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Use of Neural Networks for regression
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Recap of FA solutions

Two possible approaches for function approximation:

© Incremental:

» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to
catastrophic forgetting, and (b) Moving target problem
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Recap of FA solutions

Two possible approaches for function approximation:

© Incremental:
» Pro: Learning on-line
» Cons: No convergence due to (a) Data not i.i.d., that can lead to
catastrophic forgetting, and (b) Moving target problem
© Batch Learning:

» Cons: Learn from collected dataset (not own experience)
» Pro: Better convergence
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Fitted Q-learning

Fitted Q-learning

Given D of size T with examples (s;, a¢, r++1, St+1), and regression
algorithm, set N to zero and Qu(s,a) =0 for all aand s
repeat
N+ N+1
Build training set TS = {((st, at), re+1 + v max, Qn(se+1, a)}}thl
Qn+1 < regression algorithm on TS
until Qy ~ Qni1 or N > limit
return 7 based on greedy evaluation of Qy
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Neural Fitted Q-learning

Initialize weights 6 for NN for regression
Collect D of size T with examples (s;, a, re+1, St+1)
repeat
Sample B mini-batch of D
0 0—a) s %(Sta a) (Qo(se; ar) — [rev1 + v maxy Qp(set1,a")])
until convergence on learning or maximum number of steps
return 7 based on greedy evaluation of Qy

@ Does not work well

@ It's not a Batch method. Can you see why?
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Neural Fitted Q-learning (Riedmiller, 2005)

Neural Fitted Q-learning

Initialize weights 6 for NN for regression
Collect D of size T with examples (s¢, at, re41, St41)
repeat
0"+ 0
repeat
Sample B mini-batch of D
00— g %(Stv ar) (Qo(st, at) — [re+1 + vy maxa Qo (se41, "))
until convergence on learning or maximum number of steps
until maximum limit iterations
return 7 based on greedy evaluation of Qj

@ Notice target does not change during supervised regression
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https://link.springer.com/chapter/10.1007/11564096_32

Neural Fitted Q-learning: Another version

@ That works, however the update of parameters is not smooth

@ Alternative version to avoid moving target

Fitted Q-learning avoiding moving target

Initialize weights 8 for NN for regression

Collect D of size T with examples (s¢, ar, re+1, St+1)

repeat
Sample B mini-batch of D
00— s %(Sta ar) — (Qo(st; ar) — [rev1 + v maxy Qo (se41,a")])
0+ 710"+ (1—171)0

until maximum limit iterations

return 7 based on greedy evaluation of @y

@ Value of 7 close to one (f.i. 7 =0.999) reduces the “speed” of the
moving target.
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How to get the data?

@ So now, we have learning stabilized just any batch method but using
NN.

@ However, now there is the problem of dependence of dataset D. How
we obtain the data?

@ Data can be obtained using a random policy, but we want to
minimize error on states visited by the policy!

L(0) = Ex [(V™(s) - =D W (s)[VT(s) = Vi(s)

seS

where ©™(s) is the time spent in state s while following 7
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How to get the data?

Data should be generated by the policy
But it also has to be probabilistic (to ensure exploration)

So, collect data using the policy and add them to D

Also remove old data from D.

» Limit the size of the set
» Remove examples obtained using old policies

@ So, collect data using a buffer of limited size (we call replay buffer).
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When to get the data?

Batch Q-learning with replay buffer and target network

Initialize weights 0 for NN for regression
Collect D of size T with examples (st, at, re+1, Se+1) using random policy
repeat
0+ 0
repeat
Collect M experiences following e-greedy procedure and add them to buffer D
repeat
Sample B mini-batch of D
0 0—aX,cn 2 (se,ar) (Qolsts ac) — [res1 +ymaxy Qor(ses1,4’)])
until maximum number of steps K
until maximum number of iterations N
until maximum limit iterations
return 7 based on greedy evaluation of Qj
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DQN algorithm (Mnih, et al. 2015)

@ Deep Q-Network algorithm breakthrough

» In 2015, Nature published DQN algorithm.

» It takes profit of "then-recent” Deep Neural Networks and, in
particular, of Convolutional NNs so successful for vision problems

» Applied to Atari games directly from pixels of the screen (no hand
made representation of the problem)

» Very successful on a difficult task, surpassing in some cases human

performance
@ It is basically the previous algorithm with K =1, and M =1 that is
applied on the current state.

@ It goes back to incremental learning
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https://www.nature.com/articles/nature14236

DQN algorithm (Mnih, et al. 2015)

DQN algorithm

Initialize weights 6 for NN for regression
Set s to initial state, and k to zero
repeat
Choose a from s using policy 7y derived from Qp (e.g., e-greedy)
k+—k+1
Execute action a, observe r, s, and add (s, a, r, s’) to buffer D
Sample B mini-batch of D
00—} p %(St» a) (Qo(se; ar) — [re+1 + vy maxy Qo (se41,)])
if k==N then
0"+ 0
k<0
end if
until maximum limit iterations
return 7 based on greedy evaluation of Q)
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https://www.nature.com/articles/nature14236

DQN algorithm on Atari

@ End-to-end learning of values Q(s; a) from pixels:
State: Input state s is stack of raw pixels from last 4 frames
Actions: Output is Q(s, a) value for each of 18 joystick/button
positions
Reward: Reward is direct change in score for that step
@ Network architecture and hyper-parameters fixed across all games,
No tuning!
o Clipping reward -1,0,1 to avoid problem of different magnitudes of
score in each game
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Google Deepmind DQN plays Atari Breakout | NickysChannel13

NickysChannel13

2016

https://www.youtube.com/watch?v=eG1Ed8PTJ18


DQN algorithm on Atari

@ What is the effect of each trick on Atari games?

DQN

Q-learning Q-learning | Q-learning Q-learning

+ Replay + Replay

+ Target Q + Target Q

Breakout 3 10 241 317

Enduro 29 142 831 1006

River Raid 1453 2868 4103 7447

Seaquest 276 1003 823 2894

Space Invaders 302 373 826 1089
Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020
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Double Q-learning (Hasselt, et al. 2015)

@ Problem of overestimation of Q values.

@ We use "max" operator to compute the target in the minimization of:
L(s,a) = (Q(s,a) — (r + ymax Q(s’,d)))?
a/

@ Surprisingly here is a problem.

© Suppose Q(s',a’) is 0 for all actions, so Q(s, a) should be r.

© But ymaxy Q(s’,a’) > 0 because random initialization and use of the
max operator.

© So estimation Q(s, a) > r, overestimating true value

@ All this because for max operator:

E[max Q(s', a")] > maxE[Q(s', a')]

@ This overestimation is propagated to other states.
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https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf

Double Q-learning

@ Solution (Hasselt, 2010): Train 2 action-value functions: Q4 and @,
and compute argmax with the other network
@ Do Q-learning on both, but
> never on the same time steps (Qa and Qg are independent)
» pick Qa or Qg at random to be updated on each step

@ Notice that:
r+vymax Q(s,a’) =r+~Q(s,argmax Q(s',a"))
a’ 2

@ When updating one network, use the values of the other network:

QA(Sa a) —r+ ’YQB(Sv arg r;nax QA(S/7 a/))

Qs(s,a) < r +vQa(s,arg max Qg(s’, a’))

a/
@ lIdea is that they should compensate mistakes of each other because
they will be independent. When one network overestimate, probably,
the other no, so they mutually cancel overestimation

Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020 21 / 50



Double DQN (Hasselt, et al. 2015)

@ In DQN, in fact, we have 2 value functions: @y and Qy
@ so, no need to add another one:

» Current Q-network 0 is used to select actions
» Older Q-network ' is used to evaluate actions

e Update in Double-DQN (Hasselt, et al. 2015):

Action Evaluation

Q@(Sv a) —r+y Q@’(57 arg r/nax Q9(5/7 a/))

Action Selection

@ Works well in practice.
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Prioritized Experience Replay (Schaul, et al. 2016)

o Idea: sample transitions from replay buffer more cleverly
@ Those states with poorer estimation in buffer will be selected with
preference for update

@ We will set probability for every transition. Let's use the absolute
value of TD-error of transition as a probability!

pi = |TD-error;| = |Qar(si, ai) — (ri + v Qar (i, arg max Qy(si+1,a’))|
a/

(67

Dk P
where P(i) is probability of selecting sample i for the mini-batch, and
a > 0 is a new parameter (o = 0 implies uniform probability)

P(i)
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https://arxiv.org/abs/1511.05952

@ Do you see any problem?


https://arxiv.org/abs/1511.05952

Prioritized Experience Replay (Schaul, et al. 2016)

Do you see any problem?
Now transitions are no i.i.d. and therefore we introduce a bias.

Solution: we can correct the bias by using importance-sampling

weights
B
o (L1
(’V P(f))

For numerical reasons, we also normalize weights by max; w;

When we put transition into experience replay, we set it to maximal
priority pr = max;<; p;
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https://arxiv.org/abs/1511.05952

Prioritized Experience Replay (Schaul, et al. 2016)

Algorithm 1 Double DQN with proportional prioritization
1: Input: minibatch %, step-size 7, replay period K and size N, exponents « and 3, budget 7'.
2: Initialize replay memory H =0, A =0,p; =1
3: Observe Sj and choose Ay ~ my(S)
4: fort =1to 1" do
5. Observe Sy, Ry, v
6:  Store transition (S;—1, Ai—1. Ry, v, S;) in H with maximal priority p; = max;«; p;
7:  if t=0 mod K then

8: for j = 1to k do

o: Sample transition j ~ P(j) = p§ />, p{

10: Compute importance-sampling weight w; = (N - P(j))f‘j / max; w;
11: Compute TD-error 0; = R; 4+ v Qurget (Sj. arg max, Q(5;,a)) — Q(S;—-1. Aj_1)
12: Update transition priority p; < |0,]

13: Accumulate weight-change A <~ A +w; - 0; - VoQ(Sj-1, Aj—1)
14: end for

15: Update weights 6 <— 6 + - A, reset A =0

16: From time to time copy weights into target network frareer < ¢

17:  end if

18:  Choose action A; ~ 7y (S;)

19: end for
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Dueling Network Architectures (Wang, et al. 2016)

Until now, use of generic NN for regression of Q-value function

Now, specific Deep Architecture specific for RL

Advantage function definition:
A(s,a) = Q(s,a) — V(s)

@ So,
Q(s,a) = A(s,a) + V(s)

Intuitively, Advantage function is relative measure of importance of
each action

Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020 28 / 50


 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ Dueling network:

Q(s,a)
i,

I V(s)
>.| Q(s,a)

A(s a)

@ Intuitive idea is that now we don't learn Q(s, a) independently but
share part that is V/(s) that improves generalization across actions
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 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ We have now 3 sets of parameters:

» 6: Usual weights of NN until red section
» 3. Weights to compute V/(s)
» «a: Weights to compute A(s, a)

@ Green part computes A(s, a) + V(s)

=

.. V(s)
®

Q(s,a)

A(s,a)
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Dueling Network Architectures (Wang, et al. 2016)

@ However, there is a problem: one extra degree of freedom in targets!

@ Example:
0® s B SM e
2 2 2
= 4 4 4
3 3 3
2 -1 2
4 1 0
3 0 1
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 http://proceedings.mlr.press/v48/wangf16.pdf

Dueling Network Architectures (Wang, et al. 2016)

@ Which is the correct one? Notice that:

7 (s) = argmax Q(s, a)
acA

and that,
V*(s) = max Q*(s, a)

acA
@ So,
Tea%A(s, a) = Teaj(Q(s,a) - V(s))
= maxQ(s,a) — V(s)

=0

e Of course, for actions a # a* A(s,a) <0

Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020
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Dueling Network Architectures (Wang, et al. 2016)

Solution: require max, A(s, a) to be equal to zero!

So the Q-function computes as:

Quls:2) = Vos(s) + (Aua(s.2) ~ max Aol )

a'e

In practice, the authors propose to implement

Q.0,5(s,3) = Vos(s) + (Aea 5,a) Z Agals, & )

a’E.A

@ This variant increases stability of the optimization because now
depends on softer measure (average instead of max)

Now Q-values loses original semantics, but it not important. The
important thing is a reference between actions
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@ |dea: instead of using TD(0), use n-steps estimators like we described
in lecture 2

@ In buffer we should store experiences:

n
1 ,
<5t7at7rt727’ rev1+9" m;}X QG'(5t+n,3)>

i=0


https://arxiv.org/abs/1606.02647

Multi-step learning

@ |dea: instead of using TD(0), use n-steps estimators like we described
in lecture 2

In buffer we should store experiences:

n
i1 /
<Staatart7 § 'YI rt+1 +’yn m?X Q@’(St+n7a)>
a

i=0

Again, there is a problem!

Only correct when learning on-policy! (not an issue when n = 1)
How to fix that?
» lIgnore the problem (often works well)
» Dynamically choose n to get only on-policy data (Store data until not
policy action taken)
» Use importance sampling (Munos et al, 2016)
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Rainbow (Hessel et al. 2017)

@ ldea: Let's try to investigate how each of the different improvements
over DQN help to improve performance on the Atari games
@ Over DQN, they added the following modifications:
>
>

>
>

» Distributional RL
» Noisy Nets

@ They perform an ablation study where over the complete set of
improvement, they disable one an measure the performance
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Rainbow (Hessel et al. 2017)
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.
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Rainbow (Hessel et al. 2017)
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@ Idea: Parallelize learning with several workers

/ \\
| Global Network

=

-~
ﬁﬁ ﬁﬁ ﬁﬁ
Worker 1 Worker2 Worker 3 Worker n
Q Q Q 4

$ $ ! !
@ After some time steps, the worker passes gradients to the global
network
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Asynchronous Q-learning (Mnih et al. 2016)

Algorithm 1 Asynchronous one-step Q-learning - pseu-
docode for each actor-learner thread.

// Assume global shared 0, 0~ , and counter T" = 0.
Initialize thread step counter ¢ <— 0
Initialize target network weights = < 6
Initialize network gradients df < 0
Get initial state s
repeat
Take action a with e-greedy policy based on Q(s, a; 6)
Receive new state s” and reward r
r for terminal s’

y= - ; i
y r+ymaxge Q(s',a’;07) for non-terminal s’

Accumulate gradients wrt 0: df < df + w

s=s

T+« T+1landt«+t+1

if 7" mod Il;4rget == 0 then
Update the target network 6~ < 6

end if

ift mod IasynctUpdate == 0 or s is terminal then
Perform asynchronous update of ¢ using d6.
Clear gradients df < 0.

end if

until 7' > T'ra0
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@ From Bellman

Q(St, at)

equation we will obtain a bound for a given Q-value:

%

v

E

E

Fe+1 + y max Q(st41,a")
a

Fevt + Y2 + 7 rs 4 -+ max Q(sekia, @)
a

rep1 + Y2 + 72rt+3 +...+ ’YkQ(5t+k+1, Atpkt1)

Lower bound LMax



 https://arxiv.org/pdf/1611.01606.pdf
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Faster Deep RL by optimality tightening (He, et al.
2016)

@ Also we can do this backwards in time. Notice that we had
Q(st,at) > rep1 +Yre2 + ’Y2ft+3 +...+ 'YkQ(St+k+1, Arykt1)
@ Changing indexes

Q(St—k—1,at—k-1) > Fr—k +Yr—ki1 + 7 F—kr2 + . + 7V Q(st, ar)

@ So,
Q(St—k—1y 3t—k—1) = Femk — Vre—ks1 — Vle—ks2 — - > 7*Q(st, ar)
K [Q(stfkflq At—k—1) = F—k — Ylt—ki1 — Y Fe—ks2 — ] > Q(st, ar)
@ So, finally we have an upper bound:
Qst,a) < Y Q(st—r,ac—k) =~ “re—w — ’y*(kfl)rt_(k_l) — =1

Upper bound Umin
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Faster Deep RL by optimality tightening (He, et al.
2016)

@ And now we can modify our loss function using these bounds:
y = r+yQy(s,argmax Qu(s’, a))
LO) = E[(Qls;a) =y’ +AL™ = Quls,a))% + A(Qu(s,a) — U")} ]

where )\ is a penalization parameter like C in SVMs

@ Eq, minimize the original Bellman error. but also penalizes breaking
the bounds

@ Accelerates over an order of magnitude with respect original DQN in
number of experiences needed for learning
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Practical tricks

@ DQN is more reliable on some tasks than others. Test your
implementation on reliable tasks like Pong and Breakout: if it doesn't
achieve good scores, something is wrong.

@ Large replay buffers improve robustness of DQN, and memory
efficiency is key.

@ SGD can be slow .. rely on RMSprop (or any new optimizer)

@ Convolutional models are more ecient then MLPs

@ DQN uses action repeat set to 4 (because fps too high - speeds
training time)

@ DQN receives 4 frames of the game at a time (grayscale)

€ is anealled from 1 to .1
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Practical tricks

Patience. Training takes time (roughly hours to day on GPU training
to see improvement)
Always use Double DQN (3 lines of difference from DQN)

Learning rate scheduling is benecial. Try high learning rates in initial
exploration period.

Exploration is key: Try non-standard exploration schedules.

Always run at least two different seeds when experimenting
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Practical tricks

@ Bellman errors can be big. Clip gradients or use Huber loss on
Bellman error

7(}/_';()())2, when |y — f(x)| < ¢

Ls(y,f(x)) =
sy, f(x)) Sly — f(x)] — % otherwise

“\
NN

B

@ Very large 7 or set it to 1 to avoid myopic reward (very large
sequences before reward)

@ n-steps return helps but careful
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