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Goal of this lecture

Methods we have seen so far work well when we have a tabular
representation for each state, that is, when we represent value
function with a lookup table.

This is not reasonable on most cases:
I In Large state spaces: There are too many states and/or actions to

store in memory (f.i. Backgammon: 1020 states, Go 10170 states)
I and in continuous state spaces (f.i. robotic examples)

In addition, we want to generalize from/to similar states to speed up
learning. It is too slow to learn the value of each state individually.
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Goal of this lecture

We’ll see now methods to learn policies for large state spaces by using
function approximation to estimate value functions:

Vθ(s) ≈ V π(s) (1)

Qθ(s, a) ≈ Qπ(s, a) (2)

θ is the set of parameters of the function approximation method (with
size much lower than |S |)
Function approximation allow to generalize from seen states to unseen
states and to save space.

Now, instead of storing V values, we will update θ parameters using
MC or TD learning so they fulfill (1) or (2).
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Which Function Approximation?

There are many function approximators, e.g.
I Artificial neural network
I Decision tree
I Nearest neighbor
I Fourier/wavelet bases
I Coarse coding

In principle, any function approximator can be used. However, the
choice may be affected by some properties of RL:

I Experience is not i.i.d. – Agent’s action affect the subsequent data it
receives

I During control, value function V(s) changes with the policy
(non-stationary)
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Incremental methods
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Which Function Approximation?

Incremental methods allow to directly apply the control methods of
MC, Q-learning and Sarsa, that is, back up is done using “on-line”
sequence of data of the trial reported by the agent following the
policy.

Most popular method in this setting is gradient descent, because it
adapts to changes in the data (non-stationary condition)
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Gradient Descent

Let L(θ) be a differentiable function of parameter vector θ, we want
to minimize

Define the gradient of L(θ) to be:

∇θL(θ) =


∂L(θ)
∂θ1
...

∂L(θ)
∂θn


To find a local minimum of L(θ), gradient descent method adjust the
parameter in the direction of negative gradient:

∆θ = −1

2
α∇θL(θ)

where is a stepsize parameter
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Gradient Descent

∆θ = −1

2
α∇θL(θ)
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Value Function Approx. by SGD

Minimizing Loss function of the approximation

Goal: Find parameter vector θ minimizing mean-squared error between
approximate value function Vθ(s) and true value function V π(s)

L(θ) = Eπ
[
(V π(s)− Vθ(s))2

]
=
∑
s∈S

µπ(s) [V π(s)− Vθ(s)]2

where µπ(s) is the time spent in state s while following π

Gradient descent finds a local minimum:

∆θ = −1

2
α∇θL(θ)

= Eπ [(V π(s)− Vθ(s)) ∇θVθ(s)]

Stochastic gradient descent (SGD) samples the gradient

∆θ = α(V π(s)− Vθ(s)) ∇θVθ(s)
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Subsection 1

Linear approximation
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Linear representation of the state

Represent state by a feature vector:

φ(s) =

φ1(s)
...

φn(s)


Represent value function by a linear combination of features:

Vθ(s) = φ(s)T θ =
n∑

j=1

φj(s)θj (3)
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Linear representation of the state

For example:
I Distance of robot from landmarks
I Trends in the stock market
I Piece and pawn configurations in chess
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Example: RoboCup soccer keepaway (Stone, Sutton
& Kuhlmann, 2005)
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Example: RoboCup soccer keepaway (Stone, Sutton
& Kuhlmann, 2005)

State is encoded in 13 continuous
variables:

11 distances among the players,
ball, and the center of the field

2 angles to takers along passing
lanes
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Linear representation of the state

Table lookup is a special case of linear value function approximation.
Using table lookup features:

φtable(S) =

1(S = s1)
...

1(S = sn)


Parameter vector is exactly value of each individual state

Vθ(S) =

1(S = s1)
...

1(S = sn)


T

·

θ1...
θn


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Linear representation of the state

Another obvious way of reducing the number of states is by grouping
some of them using a grid.

Drawback is that all states in the cell are equal and you don’t learn
“softly” from neighbor cells.

Better approach is Coarse Coding.

Coarse coding provides large feature vector φ(s) that ”overlap”

Caution

When using linear FA, we should ask ourselves if V can be approximated
by a linear function and what’s the error of this approximation.

Usually value functions are smooth (compared with reinforcement
function). However, linear FA approximation error could be large,
depending on the features selected.
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Coarse coding using RBFs

Each circle is a Radial Basis Function (center c and a width σ) that
represents a feature.

Value for each feature is:

φi (s) = e
−‖x−ci‖2

(2σ2)
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Coarse coding using RBFs

Parameters of codification:
I Number of RBFs (density) and position (c)
I Radius of the RBF (width σ)
I Different width for each variable of the state
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Coarse coding using Tiles

RBFs return a real value for each feature. Tiles define a binary
feature for each tile.

I Binary features means weighted sum easy to compute
I Number of features present at any time step is constant
I Easy to compute indexes of features active

You can use irregular tilings or superposition of different tilings
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Going back to SGD

First nice property of SGD in linear F.A.

In the case of linear function approximation, objective function is
quadratic:

L(θ) = Eπ
[
(V π(s)− φ(s)T θ)2

]
so SGD converges to global optimum:

Notice equation (3).

Why it converges?

Quadratic problem (parabola) has no local minimum.
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Going back to SGD

Second nice property of SGD in linear F.A.

Gradient vector of value function is vector of feature values:

∂Vθ(s)

∂θi
=

n∑
j=1

φj(s)θj

= φi (s)

So, update rule is particularly simple:

∆θi = α(V π(s)− Vθ(s)) φi (s)
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Subsection 2

Prediction algorithms for linear case
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Prediciton algorithms for linear case

Have assumed true value function V π(s) is given in a supervised
learning way

But in RL there is only rewards of trial, not examples

Solution: substitute V π(s) by a target that is an estimation of it. In
practice,

I For MC, the target is the return Rt

I For TD(0), the target is the Bellman equation
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MC prediction algorithm for the linear case

The long-term-return of a trial Rt is an unbiased, noisy sample of true
value V π(s).

Using Rt as a target, we have linear Monte–Carlo policy evaluation

∆θ = α(Rt − Vθ(s))∇θVθ(s)

= α(Rt − Vθ(s))φ(s)

Monte–Carlo evaluation converges to optimum (θ with global
minimum error)

Moreover, MC, even when using non–linear value function
approximation converges, but in this case to a local optimum
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MC prediction algorithm for the linear case

Monte Carlo policy evaluation

Given π, the policy to be evaluated, initialize parameters θ as
appropriate (e.g., θ = 0)
repeat

Generate trial using π
for each st in trial do
Rt ← return following the first occurrence of st
θ ← θ + α(Rt − Vθ(st))φ(st) // Notice θ and φ are vectors

end for
until false
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TD prediction algorithm for the linear case

Changes applying TD to the linear case:

1 Function approximation is now for the Q value function:

Qπ(s, a) ≈ Qθ(s, a) = φ(s, a)T θ =
n∑

j=1

φj(s, a)θj

2 Loss function is also now for Q value function:

L(θ) = Eπ
[
(Qπ(s, a)− φ(s, a)T θ)2

]
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TD prediction algorithm for the linear case

In TD(0) we use Q of next state to estimate Q on the current state
using Bellman equations. So, in general,

∆θi =α( Qπ(s, a) − Qθ(s, a))∇θQθ(s, a)

=α(r + γQθ(s ′, π(s ′))− Qθ(s, a))∇θQθ(s, a)

And, in particular, for the linear case:

∂Qθ(s, a)

∂θi
=

∂
(∑n

j=1 φj(s, a)θj
)

∂θi
= φi (s, a)

and so,

∆θi = α(r + γQθ(s ′, π(s ′))− Qθ(s, a)) φi (s, a)
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TD prediction algorithm for the linear case

Caution!

No same guarantees that MC had when bootstrapping estimate of
Q(St , a) is used as the target

Notice that TD targets are not independent of parameters. In TD(0):

r + γQθ(s ′, π(s ′))

depends of θ

Bootstrapping methods are not true gradient descent: they take into
account the effect of changing θ on the estimate, but ignore its
effect on the target. They include only a part of the gradient and,
accordingly, we call them semi-gradient methods.

However, it can be proved that linear TD(0) policy evaluation
converges (close) to global optimum.
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TD(0) prediction algorithm for the linear case

TD(0) policy evaluation

Given π, initialize initialize parameters θ arbitrarily (e.g., θ = 0)
repeat
s ← initial state of episode
repeat
a← π(s)
Take action a and observe s ′ and r
θ ← θ + α (r + γQθ(s ′, π(s ′))− Qθ(s, a))φ(st)
s ← s ′

until s is terminal
until convergence
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Subsection 3

Control algorithms for the linear case
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TD(0) prediction algorithm for the linear case

Like the Control methods we used in tabular learning algorithms, we
will build algorithms that iterate the two following steps:

1 Policy evaluation - Follow a method for approximate policy evaluation
Qθ ≈ Qπ

2 Policy improvement - do policy improvement of the policy

Depending on the Policy evaluation procedure used (MC, TD, etc.),
we have a different method
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Examples of Control using PI

Linear FA Monte Carlo

Initialize parameters θ as appropriate (e.g., θ = 0)
repeat

Generate trial using ε-greedy policy derived from Qθ
for each st in trial do

Rt ← return following the first occurrence of st
θ ← θ + α(Rt − Qθ(st , at))φ(st , at)

end for
until false

Function Qθ(s, a)

Given θ, state s and action a

return θTφ(s, a)
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Select action following policy

Function πθ(s)

Given θ and state s

return arg maxa θTφ(s, a)

Function implementing ε-greedy

Given θ, ε ≤ 1 and state s

Select p number from uniform distribution in range [0, 1]
if p ≤ ε then
a← Random action from A

else
a← πθ(s)

end if
return a
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Examples of Control using PI

Linear FA Q-learning

initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ε-greedy)
Execute action a, observe r , s ′

θ ← θ + α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a))φ(s, a)
s ← s ′

until s is terminal
end for
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Example of Control using PI

Linear FA Sarsa: on-line learning

initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
Choose a from s using policy derived from Qθ (e.g., ε-greedy)
repeat

Execute action a, observe r , s ′

Choose a′ from s ′ using policy derived from Qθ (e.g., ε-greedy)
θ ← θ + α (r + γQθ(s ′, a′)− Qθ(s, a))φ(s)
s ← s ′; a← a′

until s is terminal
end for
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Convergence of methods

Experiments show it is desirable to bootstrap (TD in practice better
than MC)

But now we should consider convergence issues. When do
incremental prediction algorithms converge?

I When using bootstrapping (i.e., TD with < 1)?
I When using linear function approximation?
I When using off–policy learning?
I When using non-linear approximation?

Ideally, we would like algorithms that converge in all cases
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Convergence of Gradient methods

We have examples of TD divergence even when exact solution is
representable with linear function

Fortunately, in practice, TD(0) works well... but we don’t have
guarantees

Problem can be solved if we update parameters following an on-policy
distribution (we have a proof of that). Good for Sarsa.

Unfortunately convergence guarantees on TD incremental methods
only work for linear approximation

Main cause is that TD does not follow true gradient.
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Deadly triad

The risk of divergence arises whenever we combine three things:

Function approximation: Significantly generalizing from large
numbers of examples.

Bootstrapping: Learning value estimates from other value estimates,
as in dynamic programming and temporal-difference
learning.

Off-policy learning: Learning about a policy from data not due to
that policy, as in Q-learning, where we learn about the
greedy policy from data with a necessarily more
exploratory policy.

Any two without the third is ok.
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Convergence of incremental Gradient methods for
prediction
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Convergence of incremental Gradient methods for
control
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Conclusions and final notes about convergence

Value-function approximation by stochastic gradient descent enables
RL to be applied to arbitrarily large state spaces

Most algorithms just carry over the Targets from the tabular case

With bootstrapping (TD), we don’t get true gradient descent methods

I this complicates the analysis
I but the linear, on-policy case is still guaranteed convergent
I and learning is still much faster

For continuous state spaces, coarse/tile coding is a good strategy

Still some possible approaches: Gradient-TD (convergence in off-line
linear FA) and Batch methods
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Mountain Car demonstration

Q-learning with linear FA and Semi Gradient Methods.
I Aggregating states
I Tiling
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Batch methods
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Batch Reinforcement Learning

Gradient descent is simple and appealing
I It is computationally efficient (one update per sample)
I ... But it is not sample efficient (does not take all profit from samples)

We can do better at the cost of more computational time

Batch methods seek to find the best fitting value function of given
agent’s experience (“training data”) in a supervised way.
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Subsection 1

Least Square (LS) Prediction and Least Square Policy
Iteration (LSPI)
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Least Squares Prediction

Given value function approximation method with parameters θ

And experience D consisting of (state,value) pairs:

D = {〈s1,V π
1 〉, 〈s2,V π

2 〉, . . . 〈sT ,V π
T 〉}

Find parameters θ that give the best fitting of value function Vθ(s)

Least squares algorithm find parameter vector θ minimizing
sum-squared error between Vθ and target values V π:

LS(θ) =
T∑
t=1

(V π
t − Vθ(st))2

= ED[(V π
t − Vθ(st))2]
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SGD with Experience Replay

Given experience consisting of (state, value) pairs,

D = {〈s1,V π
1 〉, 〈s2,V π

2 〉, . . . 〈sT ,V π
T 〉}

Repeat

1 Sample state, value from experience

〈si ,V π
i 〉

2 Apply stochastic gradient descent update

∆θ = α(V π(si )− Vθ(si )) ∇θVθ(s)

Converges to least squares solution:

θπ = arg min
θ

LS(θ)
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Linear Least Squares Prediction

Experience replay finds least squares solution

But it may take many iterations

Using linear value function approximation Vθ(s) = φ(s)T θ

We can solve the least squares solution directly
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Linear Least Squares Prediction

At minimum of LS(w), the expected update must be zero

ED[∆θ] = 0

α

T∑
t=1

φ(st)(V π
t − φ(st)

T θ) = 0

T∑
t=1

φ(st)V
π
t =

T∑
t=1

φ(st)φ(st)
T θ

(
T∑
t=1

φ(st)φ(st)
T

)−1 T∑
t=1

φ(st)V
π
t = θ

For N features, direct solution time is O(N3)

Extensible to Q value function and pairs (s, a)

Mario Martin (CS-UPC) Reinforcement Learning April 15, 2020 49 / 63



Linear Least Squares Prediction

We do not know true values V π
t

As always, substitute in equation V π
t for estimation from samples:

LSMC Least Squares Monte-Carlo uses return:
V π
t ≈ Rt

LSTD Least Squares Temporal-Difference uses TD target
V π
t ≈ rt + γVθ(st+1)

Data in D is now trials following policy π

In each case solve directly for fixed point of MC / TD
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Linear Least Squares Prediction for TD(0)

LSTDQ algorithm: solve for total update = zero

α

T∑
t=1

φ(st , at)(V π
t − φ(st , at)

T θ) = 0

α

T∑
t=1

φ(st , at)(rt+1 + γφ(st+1, π(st+1))T θ − φ(st , at)
T θ) = 0

(
T∑
t=1

φ(st , at)(φ(st , at)− γφ(st+1, π(st+1))T

)−1 T∑
t=1

φ(st , at)rt+1 = θ
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Convergence of LS for prediction
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Linear Least Squares Policy Iteration (LSPI)

How to turn the Least Square prediction algorithm into a Control
algorithm?

LSPI Algorithm - two iterated steps

Policy evaluation Policy evaluation by least squares Q-learning
Policy improvement Greedy policy improvement

As in Q-learning, we now use Q value function to get rid of transition
probabilities
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Linear Least Squares Policy Iteration (LSPI)

For policy evaluation, we want to efficiently use all experience

For control, we also want to improve the policy

This experience is generated from many policies

So to evaluate Qπ we must learn off-policy

We use the same idea as Q-learning:
I Use experience generated by old policy St ,At ,Rt+1,St+1 ∼ πold
I Consider alternative successor action A′ = πnew (St+1)
I Update Qθ(St ,At) towards value of alternative action

Rt+1 + γQθ(St+1,A
′)
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Linear Least Squares Policy Iteration (LSPI)

LSPI-TD uses LSTDQ for policy evaluation

It repeatedly re-evaluates experience D with different policies

Obtain D with any probabilistic policy (e.g. random policy)

LSPI-TD algorithm

Given D, initialize π′

repeat
π ← π′

θ ← LSTDQ(D, π)
for each s ∈ S do
π′(s) = arg maxa∈A φ(s, a)T θ // i.e. arg maxa∈AQθ(s, a)

end for
until π ≈ π′
return π
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Convergence of LSPI
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Fitted Q-learning: Non-linear approximation
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Incremental Q-learning with FA

Q-learning with FA

initialize parameters θ arbitrarily (e.g. θ = 0)
for each episode do

Choose initial state s
repeat

Choose a from s using policy πθ derived from Qθ (e.g., ε-greedy)
Execute action a, observe r , s ′

Qθ(s, a)← Qθ(s, a) +α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal
end for
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Problems with incremental Q-learning with FA

Essence of off-policy learning.

repeat
Choose a, execute it and observe r and s ′ (s, a, r , s ′) using any
probabilistic policy
Qθ(s, a)← Qθ(s, a) + α (r + γQθ(s ′, πθ(s ′))− Qθ(s, a))∇θQθ(s, a))
s ← s ′

until s is terminal

Several problems with incremental off-policy TD learning
I SGD does converge because gradient does not follow true gradient
I Target value is always changing and SGD does not converge
I Data is not even close to iid (it is strongly correlated) so another

problem for SGD convergence

How to solve all these problems?
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Generalizarion of off-policy learning

Let’s generalize the method:

Generalizarion of off-policy learning.

Get D = {〈s, a, r , s ′〉} using any probabilistic policy
repeat

Set SD to N samples randomly taken from D
for each sample i in SD do

yi ← r + γQθ(s ′i ,maxa Qθ(s ′i a))
end for
θ ← arg minθ

∑
(Qθ(si , ai )− yi )

2 // Any ML regression method
until convergence
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Generalizarion of off-policy learning

Notice several differences:
1 Sample a set of N examples instead of only 1
2 Don’t use 1-step of gradient descent but compute exact solution

(regression problem)

Each difference improves convergence
1 Samples obtained randomly reduce correlation between them and

stabilize Q value function for the regression learner
2 Computation of exact solution avoid the true gradient problem
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Fitted Q-learning

Implements fitted value iteration

Given a dataset of experience tuple D, solve a sequence of regression
problems

I At iteration i, build an approximation Qi over a dataset obtained by
(TQi−1)

Allows to use a large class of regression methods, e.g.
I Kernel averaging
I Regression trees
I Fuzzy regression

With other regression methods it may diverge

In practice, good results also with neural networks
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Fitted Q-learning

Fitted Q-learning

Given D of size T with examples (st , at , rt+1, st+1), and regression
algorithm, set N to zero and QN(s, a) = 0 for all a and s
repeat
N ← N + 1
Build training set TS = {〈(st , at), rt+1 + γmaxa QN(st+1, a)〉}Tt=1

QN+1 ← regression algorithm on TS
until QN ≈ QN+1 or N > limit
return π based on greedy evaluation of QN

Works specially well for forward Neural Networks as regressors
(Neural Fitted Q-learning)
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