, model, features, etc.)

Example: Sharing of examples and IRL for task disentangled from actions (**AIRL**)

See recent survey
Hierarchic RL

- Also helps in sparse rewards, but also useful for transfer learning.
- Natural way of learning.
- In some cases a complex task can be decomposed in simpler tasks.
- Learning is simplified when first these tasks are learnt.
- Several ways to find that:
 1. Using subrewards for subactions (reward shaping)
 2. Discover them automatically
- Actions can be reused to learn other tasks
- See references about the topic in course web page
Multi-task learning

- What is a task?

 A task: \(\mathcal{T}_i \triangleq \{ S_i, A_i, p_i(s_1), p_i(s' | s, a), r_i(s, a) \} \)

- Changes in on item means a different task
- Agent does not only solve one task but several
Multi-task learning

- What is a task?

 A task: \(\mathcal{T}_i \triangleq \{S_i, A_i, p_i(s_1), p_i(s' | s, a), r_i(s, a)\} \)

- Changes in on item means a different task
- Agent does not only solve one task but several

Multi-task RL

- Given: a set of training tasks
- Goal: Learn a policy that can solve different tasks
Multi-task learning

- Optimize learning/performance across all tasks through shared knowledge.
- Conditioned policies (see previous lecture) are a kind of Multi-task RL where each task is characterized by a goal state.
- In Multi-task, we have conditioned policy again, but more general.

$$\pi(s, z)$$

where z is indicative of the task
Multi-task learning

- Hmmm. But indication of task is reward function or dynamics or starting state
- In some formulations the agent has to discover the scenario from the rewards he obtain
- This means use of memory:

\[(s_1, a_1, r_1) \rightarrow (s_2, a_2, r_2) \rightarrow (s_3, a_3, r_3) \rightarrow s_4\]

\[\text{policy}\]

\[\text{task identifier } z_i\]
Meta-Learning in RL

- Similar to multi-task learning but different focus and procedure

Meta RL

- Given: a set of training tasks
- Goal: Learn to solve those task and also can be learn *efficiently* new tasks

- Formulation: Given a set of training tasks, learn a policy that can also be applied successfully (directly or after small finetuning) to a set of testing tasks.
Procedure to learn is done as follows:

1. Sample one task \mathcal{T}_i from set of training tasks
2. Generate N episodes for task \mathcal{T}_i with policy
3. Store data in ED for \mathcal{T}_i
4. Update policy to maximize discounted return for all tasks.

Focus on efficiently learn a set of different tasks.

Learn-to-learn idea at the beginning, but extended also to generalization between tasks: Learning of each task has to be consistent and (hopefully) helpful for learning other tasks.

Very popular in two last years, in ML and RL in particular (See course CS330 from Stanford here)

See also a specific introduction and review of latest approaches for RL
Comparison meta and multi RL

Multi-Task Learning
Learn to solve a set of tasks.

learn tasks \rightarrow perform tasks

Meta-Learning
Given i.i.d. task distribution, learn a new task efficiently

learn to learn tasks \rightarrow quickly learn new task
Life long learning in RL

- Our agents may not be given a large batch of data/tasks right off the bat!
- Tasks are presented in sequence:

Also called sequential learning, continual learning or incremental learning
- No forgetting part absent in Meta-RL
In Artificial Intelligence it is important to compare techniques with actual techniques used by humans and animals.

Reinforcement learning has its roots in intuitive idea of learning in animals.

Lately, a lot of papers support that RL is implemented in the brain:

- **Link** of RL with actual learning in brain
- **Dopamine** as reward
- **Dopamine** implements TD error.
- **Support** for dopamine acting as distributed value estimation
Some successful applications of RL
Applications

- Games: Backgammon, Go, Chess (competition), Star-Craft, Dota 2, Poker (Pluribus)
- Robotics: Walking, Manipulation (also here), etc.
- Medicine: Review. Example: Sepsis treatment, or ventilation
- Drug design: For instance here.
- Physics
- Recommender systems
- Finances
- Optimization in general, f.i control power, or for IoT,
- Mathematics: For instance, Logic profs
- Natural Language processing: Summarizing texts.