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Deep Neural Networks
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Use of Neural Networks for regression
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Recap of FA solutions

Two possible approaches for function approximation:

1 Incremental:
I Pro: Learning on-line
I Cons: No convergence due to (a) Data not i.i.d., that can lead to

catastrophic forgetting, and (b) Moving target problem

2 Batch Learning:
I Cons: Learn from collected dataset (not own experience)
I Pro: Better convergence
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Fitted Q-learning

Fitted Q-learning

Given D of size T with examples (st , at , rt+1, st+1), and regression
algorithm, set N to zero and QN(s, a) = 0 for all a and s
repeat
N ← N + 1
Build training set TS = {〈(st , at), rt+1 + γmaxa QN(st+1, a)〉}Tt=1

QN+1 ← regression algorithm on TS
until QN ≈ QN+1 or N > limit
return π based on greedy evaluation of QN
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Neural Fitted Q-learning

Neural Fitted Q-learning: Wrong version. Why?

Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ(st+1, a
′)])

until convergence on learning or maximum number of steps
return π based on greedy evaluation of Qθ

Does not work well

It’s not a Batch method. Can you see why?
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Neural Fitted Q-learning (Riedmiller, 2005)

Neural Fitted Q-learning

Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat
θ′ ← θ
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a
′)])

until convergence on learning or maximum number of steps
until maximum limit iterations
return π based on greedy evaluation of Q ′

θ

Notice target does not change during supervised regression
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Neural Fitted Q-learning: Another version

That works, however the update of parameters is not smooth

Alternative version to avoid moving target

Fitted Q-learning avoiding moving target

Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1)
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at)− (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a
′)])

θ′ ← τθ′ + (1− τ)θ
until maximum limit iterations
return π based on greedy evaluation of Q ′

θ

Value of τ close to one (f.i. τ = 0.999) reduces the “speed” of the
moving target.
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How to get the data?

So now, we have learning stabilized just any batch method but using
NN.

However, now there is the problem of dependence of dataset D. How
we obtain the data?

Data can be obtained using a random policy, but we want to
minimize error on states visited by the policy!

L(θ) = Eπ
[
(V π(s)− Vθ(s))2

]
=
∑
s∈S

µπ(s) [V π(s)− Vθ(s)]2

where µπ(s) is the time spent in state s while following π
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How to get the data?

Data should be generated by the policy

But it also has to be probabilistic (to ensure exploration)

So, collect data using the policy and add them to D
Also remove old data from D.

I Limit the size of the set
I Remove examples obtained using old policies

So, collect data using a buffer of limited size (we call replay buffer).
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When to get the data?

Batch Q-learning with replay buffer and target network

Initialize weights θ for NN for regression
Collect D of size T with examples (st , at , rt+1, st+1) using random policy
repeat
θ′ ← θ
repeat

Collect M experiences following ε-greedy procedure and add them to buffer D
repeat

Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ
∂θ

(st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a
′)])

until maximum number of steps K
until maximum number of iterations N

until maximum limit iterations
return π based on greedy evaluation of Q ′θ
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DQN algorithm (Mnih, et al. 2015)

Deep Q-Network algorithm breakthrough
I In 2015, Nature published DQN algorithm.
I It takes profit of ”then-recent” Deep Neural Networks and, in

particular, of Convolutional NNs so successful for vision problems
I Applied to Atari games directly from pixels of the screen (no hand

made representation of the problem)
I Very successful on a difficult task, surpassing in some cases human

performance

It is basically the previous algorithm with K = 1, and M = 1 that is
applied on the current state.

It goes back to incremental learning
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DQN algorithm (Mnih, et al. 2015)

DQN algorithm

Initialize weights θ for NN for regression
Set s to initial state, and k to zero
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ε-greedy)
k ← k + 1
Execute action a, observe r , s ′, and add 〈s, a, r , s ′〉 to buffer D
Sample B mini-batch of D
θ ← θ − α

∑
t∈B

∂Qθ

∂θ (st , at) (Qθ(st , at)− [rt+1 + γmaxa′ Qθ′(st+1, a
′)])

if k==N then
θ′ ← θ
k ← 0

end if
until maximum limit iterations
return π based on greedy evaluation of Q ′

θ
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DQN algorithm on Atari

End-to-end learning of values Q(s; a) from pixels:

State: Input state s is stack of raw pixels from last 4 frames
Actions: Output is Q(s, a) value for each of 18 joystick/button

positions
Reward: Reward is direct change in score for that step

Network architecture and hyper-parameters fixed across all games,
No tuning!

Clipping reward -1,0,1 to avoid problem of different magnitudes of
score in each game

Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020 13 / 50



DQN algorithm on Atari
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DQN algorithm on Atari
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Google Deepmind DQN plays Atari Breakout | NickysChannel13

NickysChannel13

2016

https://www.youtube.com/watch?v=eG1Ed8PTJ18



DQN algorithm on Atari

What is the effect of each trick on Atari games?
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Overestimates: Double Q-learning
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Double Q-learning (Hasselt, et al. 2015)

Problem of overestimation of Q values.

We use “max” operator to compute the target in the minimization of:

L(s, a) = (Q(s, a)− (r + γmax
a′

Q(s ′, a′)))2

Surprisingly here is a problem.
1 Suppose Q(s ′, a′) is 0 for all actions, so Q(s, a) should be r .
2 But γmaxa′ Q(s ′, a′) ≥ 0 because random initialization and use of the

max operator.
3 So estimation Q(s, a) ≥ r , overestimating true value
4 All this because for max operator:

E[max
a′

Q(s ′, a′)] ≥ max
a′

E[Q(s ′, a′)]

This overestimation is propagated to other states.
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Double Q-learning

Solution (Hasselt, 2010): Train 2 action-value functions: QA and QB ,
and compute argmax with the other network
Do Q-learning on both, but

I never on the same time steps (QA and QB are independent)
I pick QA or QB at random to be updated on each step

Notice that:

r + γmax
a′

Q(s, a′) = r + γQ(s, arg max
a′

Q(s ′, a′))

When updating one network, use the values of the other network:

QA(s, a)← r + γQB(s, arg max
a′

QA(s ′, a′))

QB(s, a)← r + γQA(s, arg max
a′

QB(s ′, a′))

Idea is that they should compensate mistakes of each other because
they will be independent. When one network overestimate, probably,
the other no, so they mutually cancel overestimation
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Double DQN (Hasselt, et al. 2015)

In DQN, in fact, we have 2 value functions: Qθ and Qθ′

so, no need to add another one:
I Current Q-network θ is used to select actions
I Older Q-network θ′ is used to evaluate actions

Update in Double-DQN (Hasselt, et al. 2015):

Qθ(s, a)← r + γ

Action Evaluation︷ ︸︸ ︷
Qθ′(s, arg max

a′
Qθ(s ′, a′)︸ ︷︷ ︸

Action Selection

)

Works well in practice.
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Prioritized Experience Replay
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Prioritized Experience Replay (Schaul, et al. 2016)

Idea: sample transitions from replay buffer more cleverly

Those states with poorer estimation in buffer will be selected with
preference for update

We will set probability for every transition. Let’s use the absolute
value of TD-error of transition as a probability!

pi = |TD-errori | = |Qθ′(si , ai )− (ri + γQθ′(si , arg max
a′

Qθ(si+1, a
′))|

P(i) =
pαi∑
k p

α
k

where P(i) is probability of selecting sample i for the mini-batch, and
α ≥ 0 is a new parameter (α = 0 implies uniform probability)
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Prioritized Experience Replay (Schaul, et al. 2016)

Do you see any problem?

Now transitions are no i.i.d. and therefore we introduce a bias.

Solution: we can correct the bias by using importance-sampling
weights

wi =

(
1

N
· 1

P(i)

)β
For numerical reasons, we also normalize weights by maxi wi

When we put transition into experience replay, we set it to maximal
priority pt = maxi<t pi
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Prioritized Experience Replay (Schaul, et al. 2016)
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Dueling Network Architectures
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Dueling Network Architectures (Wang, et al. 2016)

Until now, use of generic NN for regression of Q-value function

Now, specific Deep Architecture specific for RL

Advantage function definition:

A(s, a) = Q(s, a)− V (s)

So,
Q(s, a) = A(s, a) + V (s)

Intuitively, Advantage function is relative measure of importance of
each action
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Dueling Network Architectures (Wang, et al. 2016)

Dueling network:

Intuitive idea is that now we don’t learn Q(s, a) independently but
share part that is V (s) that improves generalization across actions

Mario Martin (CS-UPC) Reinforcement Learning April 23, 2020 29 / 50

 http://proceedings.mlr.press/v48/wangf16.pdf


Dueling Network Architectures (Wang, et al. 2016)

We have now 3 sets of parameters:
I θ: Usual weights of NN until red section
I β: Weights to compute V (s)
I α: Weights to compute A(s, a)

Green part computes A(s, a) + V (s)
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Dueling Network Architectures (Wang, et al. 2016)

However, there is a problem: one extra degree of freedom in targets!

Example:
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Dueling Network Architectures (Wang, et al. 2016)

Which is the correct one? Notice that:

π∗(s) = arg max
a∈A

Q∗(s, a)

and that,
V ∗(s) = max

a∈A
Q∗(s, a)

So,

max
a∈A

A(s, a) = max
a∈A

(Q(s, a)− V (s))

= max
a∈A

Q(s, a)− V (s)

= 0

Of course, for actions a 6= a∗ A(s, a) ≤ 0
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Dueling Network Architectures (Wang, et al. 2016)

Solution: require maxa A(s, a) to be equal to zero!

So the Q-function computes as:

Qθ,α,β(s, a) = Vθ,β(s) +

(
Aθ,α(s, a)−max

a′∈A
Aθ,α(s, a′)

)
In practice, the authors propose to implement

Qθ,α,β(s, a) = Vθ,β(s) +

(
Aθ,α(s, a)− 1

|A|
∑
a′∈A

Aθ,α(s, a′)

)

This variant increases stability of the optimization because now
depends on softer measure (average instead of max)

Now Q-values loses original semantics, but it not important. The
important thing is a reference between actions
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Multi-step learning
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Multi-step learning

Idea: instead of using TD(0), use n-steps estimators like we described
in lecture 2

In buffer we should store experiences:〈
st , at , rt ,

n∑
i=0

γ i−1rt+1 + γn max
a′

Qθ′(st+n, a
′)

〉

Again, there is a problem!

Only correct when learning on-policy! (not an issue when n = 1)

How to fix that?
I Ignore the problem (often works well)
I Dynamically choose n to get only on-policy data (Store data until not

policy action taken)
I Use importance sampling (Munos et al, 2016)
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Rainbow: Combining Improvements in Deep
Reinforcement Learning
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Rainbow (Hessel et al. 2017)

Idea: Let’s try to investigate how each of the different improvements
over DQN help to improve performance on the Atari games

Over DQN, they added the following modifications:
I Double Q-learning
I Prioritized replay
I Dueling networks
I Multi-step learning
I Distributional RL
I Noisy Nets

They perform an ablation study where over the complete set of
improvement, they disable one an measure the performance
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Rainbow (Hessel et al. 2017)
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Rainbow (Hessel et al. 2017)
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Asynchronous Q-learning
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Asynchronous Q-learning (Mnih et al. 2016)

Idea: Parallelize learning with several workers

After some time steps, the worker passes gradients to the global
network
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Asynchronous Q-learning (Mnih et al. 2016)
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Faster Deep RL by optimality tightening
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Faster Deep RL by optimality tightening (He, et al.
2016)

From Bellman equation we will obtain a bound for a given Q-value:

Q(st , at) = E
[
rt+1 + γmax

a′
Q(st+1, a

′)

]
≥ E

[
rt+1 + γrt+2 + γ2rt+3 + . . .+ γk max

a′
Q(st+k+1, a

′)

]

≥ E

rt+1 + γrt+2 + γ2rt+3 + . . .+ γkQ(st+k+1, at+k+1)︸ ︷︷ ︸
Lower bound Lmax


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Faster Deep RL by optimality tightening (He, et al.
2016)

Also we can do this backwards in time. Notice that we had

Q(st , at) ≥ rt+1 + γrt+2 + γ2rt+3 + . . .+ γkQ(st+k+1, at+k+1)

Changing indexes

Q(st−k−1, at−k−1) ≥ rt−k + γrt−k+1 + γ2rt−k+2 + . . .+ γkQ(st , at)

So,

Q(st−k−1, at−k−1)− rt−k − γrt−k+1 − γ2rt−k+2 − . . . ≥ γkQ(st , at)

γ−k
[
Q(st−k−1, at−k−1)− rt−k − γrt−k+1 − γ2rt−k+2 − . . .

]
≥ Q(st , at)

So, finally we have an upper bound:

Q(st , at) ≤ γ−kQ(st−k , at−k)− γ−k rt−k − γ−(k−1)rt−(k−1) − . . .− γrt−1︸ ︷︷ ︸
Upper bound Umin
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Faster Deep RL by optimality tightening (He, et al.
2016)

And now we can modify our loss function using these bounds:

y = r + γQθ′(s
′, argmax

a
Qθ(s

′, a))

L(θ) = E
[
(Qθ(s, a)− y)2 + λ(Lmax − Qθ(s, a))

2
+ + λ(Qθ(s, a)− Umin)2+

]
where λ is a penalization parameter like C in SVMs

Eq, minimize the original Bellman error. but also penalizes breaking
the bounds

Accelerates over an order of magnitude with respect original DQN in
number of experiences needed for learning
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Practical tricks
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Practical tricks

DQN is more reliable on some tasks than others. Test your
implementation on reliable tasks like Pong and Breakout: if it doesn’t
achieve good scores, something is wrong.

Large replay buffers improve robustness of DQN, and memory
efficiency is key.

SGD can be slow .. rely on RMSprop (or any new optimizer)

Convolutional models are more ecient then MLPs

DQN uses action repeat set to 4 (because fps too high - speeds
training time)

DQN receives 4 frames of the game at a time (grayscale)

ε is anealled from 1 to .1
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Practical tricks

Patience. Training takes time (roughly hours to day on GPU training
to see improvement)

Always use Double DQN (3 lines of difference from DQN)

Learning rate scheduling is benecial. Try high learning rates in initial
exploration period.

Exploration is key: Try non-standard exploration schedules.

Always run at least two different seeds when experimenting
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Practical tricks

Bellman errors can be big. Clip gradients or use Huber loss on
Bellman error

Lδ(y , f (x)) =

{
(y−f (x))2

2 , when |y − f (x)| ≤ δ
δ|y − f (x)| − δ2

2 , otherwise

Very large γ or set it to 1 to avoid myopic reward (very large
sequences before reward)

n-steps return helps but careful
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