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Goal of this lecture

So far we approximated the value or action-value function using
parameters θ (e.g. neural networks)

Vθ ≈ V π

Qθ(s, a) ≈ V π(s)

A policy was generated directly from the value function e.g. using ε-
greedy

In this lecture we will directly parameterize the policy in a stochastic
setting

πθ(a|s) = Pθ(a|s)

and do a direct Policy search

Again on model-free setting
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Three approaches to RL

Value based learning: Implicit policy

Learn value function Qθ(s, a) and from there infer policy
π(s) = arg maxa Q(s, a)

Policy based learning: No value function

Explicitly learn policy πθ(a|s) that implicitly maximize
reward over all policies

Actor-Critic learning: Learn both Value Function and Policy
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Advantges of Policy over Value approach

Advantages:
I In some cases, computing Q-values is harder than picking optimal

actions
I Better convergence properties
I Effective in high dimensional or continuous action spaces
I Exploration can be directly controlled
I Can learn stochastic policies

Disadvantages:
I Typically converge to a local optimum rather than a global optimum
I Evaluating a policy is typically data inefficient and high variance
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Stochastic Policies

In general, two kinds of policies:
I Deterministic policy

a = πθ(s)

I Stochastic policy
P(a|s) = πθ(a|s)

Nice thing is that they are smoother than greedy policies, and so, we
can compute gradients!

Not new: ε-greedy is stochastic...

but different idea. Stochastic policy
is good on its own, not because it is an approx. of a greedy policy

Any example where an stochastic policy could be better than a
deterministic one?
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Stochastic Policies: Rock-Paper-Scissors

Two–player game of rock–paper–scissors:
I Scissors beats paper
I Rock beats scissors
I Paper beats rock

Consider policies for iterated rock–paper–scissors
I A deterministic policy is easily exploited
I A uniform random policy is optimal (i.e., Nash equilibrium)
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Stochastic Policies when aliased states (POMDPs)

The agent cannot differentiate the grey states

Consider features of the following form:

φd(s) = 1(wall to d) ∀d ∈ {N,E ,S ,W }

Compare value-based RL, using an approximate value function

Qθ(s, a) = fθ(φ(s, a))

To policy-based RL, using a parametrized policy

πθ(a|s) = gθ(φ(s, a))
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Stochastic Policies when aliased states (POMDPs)

Under aliasing, an optimal deterministic policy will either
I move W in both gray states
I move E in both gray states

Either way, it can get stuck and never reach the money

So it will be stuck in the corridor for a long time

Value–based RL learns a deterministic policy (or near deterministic
when it explores)
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Stochastic Policies when aliased states (POMDPs)

An optimal stochastic policy will randomly move E or W in gray
states

I πθ(move E | wall to N and S) = 0.5
I πθ(move W | wall to N and S) = 0.5

It will reach the goal state in a few steps with high probability

Policy–based RL can learn the optimal stochastic policy
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Policy optimization
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Policy Objective Functions

Goal: given policy πθ(a|s) with parameters θ, find best θ

... but how do we measure the quality of a policy πθ?

In episodic environments we can use the start value

J1(θ) = V πθ(s1)
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Policy Objective Functions

In continuing environments we can use the average value

JavV (θ) =
∑
s

dπθ(s)V πθ(s)

where dπθ(s) is stationary distribution of Markov chain for πθ (can be
estimated as the expected number of time steps on s in a randomly
generated episode following πθ divided by time steps of trial)

Or the average reward per time-step

JavR(θ) =
∑
s

dπθ(s)
∑
a

πθ(a|s)r(s, a)

For simplicity, we will mostly discuss the episodic case, but can easily
extend to the continuing / infinite horizon case
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Policy optimization

Goal: given policy πθ(a|s) with parameters θ, find best θ

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize J(θ)

Two approaches for solving the optimization problem
I Gradient-free
I Policy-gradient
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Subsection 1

Gradient Free Policy Optimization
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Gradient Free Policy Optimization

Goal: given parametrized method (with parameters θ) to approximate
policy πθ(a|s), find best values for θ

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize J(θ)

Some approaches do not use gradient
I Hill climbing
I Simplex / amoeba / Nelder Mead
I Genetic algorithms
I Cross-Entropy method (CEM)
I Covariance Matrix Adaptation (CMA)
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Cross-Entropy Method (CEM)

A simplified version of Evolutionary algorithm

Works embarrassingly well in some problems, f.i.
I Playing Tetris (Szita et al., 2006), (Gabillon et al., 2013)
I A variant of CEM called Covariance Matrix Adaptation has become

standard in graphics (Wampler et al., 2009)

Very simple idea:
1 From current policy, sample N trials (large)
2 Take the M trials with larger long-term return (we call the elite)
3 Fit new policy to behave as in M best sessions
4 Repeat until satisfied

Policy improves gradually
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Tabular Cross-Entropy

Tabular Cross-Entropy Algorithm

Given M (f.i, 20), N (f.i. 200)
Initialize matrix policy π(a|s) = As,a randomly
repeat

Sample N roll-outs of the policy and collect for each Rt

elite = M best samples

π(a|s) =
[times in M samples took a in s] + λ

[times in M samples was at s] + λ|A|
until convergence
return π

Notice! No value functions!
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Tabular Cross-Entropy

Some possible problems and solutions:

If you were in an state only once, you only took one action and
probabilities become 0/1

Solution: Introduction of λ, a parameter to smooth probabilities

Due to randomness, algorithm will prefer “lucky” sessions (training on
lucky sessions is no good)

Solution: run several simulations with these state-action pairs and
average the results.

Mario Martin (CS-UPC) Reinforcement Learning May 7, 2020 17 / 72



Tabular Cross-Entropy

Some possible problems and solutions:

If you were in an state only once, you only took one action and
probabilities become 0/1

Solution: Introduction of λ, a parameter to smooth probabilities

Due to randomness, algorithm will prefer “lucky” sessions (training on
lucky sessions is no good)

Solution: run several simulations with these state-action pairs and
average the results.

Mario Martin (CS-UPC) Reinforcement Learning May 7, 2020 17 / 72



Approximated Cross-Entropy Method (CEM)

Approximated Cross-Entropy Method

Given M (f.i, 20), N (f.i. 200) and function approximation (f.i. NN)
depending on θ
Initialize θ randomly
repeat

Sample N roll-outs of the policy and collect for each Rt

elite = M best samples

θ = θ + α∇
[∑

s,a∈elite log πθ(a|s)
]

until convergence
return πθ
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Approximated Cross-Entropy Method (CEM)

No Value function involved

Notice that best policy is:

arg max
πθ

∑
s,a∈elite

log πθ(a|s) = arg max
πθ

∏
s,a∈elite

πθ(a|s)

so gradient goes in that direction (some theory about Entropy behind)

Intuitively, is the policy that maximizes similarity with behavior of
successful samples

Tabular case is a particular case of this algorithm

I promised no gradient, but notice that gradient is for the
approximation, not for the rewards of the policy

Can easily be extended to continuous action spaces (f.i. robotics)
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Gradient-Free methods

Often a great simple baseline to try

Benefits
I Can work with any policy parameterizations, including

non-differentiable
I Frequently very easy to parallelize (faster wall-clock training time)

Limitations
I Typically not very sample efficient because it ignores temporal structure
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Subsection 2

Policy gradient
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Policy gradient methods

Policy based reinforcement learning is an optimization problem

Find policy parameters θ that maximize V πθ

We have seen gradient-free methods, but greater efficiency often
possible using gradient in the optimization

Pletora of methods:
I Gradient descent
I Conjugate gradient
I Quasi-newton

We focus on gradient ascent, many extensions possible

And on methods that exploit sequential structure
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Policy gradient differences wrt Value methods

With Value functions we use Greedy updates:

θπ′ = arg max
θ

Eπθ [Qπ(s, a)]

V π0 small change−−−−−−−→ π1
large change−−−−−−−→ V π1 small change−−−−−−−→ π2

large change−−−−−−−→ V π2

Potentially unstable learning process with large policy jumps because
arg max is not differentiable

On the other hand, Policy Gradient updates are:

θπ′ = θπ′ + α
∂J(θ)

∂θ

Stable learning process with smooth policy improvement
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Policy gradient method

Define J(θ) = Jπθ to make explicit the dependence of the evaluation
policy on the policy parameters

Assume episodic MDPs

Policy gradient algorithms search for a local maximum in J(θ) by
ascending the gradient of the policy, w.r.t parameters θ

∇θ = α∇θJ(θ)

Where ∇θJ(θ) is the policy gradient and α is a step-size parameter
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Computing the gradient analytically

We now compute the policy gradient analytically

Assume policy is differentiable whenever it is non-zero

and that we know the gradient ∇θπθ(a|s)

Denote a state-action trajectory (or trial) τ as

τ = (s0, a0, r1, s1, a1, r2, . . . sT−1, aT−1, rT , sT )

Define long-term-reward to be the sum of rewards for the trajectory
(R(τ))

R(τ) =
T∑
t=1

r(st)

It can be discounted or not. Now not important because we will not
use Bellman equations.
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Computing the gradient analytically

The value of the policy J(θ) is:

J(θ) = Eπθ [R(τ)] =
∑
τ

P(τ |θ)R(τ)

where P(τ |θ) denotes the probability of trajectory τ when following
policy πθ

Notice that sum is for all possible trajectories

In this new notation, our goal is to find the policy parameters theta)
that:

arg max
θ

J(θ) = arg max
θ

∑
τ

P(τ |θ)R(τ)
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[Log-trick: a convenient equality]

In general, assume we want to compute ∇ log f (x) :

∇ log f (x) =
1

f (x)
∇f (x)

f (x)∇ log f (x) = ∇f (x)

It can be applied to any function and we can use the equality in any
direction

The term ∇f (x)
f (x) is called likelihood ratio and is used to analytically

compute the gradients

Btw. Notice the caveat... Assume policy is differentiable whenever it
is non-zero.
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Computing the gradient analytically

In this new notation, our goal is to find the policy parameters θ that:

arg max
θ

J(θ) = arg max
θ

∑
τ

P(τ |θ)R(τ)

So, taken the gradient wrt θ

∇θJ(θ) = ∇θ
∑
τ

P(τ |θ)R(τ)

=
∑
τ

∇θP(τ |θ)R(τ)

=
∑
τ

P(τ |θ)

P(τ |θ)
∇θP(τ |θ)R(τ)

=
∑
τ

P(τ |θ)R(τ)
∇θP(τ |θ)

P(τ |θ)

=
∑
τ

P(τ |θ)R(τ)∇θ logP(τ |θ)
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Computing the gradient analytically

Goal is to find the policy parameters θ that:

arg max
θ

J(θ) = arg max
θ

∑
τ

P(τ |θ)R(τ)

So, taken the gradient wrt θ

∇θJ(θ) =
∑
τ

P(τ |θ)R(τ)∇θ logP(τ |θ)

Of course we cannot compute all trajectories...

but we can sample m
trajectories because of the form of the equation

∇θJ(θ) ≈ (1/m)
m∑
i=1

R(τi )∇θ logP(τi |θ)
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Computing the gradient analytically: at last!

Sample m trajectories:

∇θJ(θ) ≈ (1/m)
m∑
i=1

R(τi )∇θ logP(τi |θ)

However, we still have a problem, we don’t know the how to compute
∇θ logP(τ |θ)
Fortunately, we can derive it from the stochastic policy

∇θ logP(τ |θ) = ∇θ log

[
µ(s0)

T−1∏
i=0

πθ(ai |si )P(si+1|si , ai )

]

= ∇θ

[
logµ(s0) +

T−1∑
i=0

log πθ(ai |si ) + logP(si+1|si , ai )

]

=
T−1∑
i=0

∇θ log πθ(ai |si )︸ ︷︷ ︸
No dynamics model required!
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Computing the gradient analytically

We assumed at the beginning that policy is differentiable and that we
now the derivative wrt parameters θ

So, we have the desired solution:

∇θJ(θ) ≈ (1/m)
m∑
i=1

R(τi )
T−1∑
i=0

∇θ log πθ(ai |si )
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Differentiable policies? Soft-max

One popular way to do action selection instead of using ε-greedy is to
assign probabilities to actions according to values:

π(a|s) =
eQ(s,a)/τ∑
a′ e

Q(s,a′)/τ
∝ eQ(s,a)/τ

where τ is parameter that controls exploration. Let’s assume τ = 1

Let’s consider the case where Q(s, a) = φT (s, a)θ is approximated by
a linear function

∇θ log πθ(ai |si ) = ∇θ log
eφ

T (s,a)θ∑
a′ e

φT (s,a)θ

= ∇θ φT (s, a)θ −∇θ
∑
a′

φT (s, a)θ

= φ(s, a)− Eπθ [φ(s, ·)]
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Differentiable policies? Gaussian Policy

In continuous spaces of actions, action is generated by a random
distribution with parameters (f.i. Gaussian distribution)

Parameter of the Gaussian is a linear combination of feature vector
(µ = φT (s) θ). Variance σ can be fixed or approximated.

This approach allows to consider actions vectors of continuous values
(two actions same time!).

Policy select actions following Gaussian distribution:

a ∼ N (µθ(s), σ2) =
1√

2πσ2
e−

(a−φT (s)θ)2

2σ2

In this case,

∇θ log πθ(a|s) = ∇θ
[
−(a− φT (s) θ)2

2σ2

]
=

(a− φT (s) θ) φ(s)

σ2
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Differentiable policies? Deep Neural Network

A very popular way to approximate the policy is to use a Deep NN
with soft-max last layer with so many neurons as actions.

In this case, use autodiff of the neural network package you use! In
tensorflow:

loss = - tf.reduce mean(tf.log(prob outputs) * reward)

where prob outputs is the output layer of the DNN

Backpropagation implemented will do the work for you.

Common approaches:
I Last softmax layer in discrete case
I Last layer with µ and log σ in continuous case
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Vanilla Policy Gradient

Vanilla Policy Gradient

Given architecture with parameters θ to implement πθ
Initialize θ randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
Get R ← long-term return for episode
for all time steps t = 1 to T − 1 do
θ ← θ + α∇θ log πθ(at |st)R

end for
until convergence

Substitute ∇θ log πθ(at |st) with appropriate equation.

Btw, notice no explicit exploration mechanism needed when policies are
stochastic (all on policy)!
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Vanilla Policy Gradient

Remember:

∇θJ(θ) ≈ (1/m)
m∑
i=1

R(τi )
T−1∑
i=0

∇θ log πθ(ai |si )

Unbiased but very noisy

Fixes that can make it practical
I Temporal structure
I Baseline
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Subsection 3

Reduce variance using temporal structure: Reinforce and
Actor-Critic architectures
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Policy Gradient using Temporal structure

Instead on focusing on reward of trajectories,

J(θ) = Eπθ [R(τ)] =
∑
τ

P(τ |θ)R(τ)

We want to optimize the expected return

JavV (θ) =
∑
s

dπθ(s)V (s) =
∑
s

dπθ
∑
a

πθ(a|s)Q(s, a)

where dπθ(s) is the expected number of time steps on s in a
randomly generated episode following πθ divided by time steps of trial

Let’s start with and MDP with one single step.

JavR(θ) =
∑
s

dπθ(s)V (s) =
∑
s

dπθ
∑
a

πθ(a|s)r(s, a)
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Policy Gradient using Temporal structure

JavR(θ) =
∑
s

dπθ
∑
a

πθ(a|s)r(s, a)

∇θJavR(θ) = ∇θ
∑
s

dπθ
∑
a

πθ(a|s)r(s, a)

=
∑
s

dπθ
∑
a

∇θ(πθ(a|s)r(s, a))

=
∑
s

dπθ
∑
a

∇θπθ(a|s) log πθ(a|s)r(s, a)

= Eπθ [∇θ log πθ(a|s)r(s, a)]

And this expectation can be sampled
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Policy Gradient theorem!

The policy gradient theorem generalize the likelihood ratio approach
to multi–step MDPs

Replaces instantaneous reward r with long–term value Q(s, a)

Policy gradient theorem applies to all objective functions we have seen

Policy gradient theorem

For any differentiable policy πθ(s, a), for any of the policy objective
functions J = J1, JavR or JavV , the policy gradient is:

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Qπθ(s, a)]

Simple proof in pag. 325 of (Sutton 2018)
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REINFORCE algorithm

REINFORCE algorithm (also called Monte–Carlo Policy Gradient) use
reward R as unbiased sample of Qπθ(s, a).

REINFORCE algorithm

Given architecture with parameters θ to implement πθ
Initialize θ randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
for all time steps t = 1 to T − 1 do

Get Rt ← long-term return from step t to T a

θ ← θ + α∇θ log πθ(at |st)Rt

end for
until convergence

aSee proof from Don’t Let the Past Distract You if you are not convinced.
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REINFORCE algorithm

Let’s analyze the update:

θ ← θ + α∇θ log πθ(at |st)Rt

Let’s us rewrite is as follows

θ ← θ + α
∇θπθ(at |st)
πθ(at |st)

Rt

Update is proportional to:
I the product of a return Rt and
I the gradient of the probability of taking the action actually taken,
I divided by the probability of taking that action.
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REINFORCE algorithm

Update:

θ ← θ + α
∇θπθ(at |st)
πθ(at |st)

Rt

I ...move most in the directions that favor actions that yield the highest
return

I ...is inversely proportional to the action probability (actions that are
selected frequently are at an advantage (the updates will be more often
in their direction))

Is it necessary to change something in the algorithm for continuous
actions?

No! Just uses a continuous action policy mechanism and everything is
the same!
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REINFORCE algorithm with baseline

Monte-Carlo policy gradient still has high variance because Rt has a
lot of variance

We can reduce variance subtracting a baseline to the estimator

θ ← θ + α∇θ log πθ(at |st)(Rt − b(st))

without introducing any bias when baseline does not depend on
actions taken

A good baseline is b(st) = V πθ(st) so we will use that

How to estimate V πθ?

We’ll use another set of parameters w to approximate
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REINFORCE algorithm with baseline

REINFORCE algorithm with baseline (aka MC Actor Critic)

Given architecture with parameters θ to implement πθ and parameters
w to approximate V
Initialize θ randomly
repeat

Generate episode {s1, a1, r2, . . . sT−1, aT−1, rT , sT} ∼ πθ
for all time steps t = 1 to T − 1 do

Get Rt ← long-term return from step t to T
δ ← Rt − Vw (st)
w ← w + βδ∇wVw (st)
θ ← θ + αδ∇θ log πθ(at |st)

end for
until convergence
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Actor-Critic Architectures

Monte-Carlo policy gradient has high variance

So we used a baseline to reduce the variance Rt − V (st)

Can we do something to speed up learning like we did with MC using
TD?

Yes, use different estimators of Rt that do bootstrapping f.i.
TD(0), n-steps, etc.

These algorithms are called Actor Critic
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Actor-Critic Architectures

The Critic, evaluates the current policy and the result is used in the
policy training

The Actor implements the policy and is trained using Policy Gradient
with estimations from the critic
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Actor-Critic Architectures

Actor-critic algorithms maintain two sets of parameters (like in
REINFORCE with baseline):

Critic parameters: approximation parameters w for
action-value function under current policy

Actor parameters: policy parameters θ

Actor-critic algorithms follow an approximate policy gradient:

Critic: Updates action-value function parameters w like in
policy evaluation updates (you can apply everything we
saw in FA for prediction)

Actor: Updates policy gradient θ, in direction suggested by
critic
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Actor-Critic Architectures

Actor updates are always in the same way:

θ ← θ + α∇θ log πθ(at |st)Gt

where Gt is the evaluation of long-term returned by the critic for st

Critic updates are done to evaluate the current policy

w ← w + αδ∇θVw (at |st)

where δ is the estimated error in evaluating the s state and that
implements the kind of bootstrapping done.
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One step Actor Critic (QAC)

One step actor-critic: δ ← r + Qw (s ′, a′)− Qw (s, a)

One step Actor Critic

Given architecture with parameters θ to implement πθ and parameters w to
approximate Q
Initialize θ randomly
repeat

Set s to initial state
Get a from πθ
repeat

Take action a and observe reward r and new state s ′

Get a′ from πθ
δ ← r + Qw (s ′, a′)− Qw (s, a) // TD-error (Bellman equation)
w ← w + βδ∇wQw (s, a) // critic update
θ ← θ + α∇θ log πθ(a|s)Qw (s, a) // Actor update
s ← s ′

until s is terminal
until convergence
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Advantage Actor Critic (AAC or A2C)

In this critic Advantage value function is used:

Aπθ(s, a) = Qπθ(s, a)− V πθ(s)

The advantage function can significantly reduce variance of policy
gradient

So the critic should really estimate the advantage function, for
instance, estimating both V(s) and Q using two function
approximators and two parameter vectors:

V πθ(s) ≈ Vv (s) (1)

Qπθ(s, a) ≈ Qw (s, a) (2)

A(s, a) = Qw (s, a)− Vv (s) (3)

And updating both value functions by e.g. TD learning

Nice thing, you only punish policy when not optimal (why?)
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From A2C to REINFORCE with baseline

One way to implement A2C method without two different networks to
estimate Qw (s, a) and Vv (s) is the following.
For the true value function V πθ(s), the TD error δπθ(s)

δπθ(s) = r + γV πθ(s ′)− V πθ(s)

...that it is an unbiased estimate of the advantage function:

Eπθ [δπθ |s, a] = Eπθ
[
r + γV πθ(s ′)|s, a

]
− V πθ(s)

= Qπθ(s, a)− V πθ(s) = Aπθ(s, a)

So we can use the TD error to compute the policy gradient

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)δπθ ]

In practice this approach only requires one set of critic parameters v
to approximate TD error

δv = r + γVv (s ′)− Vv (s)

Notice this algorithm resemblance with REINFORCE with baseline
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Asyncrhonous Advantage Actor Critic (A3C)

A3C (Mnih et al. 2016) idea: Sample for data can be parallelized
using several copies of the same agent

I use N copies of the agents (workers) working in parallel collecting
samples and computing gradients for policy and value function

I After some time, pass gradients to a main network that updates actor
and critic using the gradients of all

I After some time the worker copy the weights of the global network

This parallelism decorrelates the agents’ data, so no Experience
Replay Buffer needed

Even one can explicitly use different exploration policies in each
actor-learner to maximize diversity

Asynchronism can be extended to other update mechanisms (Sarsa,
Q-learning...) but it works better in Advantage Actor critic setting
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Generalized Advantage Estimator (GAE)

Generalized Advantage Estimator (Schulman et al. 2016). [nice
review]

Use a version of Advantage that consider weighted average of n-steps
estimators of advantage like in TD(λ):

AπGAE =
∞∑

t′=t

(λγ)t
′−t [rt′+1 + γV π

θ (st′+1)− V π
θ (st′)]︸ ︷︷ ︸

t’-step advantage

Used in continuous setting for locomotion tasks
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Subsection 4

Conclusions and other approaches
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Summary

The policy gradient has many equivalent forms

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Rt ] REINFORCE

= Eπθ [∇θ log πθ(a|s)Qw (s, a)] Actor-Critic

= Eπθ [∇θ log πθ(a|s)Aw (s, a)]] Advantage Actor-Critic

= Eπθ [∇θ log πθ(a|s)δ] TD Actor-Critic

= Eπθ [∇θ log πθ(a|s)δe] TD(λ) Actor-Critic

Each leads a stochastic gradient ascent algorithm

Critic uses policy evaluation (e.g. MC or TD learning) to estimate
Qπ(s, a),Aπ(s, a) or V π(s)
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Compatible Function Approximation: Bias in AC

Approximating the policy gradient with critic can introduce bias

A biased policy gradient may not find the right solution

Luckily, if we choose value function approximation carefully, then we
can avoid bias

If the following two conditions are satisfied:
1 Value function approximator is compatible to the policy

∇wQw (s, a) = ∇θlogπθ(a|s)

2 Value function parameters w minimize the mean-squared error

∇wEπθ
[
(Qπθ (s, a)− Qw (s, a))2

]
= 0

Then the policy gradient is without bias
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Problems with Policy Gradient Directions

Goal: Each step of policy gradient yields an updated policy π′ whose
value is greater than or equal to the prior policy π: V π′ ≥ V π

Several inefficiencies:
I Gradient ascent approaches update the weights a small step in

direction of gradient
I Gradient ascent algorithms can follow any ascent direction (a good

ascent direction can significantly speed convergence)
I Gradient is First order / linear approximation of the value function’s

dependence on the policy parameterization instead of actual policy1

1A policy can often be re–parameterized without changing action probabilities (f.i.,
increasing score of all actions in a softmax policy). Vanilla gradient is sensitive to these
re–parameterizations.
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About step size

Step size is important in any problem involving finding the optima of
a function

Supervised learning: Step too far → next updates will fix it

But in Reinforcement learning
I Step too far → bad policy
I Next batch: collected under bad policy
I Policy is determining data collect! Essentially controlling

exploration and exploitation trade o due to particular policy parameters
and the stochasticity of the policy

I May not be able to recover from a bad choice, collapse in performance!
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Better Policy Gradient Directions: Natural Gradient

A more efficient gradient in learning problems is the natural gradient

It corresponds to steepest ascent in policy space and not in the
parameter space with right step size

Also, the natural policy gradient is parametrization independent

Convergence to a local minimum is guaranteed

It finds ascent direction that is closest to vanilla gradient, when
changing policy by a small, fixed amount

∇nat
θ πθ(a|s) = G−1θ ∇θπθ(a|s)

Where Gθ is the Fisher information matrix

Gθ = Eπθ
[
∇θ log πθ(a|s)∇θ log πθ(a|s)T

]
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Natural Actor Critic (Peters et al 2005)

Under linear model modelization of critic:

Aπθ(s, a) = φ(s, a)Tw

Using compatible function approximation,

∇wAw (s, a) = ∇θ log πθ(a|s)

The natural policy gradient nicely simplifies,

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Aπθ(s, a)]

= Eπθ
[
∇θ log πθ(a|s)∇θ log πθ(a|s)Tw

]
= Gθw

∇nat
θ J(θ) = w

i.e. update actor parameters in direction of critic parameters
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TRPO (Schulman et al 2017)

Trust Region Policy Optimization (TRPO) maximize parameters that
change the policy increasing advantage in action over wrt. old policy
in proximal spaces to avoid too large step size.

arg max
θ

Lθold (θ) = arg max
θ

Es0:∞

[
T−1∑
t=0

Ea∼θ

[
πθ(at |st)
πθold (at |st)

Aθ(st , at)

]]

Under penalizing constraint (using KL divergence of θ and θold) that
ensures improvement of the policy in the proximity (small step size)

Solves using Natural Gradient

Some TRPO videos here.

Proximal Policy Optimization PPO inspired in TRPO simplifies
computation
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Subsection 5

New off-policy AC methods
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)

DDPG is an extension of Q-learning for continuous action spaces.
I Therefore, it is an off-policy algorithm (we can use ER!)

It is also an actor-critic algorithm (has networks Qφ and πθ.)

Uses Q and π target networks for stability.

Differently from other critic algorithms, policy is deterministic,

noise added for exploration: at = πθ(st) + ε (where ε ∼ N )
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)

Qφ network is trained using standard loss function:

L(φ,D) = E
(s,a,r ,s′)∼D

(Qφ(s, a)−
(
r + γQφtarg(s ′, πθtarg(s ′))

))2


As action is deterministic and continuous (NN), we can easily follow
the gradient in policy network to increase future reward:

max
θ

E
s∼D

[Qφ(s, πθ(s))]→ ∇θ E
s∼D

[Qφ(s, πθ(s))] ≈ 1

N

N∑
i=1

∇aQφ(s, a)∇θπθ(s)
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DDPG: Deep Determ. PG (Lillicrap et al. 2016)
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TD3: Twin Delayed DDPG (Fujimoto et al, 2018)

Similar to DDPG but with the following changes:
1 Clipped action exploration: noise added like DDPG but noise bounded

to fixed range.

a′(s ′) = clip
(
πθtarg(s ′) + clip(ε,−c , c), aLow , aHigh

)
, ε ∼ N (0, σ)

2 Pessimistic Double-Q Learning : It uses two (twin) Q networks and uses
the ”pessimistic” one for current state for updating the networks

L(φi ,D) = E
(s,a,r ,s′)∼D

(
Qφi (s, a)− min

i=1,2
Qφi,targ(s ′, a′(s ′))

)2

3 Delayed Policy Updates: Updates of Critic are more frequent than of
policy (fi. 2 or 3 times)
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SAC: Soft Actor Critic (Haarnoja et al, 2018)

Policy Entropy-regularized: we will look for maximum entropy policies
with given data (in SAC we go back to stochastic π).

H(π(·|s)) = E
a∼π(s)

[− log π(a|s)]

So we search for policy:

π∗ = arg max
π

E
τ∼π

[ ∞∑
t=0

γt
(
R(st+1) + αH (π(·|st))

)]

where α is the trade-off between reward and entropy.

Entropy enforces exploration, so no need to add noise to actions.

Usually α decreases during learning and is disabled to test
performance.
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SAC: Soft Actor Critic (Haarnoja et al, 2018)

Let’s define value functions in this case:

V π(s) = E
τ∼π

[ ∞∑
t=0

γt
(
R(st+1) + αH (π(·|st))

)∣∣∣∣s0 = s

]

Qπ(s, a) = E
τ∼π

[ ∞∑
t=0

γtR(st+1) + α

∞∑
t=1

γtH (π(·|st))

∣∣∣∣s0 = s, a0 = a

]

So Bellman equations can be written as:

V π(s) = E
τ∼π

[Qπ(s, a) + αH (π(·|s))]

Qπ(s, a) = E
s′∼P,a′∼π

[
R(s ′) + γ

(
Qπ(s ′, a′) + αH

(
π(·|s ′)

))]
= E

s′∼P

[
R(s, a, s ′) + γV π(s ′)

]
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SAC: Soft Actor Critic (Haarnoja et al, 2018)

Architecture: Networks and loss functions for each one:

I Q-value functions: Qθ1(s, a),Qθ2(s, a) (twin like TD3)

L(θi ,D) = E
(s,a,r ,s′,d)∼D

(Qθi (s, a)−
(
r + γVψtarg(s ′)

))2


I Value functions Vψ(s), Vψtarg (s):

L(ψ,D) = E
s∼D,a∼πφ

(
Vψ(s)−

(
min
i=1,2

Qθi (s, a)− α log πφ(a|s)

))2

I Policy πφ(a|s). Maximize:

E
a∼π

(
Qπ(s, a)− α log π(a|s)

)

which maximize V value function... but how to compute gradients?
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Reparametrization trick see here or here

Problematic because in ∇φ, expectation follow stochastic πφ.

E
a∼πφ

[Qπφ(s, a)− α log πφ(a|s)]

It can be done using the log-trick like REINFORCE... but high
variance.
Authors use a reparametrizarion trick. It can be done when we
define the stochastic πφ as Gaussian by adding noise to the action:

ãφ(s, ξ) = tanh (µφ(s) + σφ(s)� ξ) , ξ ∼ N (0, I )

Now we can rewrite the term as:

E
a∼πφ

[Qπφ(s, a)− α log πφ(a|s)] =

E
ξ∼N

[Qπφ(s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ)|s)]

Now we can optimize the policy according to

max
φ

E
s∼D,ξ∼N

[Qθ1(s, ãφ(s, ξ))− α log πφ(ãφ(s, ξ)|s)]
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Recommended resources

Nice review of Policy Gradient Algorithms in Lil’Log blog

Good description of algorithms in Spinning Up with implementation
in Pytorch and Tensorflow

Understable implementations of Actor Critic methods in
RL-Adventure-2
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