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Sample efficiency

In previous lecture we saw how to build a model of the world to
reduce number of interactions with the environment.

Other ways to deal with the problem, specially when we have sparse
rewards.

We talk about sparse reward when the agent has positive reward only
for few states (goal states).

In this case the agent don’t get rewards until it finds that goal state.

We will focus on three point today:
I Exploration
I Hindsight Experience Replay
I Curriculum learning
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Exploration
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Exploration

We already know the importance of exploration in order to improve
the policy.

We have seen at least two methods of exploration, ε-greedy and
Boltzman exploration

But let’s start from the beginning introducing multi-armed bandits
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Subsection 1

Multi-armed bandits framework
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Multi-armed bandits

Multi-armed bandit is a tuple of (A,R)
I A : known set of m actions (arms)
I Ra(r) = P[r | a] is an unknown probability distribution over rewards

At each step t the agent selects an action at ∈ A
The environment generates a reward rt ∼ Rat

Goal: Maximize cumulative reward
∑t

τ=1 rτ
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How to proceed?

Obviously selecting the more promising bandit (exploitation)

But are we sure that the bandit I think is the more promising is the
best?

Greedy can lock onto suboptimal action, forever!

We have to try also other bandits to be sure! (exploration)

Constraint: we want not to explore more than necessary

Some procedures to balance exploration with exploitation:
I ε-greedy
I Optimistic
I Upper Confidence Bound
I Thomson Sampling
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ε-greedy

You know: choose greedy action with probability 1-ε and choose
random action with prob. ε

You choose always suboptimal action with probability ε

May be this is necessary at the beginning of learning, but no when
learning is advanced

So, may be better to start with high exploration parameter and
reduce it with time: decaying ε(t)

ε(t) = 1/t

ε(t) = 1/et

Hmm. So how decrease? At which rate? Not easy to answer.

In addition, there should be an exploration at the end?

On the positive side, better than greedy and easy to implement
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Optimistic initialization

Assume deterministic reward function

Repeat the following procedure:
I Initialize expected return higher than true return
I Choose always greedily.
I Recompute estimated return from result

Q̂t (at) = Q̂t−1 + 1
Nt(at)

(
rt − Q̂t−1

)
Expectation is decreased up to actual reward for each arm

When an arm has been chosen and it does not decrease expected
reward, means that it is optimal.

Does not work well when reward is a random variable

But can we do use this intuition of optimistic choosing of actions
(greedy) without ending in sub-optimal estimations?
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Upper Confidence Bound

Let’s build an estimation of expected reward as a mean and an
uncertainty about the mean for each arm

Now choose actions greedily. You will learn always something

Two outcomes:
I Getting high reward: if the arm really has a high mean reward
I Learn something: if the arm really has a lower mean reward, pulling it

will (in expectation) reduce its average reward and the uncertainty over
its value
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Upper Confidence Bound

Estimate an upper confidence Ut(a) for each action value, such that
Q(a) ≤ Ut(a) with high probability

This depends on the number of times Nt(a) action a has been selected

Select action maximizing Upper Confidence Bound (UCB)

at = arg max
a∈A

[Q(a) + Ut(a)]
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Upper Confidence Bound (UCB)

Hoeffding’s Inequality : Let X1, . . . ,Xt be i.i.d. random variables in
[0, 1]. The sample mean is X̄t = 1

t

∑t
τ=1 Xτ Then for u > 0, we have:

P
[
E[X ] > X̄t + u

]
≤ e−2tu

2

Applying to Bandits: action a, rt(a) as the random variables, Q(a) as
the true mean, Q̂t(a) as the sample mean, And u as the upper
confidence bound, u = Ut(a). Then we have,

P
[
Q(a) > Q̂t(a) + Ut(a)

]
≤ e−2tUt(a)2 = p

Let’s reorganize and set U(a) in terms of p:

e−2tUt(a)2 = p Thus, Ut(a) =

√
− log p

2Nt(a)
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Upper Confidence Bound (UCB)

e−2tUt(a)2 = p Thus, Ut(a) =

√
− log p

2Nt(a)

One heuristic is to reduce p with time. Set p = t−4 we get UCB1
algorithm:

Ut(a) =

√
2 log t

Nt(a)

So, algorithm UCB1 is:
I Choose each action one time to initialize values
I Repeat forever: Chose action according to:

aUCB1
t = arg max

a∈A
Q(a) +

√
2 log t

Nt(a)
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Upper Confidence Bound (UCB)

Hoeffding’s Inequality works with any distribution (good) but it is not
tight (bad)

If we know kind of reward distribution we can obtain better bounds.

For instance: Gaussian distribution with µ(ai ), σ(ai ), then cσ(ai ) is
upper confidence bound, where c is a adjustable.
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Upper Confidence Bound (UCB)

Assuming Ra(r) = N
(
r ;µa, σ

2
a

)
:

at = arg max
a∈A

µa + c
σa√
N(a)

In Normal distributions, bounds and estimation of parameters is easy.

In other distributions, update of parameters of the distribution can be
done using Bayesian inference
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Thomson Sampling

At each time step, we want to select action a according to the
probability that a is optimal:

π (a | ht) = P
[
Q(a) > Q

(
a′
)
,∀a′ 6= a | ht

]
where π (a | ht) is the probability of taking action a given the history
ht .

Thomson Sampling: At every time-step, we draw one sample from
each distribution and we pick the highest-ranked option.

Update parameters of distributions accordingly
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Thomson Sampling

Again, use Bayesian inference to update parameters of distribution

Intuition with normal distributions of reward:
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Multi-armed bandits

Several ways to smartly balance exploration and exploitation

Applied to a lot of scenarios: Ad-click, Medical treatments,
Recommendation systems

They do not introduce the idea of state.

Contextual bandits
introduce the idea of state but still they are one-shot, i.e., final
reward is obtained after one action execution

Some of them need a guess about distribution

Need to store number of tries to each arm

In general not applicable in standard RL

Lesson of optimism under uncertainty : Assume that not optimal
actions according to data can be still optimal.

I Adding a small bonus in selection (U(a) or by sampling) that depends
on visits and data
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Subsection 2

Exploration in general framework
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Issues in Exploration

Differently that in Bandits we have:
I States (usually very large space states)
I Sometimes sparse reward
I Function approximation
I Long-term reward (versus one-shot final reward)

Can we apply some lesson from Bandits? Yes. Bonus idea in selection
of actions
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Intrinsic reward

Augment the reward with an additional (vanishing) reward term

r+t = r et︸︷︷︸
extrinsic reward (standard)

+β r it︸︷︷︸
intrinsic

r e : extrinsic reward (task reward) r i : intrinsic reward (exploration
bonus)

Run any algorithm using the new reward r+t
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Intrinsic reward

How to define the intrinsic reward bonus? Several options:
I Discover new states
I Improve knowledge
I Improve controlability
I ...

Arbitrary classification of approaches:
I Count-based bonus
I Prediction-based bonus
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Count-based approaches

From Bandits we know that number of visits is important to have
reliable information

In large state spaces we cannot count visits to states and action taken
there, so we have to estimate a “proxy” for the number of visits Ñ (st)

Add an exploration bonus to the rewards

r̃+t = rt + βt

√
1

Ñ (st)

so r et ≈
√

1/Ñ (st) is inspired by theory (recall UCB)

Run any DeepR L algorithm on Dt =
{(

si , ai , r̃
+
i , si+1

)}
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Count-based approaches

Count by Density Estimation (Bellemare et al. 16) : estimate density
of visits on states using any density estimation alg. and moves from
density estimation to count to apply intrinsic reward

Algorithm:
1 fit model pθ(s) to all states D seen so far
2 take a step i and observe si
3 fit new model pθ′(s) to D ∪ si
4 use pθ (si ) and pθ′ (si ) to estimate N̂(s)
5 set r+i = ri + B(N̂(s))
6 Go back to 1
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Count-based approaches

how to get N̂(s)? use the equations

pθ (si ) =
N̂ (si )

n̂
pθ′ (si ) =

N̂ (si ) + 1

n̂ + 1

two equations and two unknowns!

N̂ (si ) = n̂pθ (si ) n̂ =
1− pθ′ (si )

pθ′ (si )− pθ (si )
pθ (si )

Density estimation procedure is essential.
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Count-based approaches

(Tang et al. 17) use locality-sensitive hashing (LSH) to implement
counting

I We still count states (images) but not in pixel space, but in latent
compressed space.

I Compress s into a latent code, then count occurrences of the code.
I How do we get the image encoding? E.g, using autoencoders
I How to count states? Count on discrete hashed-states (LSH)

There is no guarantee such reconstruction loss will capture the
important things that make two states to be similar or not policy wise
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Prediction-based Exploration

Computational Curiosity idea: let’s explore to improve skills

Look for novelty and surprises

One way to do that is by executing behaviors that reduce uncertainty
on how the world works looking for novelty and surprises

Yes! It implies a world model like we saw in previous lecture
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Prediction-based Exploration

Incentivizing exploration in reinforcement learning with deep
predictive models (Stadie et. al 15) proposes to add as bonus the
error in prediction

Given an encoding φ(s), learn a prediction model

f : (φ (st) , at) 7→ φ (st+1)

Use the prediction error

et = ‖φ (st+1)− f (φ (st) , at)‖22

as exploration bonus r it ∝ et (normalized and scaled)
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Prediction-based Exploration

However is difficult to predict every possible change in the transitions
and may be not necessary

Yes, for instance the predictions that do not depend on agents actions

Example: The TV problem with random images
I Agent cannot predict what she will see on TV
I So TV has a lot of novelty (and error prediction)
I And the agent gets stuck behind the TV trying to learn a model that it

cannot control!
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Prediction-based Exploration

Curiosity-driven Exploration (Pathak et al. 17) predict only
changes that depend on agent’s actions, ignore the rest!
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Prediction-based Exploration

In ICM the features of the state depend on the inverse model

Loss function considers both models:

min
θP ,θI ,θF

[
−λEπ(st ;θP) [Σtrt ] + (1− β)LI + βLF

]
As TV is not controllable by the agent, the model will be blind to the
features of the TV
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Prediction-based Exploration

Expl. by Random Network Distillation (Burda et a. 18)

Authors distinguish three kinds or errors in previous models
1 Prediction error is high where the predictor fails to generalize from

previously seen examples. Novel experience then corresponds to high
prediction error.

2 Prediction error is high because the prediction target is stochastic.
3 Prediction error is high because information necessary for the prediction

is missing, or the model class of predictors is too limited to fit the
complexity of the target function.

First is related to exploration, the other no.

Authors propose to solve the TV problem by comparing difference
prediction in results for next state for a learning NN and output of
Random fixed NN with same architecture and input.
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Prediction-based Exploration

Compare usual setting
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Prediction-based Exploration

With new proposal
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Prediction-based Exploration

Randomly initialize two instances of the same NN (target θ∗ and
prediction θ0 )

fθ∗ : S → R; fθ : S → R

Train the prediction network minimizing loss w.r.t. the target network

θn = arg min
θ

n∑
t=1

(fθ (st)− fθ∗ (st))2

Build ”intrinsic” reward

r it = |fθ (st)− fθ∗ (st)|

No model misspecification (fθ can exactly predict fθ∗)
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Prediction-based Exploration

Idea behind is if similar states have been visited many times in the
past, the prediction should be easier and thus has lower error

So measure computes indirectly ”pseudo-count” of visits

In addition, not so hard to learn like a predictive model

Normalization of bonus is important and tricky (see implementation
details in paper)
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Conclusions

Exploration is key for fast and efficient learning. Random exploration
is not a good idea.

Some tasks cannot be solved without smart exploration techniques
because of sparse reward and/or large state space

A lot of imaginative possibilities in RL that can be combined with
World Models, and other techniques we will see in next lecture

I Build a world model and only intinsic reward for better learn the policy
I Plan2Explore paper (Sekar et al. 20)

Introductory references:
I Nice intuitive and complete review of latest exploration methods
I Survey paper on intrinsic motivation
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Conditioned policies and Hindsight
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Universal Markov Decision Processes

Universal Markov Decision Processes:

< S,A,G,P,R >

Now policy to learn is goal conditioned and also universal, that is,
able to solve any goal in G

π : S × G −→ A

Q-values are then also dependent of goal

Qπ(s, a, g) = Eπ

[∑
k=0

γk rt+k+1 | st = s, at = a, gt = g

]
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Universal Markov Decision Processes

The kind of problems where this can be applied is where reward is
positive for getting goal state and 0 otherwise (so sparse)

Why are them important?

Idea is that data collected to solve one
task may help to solve or speed up the learning of another in the
same domain

But how to transfer this knowledge?

Sharing Experience Replay? (s,a,s’,r)

Mario Martin (CS-UPC) Reinforcement Learning May 6, 2021 40 / 86



Universal Markov Decision Processes

The kind of problems where this can be applied is where reward is
positive for getting goal state and 0 otherwise (so sparse)

Why are them important? Idea is that data collected to solve one
task may help to solve or speed up the learning of another in the
same domain

But how to transfer this knowledge?

Sharing Experience Replay? (s,a,s’,r)

Mario Martin (CS-UPC) Reinforcement Learning May 6, 2021 40 / 86



Hindsight Experience Replay

In sparse domains, trials usually fail to achieve goal

So data in experience replay is full of failures and learning is
impossible

But a failure of trial ending in one state for going to a goal state, is a
success for a trial going to that final state!

This is behind Hindsight Experience Replay (HER) (Andrychowicz et
al. 17)
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HER (Andrychowicz et al. 17)

(s, a, g , r , s ′)

When g 6= s ′, r = 0, but when g = s ′, then r = 1

So, add some successes in ER with final states of trajectories
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HER (Andrychowicz et al. 17)
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HER (Andrychowicz et al. 17)

Very good performance even when goal is fixed

Concatenation of goals in states allow generalization to similar goals
and speed up in learning

It can be used also when learning several tasks at the same time

Beats exploration methods
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HER (Andrychowicz et al. 17)

Several strategies to choose additional goals:
I final replay for final state in trajectory
I future replay with k random states which come from the same episode

as the transition being replayed and were observed after it
I episode replay with k random states coming from the same episode as

the transition being replayed,
I random replay with k random states encountered so far in the whole

training procedure
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HER (Andrychowicz et al. 17)

Future strategy seems to work better (standard)

Mario Martin (CS-UPC) Reinforcement Learning May 6, 2021 46 / 86

https://arxiv.org/pdf/1707.01495.pdf


HER (Andrychowicz et al. 17)

Widely used in general sparse reward tasks.

Not clear about how to generalize to tasks that are not sparse in
rewards

But may be not bad in some cases?

Nice explanation of HER with examples of universal policy in Lunar
Lander

Notice that reward function of Lunar Lander has changed to be sparse
(so no shaping needed!)
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Curriculum learning
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Intuition and motivation

Some tasks are hard to solve (sparse and large state actions)

Curriculum learning propose subgoals to be learnt in sequence
(curriculum) to solve a complex tasks.

Introducing gradually more difficult examples speeds up or even allow
online training.

Focus on “interesting” examples that are neither too hard or too
easy: You can only learn something that you are ready to learn

Inspired in animal and human learning

Example, learn to solve Rubik Cube
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Curriculum learning

Usually involves 3 steps:
I Design of tasks in the curriculum
I Design a metric to quantify how hard a task is so that we can sort

tasks accordingly.
I Provide a sequence of tasks with an increasing level of difficulty to the

model during training.

It can be done manually but better if we build the curriculum
automatically!
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Curriculum learning

(Narvekar et al. 16) proposes to formalize a curriculum as graph of
tasks sorted by difficulty

For instance the Quick chess game for humans:
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Curriculum learning
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Curriculum learning

In order to work for machines we need:
I Create the tasks
I Propose a sequence in the graph
I Agent be able to do transfer of learning
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Curriculum learning

How to create tasks?

Each task is an MDP with < S ,A,R,P >

A modification of these parameters is a different tasks

(Narvekar et al. 16) propose simplification of target tasks using the
following methods

I Task Simplification: It consists in reducing the number of states,
actions or transitions to make the problem easier

I Promising Initializations: Change distribution of initial or final states to
make the problem easier

I Mistake Learning: Create subtasks to avoid or correct mistakes
I Option-based Subgoals
I Task-based Subgoals
I Composite Subtasks
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Half Field Offense
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Curriculum proposal 1: Shoot Task

Initially, goal scoring episodes are rare

Promising initialization: Start close to the goal

Task simplification: Start with only 2 opponents
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Curriculum proposal 2: Dribble Task

Agent takes too many shots from far away

Skill proposal: move the ball up the field while maintaining
possession, until a shot is likely to score

Task simplification: Start with only 2 opponents
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Half Field Offense: Results 2 vs 2
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Half Field Offense: Results 2 vs 3
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Curriculum learning

We have seen what a curriculum is

We have seen how to create tasks

We have seen that curriculum learning is effective

But, can we create tasks of the curriculum automatically?

Can we propose tasks to the learner agent effectively?

Topic of research. We will see now several approaches
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Teacher-Guided Curriculum idea

In (Graves, et al. 2017), the Teacher-Guided Curriculum idea is
proposed

It consists on TWO agents that should learn together: The teacher
and the Student

I Teacher agent has to propose the right task to the student
I Student try to solve the task proposed by the teacher
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Teacher-Guided Curriculum idea

In this approach, task are previously created, so we focus on how
to propose tasks to the learner at each time step

Authors proposed Teacher agent to be trained using a n-armed bandit
algorithm where n is the number of tasks

Return of the armed-bandit is based on the success of the student
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Teacher-Guided Curriculum idea

TGCL idea was formalized in (Matiisen, et al. 2017)

Teacher should propose tasks that the agent still not learn but is
ready to learn
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Teacher-Guided Curriculum

Training the teacher model is to solve a POMDP problem:
I The unobserved st is the full state of the student model.
I The observed o =

(
x
(1)
t , . . . , x

(N)
t

)
are a list of scores for N tasks.

I The action a is to pick on subtask.
I The reward per step is the score delta. rt =

∑N
i=1 x

(i)
t − x

(i)
t−1

Teacher can trained using Thomsom sampling or similar (one-shot
learning)

Nice idea of two agents learning!

But still no proposal of task (they are proposed at the begining)
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Self-Play Curriculum (Sukhbaatar, et al. 2018)

In Intrinsic Motivation and Automatic Curricula via Asymmetric
Self-Play authors propose again two agents with different goals

Alice (teacher) challenges Bob (student) to achieve the same state
and Bob attempts to complete it as fast as he can.

Two kinds of episodes
I self-play episode: Alice alters the state from s0 to st and then Bob is

asked to return the environment to its original state s0 to get an
internal (intrinsic) reward.

I target task episode: Original goal of the agent
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Self-Play Curriculum (Sukhbaatar, et al. 2018)

Policies of both agents are goal-conditioned

Intrinsic rewards are defined as follows:

RB = −γtB
RA = γmax (0, tB − tA)

where tB is total time for Bob to complete the task, tA is the time of
Alice, and γ is constant to rescale the reward with external reward.

If B fails, tB is set to tmax − tA so we penalize Alice

Looses try to propose hard tasks to Bob but solvable in tmax time
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Self-Play Curriculum (Sukhbaatar, et al. 2018)

It generates a curriculum for exploration that accelerates learning of
difficult sparse tasks.

Tasks for Bob are learnable because Bob and Alice use same
architectures, sensors and actions (but just different rewards)

Learning is asymmetric because Alice does not try to maximize
reward of Bob explicitely

Can only be used in reversible environments!
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Reverse Curriculum Generation (Florensa, et al.
2017)

Idea of generating goals automatically using the criteria of promising
initialization from final states backwards (see blog here)
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Reverse Curriculum Generation (Florensa, et al.
2017)

States that are interesting for curriculum are those that are not very
easy neither too complex from current policy

Starts of Intermediate Difficulty (SoID) at iteration i characterized as:

S0
i = {s0 : Rmin < R(πi , s0) < Rmax}

In robot insert task, iteration 0, 1 and 2.

Again, just for reversible environments.
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Generative Goal Learning (Florensa, et al. 2018)

As in the previous paper, they define states of interest as those of
intermediate difficulty.

Algorithm is based on Generative Adversarial Networks (GAN):
1 Label a set of goals based on whether they are at the appropriate level

of difficulty for the current policy.

GOID i := {g : Rmin ≤ Rg (πi ) ≤ Rmax} ⊆ G

where Rmin and Rmax can be interpreted as a minimum and maximum
probability of reaching a goal over T time-steps.

2 Train a Goal GAN model using labelled goals from step 1 to generate
new goals

3 Use these new goals to train the policy, improving its coverage
objective. Go to 1
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Generative Goal Learning (Florensa, et al. 2018)

This algorithm can be used in non invertible domains

Mario Martin (CS-UPC) Reinforcement Learning May 6, 2021 85 / 86

https://arxiv.org/abs/1705.06366


Generative Goal Learning (Florensa, et al. 2018)

This algorithm can be used in non invertible domains

Mario Martin (CS-UPC) Reinforcement Learning May 6, 2021 85 / 86

https://arxiv.org/abs/1705.06366


Conclusions of Curriculum Learning

Highly related to exploration and conditioned policies

Topic of research with a lot of other approximations

Some surveys on the topic (Portelas et. al 20) and (Narvekar et al.
20)

Also blog from Lilian Weng
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