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Goal
Problems of the formulation
Approaches

Linear programming / SVM
Bayesian Learning
Maximum Entropy approach
Adversarial Learning

Applications

Inverse Reinforcement Learning 
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Idea
RL consists in Learning policy from reward function

Inverse Reinforcement Learning 
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Idea
RL consists in Learning policy from reward function
Inverse RL consists in learning the reward function from the policy
… or at least, examples of the policy

Inverse Reinforcement Learning 
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Learn from examples (imitation learning)
Behavior Cloning

• Drift, not robust, do not generalize well to unseen data
• Dataset Aggregation: DAGGER (Roos et. Alt. 11)

Uses of IRL

https://www.ri.cmu.edu/pub_files/2011/4/Ross-AISTATS11-NoRegret.pdf
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Learn from examples (imitation learning)
Behavior Cloning

• Drift, not robust, do not generalize well to unseen data
• Dataset Aggregation: DAGGER (Roos et. Alt. 11)

IRL 
• Learn policy from derived R function from examples [helicopter acrobatics]

Uses of IRL: (1) Learn from examples
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We assume that reward function is easy to design but
Difficult to know: Drive behavior (subgoals to balance)
Sometimes tricky and/or surprising: Cobra example
[See how agents cheat in AI]

So, use IRL to learn a reward function when it is difficult to define

Uses of IRL: (2) Learn a reward fuction

https://kottke.org/18/11/how-ai-agents-cheat
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Useful to model rational behavior and to deduce intents of agents 
(predict behavior) 

Uses of IRL: (3) Predict intents of agents



Mario Martin

Predicting behavior
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Generalize better than BC (R acts as a regularizer)
Reward function introduces rationality to BC
Reward function is a brief and better description of behavior. 
It should be easier to learn a policy from a reward function than from 
another policy
Applications to:

Animal behavior
Multi-agent framework
…

Advantages
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Inverse Reinforcement Learning

Formulation and problems
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Given MDP (except R), and π
π used to generate examples of the policy (sometimes with examples we 
have enough)

But problem not well defined mathematically: many different 
possible reward functions under which observed behavior is optimal

Constant reward for all states explains any policy (degenerate solution)
• [Because only + examples... But this is common in RL]

Multiple of the reward function (R and 5R) explain same behavior
Shaping

Some solutions:
Regularization (entropy)
Sparse solutions
Some kind of normalization

Formalization
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How to evaluate a learned reward function? 
We can only compare indirectly with optimal trajectories from it
… but it is very costly for very large problems since it requires to solve a RL 
problem at each iteration of the algorithm

Moreover… Source of examples?
Should the policy be optimal to generate examples?
Humans are not following always same behavior to solve one problem (multimodal 
solutions)
One human not always consistent
Do they incorporate probability of successful trajectories?

More practical problems
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Some solutions to IRL
Linear programming approximation
Quadratic programming 
Bayesian approach
Probabilistic and Maximum Entropy methods
GANs

Approaches



Mario Martin

Inverse Reinforcement Learning

Approaches to solve IRL
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Some solutions to IRL
Linear programming approximation
Quadratic programming 
Bayesian approach
Probabilistic and Maximum Entropy methods
GANs

Approaches
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LP approach (Ng & Russel, 2000)
First algorithm for simple cases:

From definition of optimality of the policy:

Linear programming (Ng & Russel, 2000)

https://ai.stanford.edu/%7Eang/papers/icml00-irl.pdf
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We know, from Bellman eqs. in RL, we can solve V using LP 

Replacing in constraint:

Linear programming (Ng & Russel, 2000)
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Problems:
IRL is ill-posed: Any R function that fulfill these constraints is valid (in 
particular R=0)
We typically only observe expert traces rather than the entire expert 
policy
Assumes the expert is optimal
How to find R? Assumes we can enumerate all policies

Linear programming (Ng & Russel, 2000)
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Heuristics to get rid of degenerate solutions 
First approach: Maximize dif. between best and second best action at the 
same time

1. Reward functions with small rewards are more natural and should be preferred:
a. Regularization:

b. Hard limit on max R

Linear programming (Ng & Russel, 2000)
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Second algorithm: Large state spaces -> need for function 
approximation

Not for all states but in sample of states… and to generalize to other 
states
… assume R can be expressed as a linear comb. of feature vector (α )

Linear programming (Ng & Russel, 2000)
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So, use LP to solve this problem:

Basically the first condition in previous alg. for regularization
p is function to penalize constraint violation when negative argument 
(x2)

Linear programming (Ng & Russel, 2000)
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Third algorithm: No policy available always (extract info from trajectories)

Compute values 
of m trajectories 

where 

Linear programming (Ng & Russel, 2000)
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Feature counts 

Third algorithm: No policy available always (extract info from trajectories)

Compute values 
of m trajectories 

where 

Linear programming (Ng & Russel, 2000)
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Third algorithm: No policy available always (extract info from trajectories)

Compute values of trajectories 

Find R (α) with values for expert trajectories better than values for 
trajectories from any another policy. 

Start with random π, find R following above equation using LP, learn π for that R 
and repeat (π becomes competitive) [include in comparison also older π]

Linear programming (Ng & Russel, 2000)
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Third algorithm: No policy available always (extract info from trajectories)

Compute values of trajectories 

Find R (α) with values for expert trajectories better than values for 
trajectories from any another policy. 

Start with random π, find R following above equation using LP, learn π for that R 
and repeat (π becomes competitive) [include in comparison also older π]

You get both: policy and reward function.

Linear programming (Ng & Russel, 2000)
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Some solutions to IRL
Linear programming approximation
Quadratic programming 
Bayesian approach
Probabilistic and Maximum Entropy methods
GANs

Approaches
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Assume again R as linear comb of feature vector

Feature counts (features should appear in trajectories of learnt policy like 
in D trajectories)

Solve using SVM instead of LP (Abbeel & Ng 04)

Apprenticeship Learning via IRL (SVM)

https://ai.stanford.edu/%7Eang/papers/icml04-apprentice.pdf
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Optimize:

Where:
m is difference between policies (f.i. Hamming distance)
w are  parameters of linear parametrization of reward function
π is current policy (or set of previous policies)
Slacks are to allow errors like in SVMs

Start with random policy. Iterate: Compute features counts, find optimal w (so R), 
learn policy. Iterate until small enough changes  

Apprenticeship Learning via IRL (SVM)
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Some solutions to IRL
Linear programming approximation
Quadratic programming 
Bayesian approach
Probabilistic and Maximum Entropy methods
GANs

Approaches
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BIRL (Ramachandran & Amir 07)
Probabilistic def of P(a|s,R) and of set (D) of trajectories P(D|R). 

Use Bayes to find P(R|D)

Need P(D) but intractable ->use of MCMC
Apply MAP (Maximum a posteriori) to find R 

Robust BIRL
Faces the problem of suboptimality of some actions

Bayesian IRL  (BIRL)

https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
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Some solutions to IRL
Linear programming approximation
Quadratic programming 
Bayesian approach
Probabilistic and Maximum Entropy methods
GANs

Approaches
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Maximizing log-likelihood of trajectories while satisfying the 
constraint of feature expectation matching

Solution under maximum entropy criteria is with form:

Does not assume optimality of expert trajectories

Entropy methods

As random as possible 
while matching features

Traj. generated by
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Let’s maximize the Log-likelihood of trajectories 

Entropy methods:
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Entropy methods:
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Entropy methods idea
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Av. reward of
expert traject.

Entropy methods idea
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Av. reward of
expert traject.

Soft-max reward

Entropy methods idea
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maximizing the difference of expert trajectory rewards and the reward of 
best possible trajectory, ensuring that expert demonstrations will achieve 
near-optimal reward when the objective is maximized 
But how to estimate the second term?

Av. reward of
expert traject.

Soft-max reward

Entropy methods idea
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Let’s apply gradients:

Entropy methods: First way    [MAXENT (Ziebartet et al. 2008)] 
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Visitation prob. of states under 
Reward (and so policy).
DP computation possible

Let’s apply gradients:

Entropy methods: First way    [MAXENT (Ziebartet et al. 2008)] 
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Visitation prob. of states under 
Reward (and so policy).
DP computation possible

Let’s apply gradients:

Entropy methods: First way    [MAXENT (Ziebartet et al. 2008)] 

No need for linear assumption of reward
(NN’s)  (Wulfmeier et al. 2016)
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Algorithm

Entropy methods: First way    [MAXENT (Ziebartet et al. 2008)] 
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In general, visit counts cannot be computed in large stat spaces
Guided Cost Learning: Use importance sampling to estimate Z

Entropy methods: Second way          [GCL (Finn et al. 2016)] 
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The proposal distribution q should samples trajectories with high reward, 
since these trajectories have the highest impact on the partition function 
(so optimized policy on current reward function).
So now:

No need to solve the whole MDP (just approximation), so more efficient 

Entropy methods: Second way          [GCL (Finn et al. 2016)] 
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It can be proved that GCL is equivalent to a GAN:

Optimal point for discriminator:

GANs and GCL (Finn et al. 2016b)
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Some problems with GCL:
You need whole trajectories
Entangled reward with actions (don’t allow transfer learning)

AIRL proposes:

AIRL example

Adversarial IRL  (Fu et al. 2017)

https://sites.google.com/view/adversarial-irl
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Closely related but different. They do not return the reward 
function, only policy
Can also be learnt from adversarial networks (same idea)

GAIL
InfoGAIL
GAifO

See DeepMimic video presentation for IL

Imitation Learning

https://www.youtube.com/watch?v=vppFvq2quQ0
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MAP of methods
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