
Reinforcement Learning
Introduction: Framework, concepts and definitions

Mario Martin

CS-UPC

February 26, 2019

(*)Some parts of this slides are taken from David Silver’s UCL Course and Sutton’s

supplementary material for his book

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 / 65

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

What is reinforcement learning?: RL Framework

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 1 / 65

Some Literature

“So saying, they handcuffed him,

and carried him away to the

regiment. There he was made to

wheel about to the right, to the

left, to draw his rammer, to return

his rammer, to present, to fire, to

march, and they gave him thirty

blows with a cane; the next day he

performed his exercise a little

better, and they gave him but

twenty; the day following he came

off with ten, and was looked upon

as a young fellow of surprising

genius by all his comrades.”

Candide: or, Optimism.
Voltaire (1759)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 2 / 65

Reinforcement Learning concept

Main characteristics of RL:

1 Goal is learning a behavior (policy), not a class
2 Grounded agent-like learning:

I Agent is active in the environment
I Learning is continuous

Informal definition

Learning about, from, and while interacting with an environment to
achieve a goal (learning a behavior).

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 3 / 65

Reinforcement Learning concept

Main characteristics of RL:

1 Goal is learning a behavior (policy), not a class
2 Grounded agent-like learning:

I Agent is active in the environment
I Learning is continuous

Informal definition

Learning about, from, and while interacting with an environment to
achieve a goal (learning a behavior).

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 3 / 65

RL Framework

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 4 / 65

RL Framework

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 5 / 65

RL Framework

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 6 / 65

RL Framework

Why use reward instead of examples?:

1 Usually it’s easy to define a reward function (not always).

2 You don’t need to know the goal behavior to train an agent (in
contrast to supervised learning).

3 Behavior is grounded and efficient (optimal in some cases) given
perceptual system and possible actions of the agent.

Reward assumption

All goals can be formalized as the outcome of maximizing a cumulative
reward

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 7 / 65

RL Framework

Why use reward instead of examples?:

1 Usually it’s easy to define a reward function (not always).

2 You don’t need to know the goal behavior to train an agent (in
contrast to supervised learning).

3 Behavior is grounded and efficient (optimal in some cases) given
perceptual system and possible actions of the agent.

Reward assumption

All goals can be formalized as the outcome of maximizing a cumulative
reward

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 7 / 65

RL Characteristics

What makes reinforcement learning harder than other machine learning
paradigms?

Feedback is not the right action, but a sparse scalar value (reward
function).

Relevant feedback is delayed, not instantaneous.

Time really matters (sequential, non i.i.d. data).

Environment can be stochastic and uncertain.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 8 / 65

RL Definition

Informal definition

Learning about, from, and while interacting with an environment to
achieve a goal (learning a behavior).

. . . read as . . .

Formal definition

Learning a mapping from situations to actions to maximize long-term
reward, without using a model of the world.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 9 / 65

RL Definition

Informal definition

Learning about, from, and while interacting with an environment to
achieve a goal (learning a behavior).

. . . read as . . .

Formal definition

Learning a mapping from situations to actions to maximize long-term
reward, without using a model of the world.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 9 / 65

RL Framework

Agent and environment interact at discrete time steps: t = 0, 1, 2, . . .

Agent observes state at step t: st ∈ S

produces action at step t: at ∈ A(st)

gets resulting reward: rt+1 ∈ R
and resulting next state: st+1

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 10 / 65

RL Framework

Snapshot of a trial of the agent:

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 11 / 65

RL Framework: MDP process

RL Problem can be formulated as a Markov Decision Process (MDP):
a tuple < S ,A,P,R > where

I S : Finite set of states
I A: Finite set of actions
I P: Transition Probabilities (Markov property):

Pa
ss′ = Pr {st+1 = s ′ | st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I R: Reward Probabilities:

Ra
ss′ = E {rt+1 | st = s, at = a, st+1 = s ′ } ∀s, s ′ ∈ S , a ∈ A(s).

Some constraints can be relaxed later:
I Markov property (fully vs. partial observability)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 12 / 65

RL Framework: MDP process

RL Problem can be formulated as a Markov Decision Process (MDP):
a tuple < S ,A,P,R > where

I S : Finite set of states
I A: Finite set of actions
I P: Transition Probabilities (Markov property):

Pa
ss′ = Pr {st+1 = s ′ | st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I R: Reward Probabilities:

Ra
ss′ = E {rt+1 | st = s, at = a, st+1 = s ′ } ∀s, s ′ ∈ S , a ∈ A(s).

Some constraints can be relaxed later:
I Markov property (fully vs. partial observability)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 12 / 65

RL Framework: MDP process

Definition of markovian environment:

Markov property

An environment is Markovian if and only if for each state St

P(St+1|St) = P(St+1|S1 . . . ,St−1,St)

Ways to say the same:

The future is independent of the past given the present

Once the state is known, the history may be thrown away

The state is a sufficient statistic of the future

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 13 / 65

RL Framework: MDP process

Not all problems are markovian.
I A robot with a camera isn’t told its absolute location
I A trading agent only observes current prices
I A poker playing agent only observes public cards

This could lead to perceptual aliasing : confusing different states with
the same perception.

In the following example, states 1 and 3 (f.i.) are aliased if sensors of
the agent only report information about the clear/not-clear of
neighbor cells.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 14 / 65

RL Framework: MDP process

Several ways to solve this problem:

1 The agent builds a belief about the current state from past
observations and actions (POMDP approach).

2 Use memory to disambiguate states: Use last H perceptions to
represent current state: St = 〈P1, . . .Pt〉

3 Learn to build a representation of the state using history of the agent:
(f.i. Recurrent networks, LSTMs)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 15 / 65

RL Framework: MDP process

RL Problem can be formulated as a Markov Decision Process (MDP):
a tuple < S ,A,P,R > where

I S : Finite set of states
I A: Finite set of actions
I P: Transition Probabilities (Markov property):

Pa
ss′ = Pr {st+1 = s ′ | st = s, at = a} ∀s, s ′ ∈ S , a ∈ A(s).

I R: Reward Probabilities:

Ra
s = E {rt+1 | st = s, at = a, st+1 = s ′ } ∀s, s ′ ∈ S , a ∈ A(s).

Some constraints can be relaxed later:
I Markov property (fully vs. partial observability)
I Infinite (or continuous) sets of actions and states

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 16 / 65

RL elements:

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 17 / 65

RL Elements

In RL are key the following elements:

1 Policy: What to do.

2 Model: What follows what. Dynamics of the environment.

3 Reward: What is good

4 Value function: What is good because it predicts reward.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 18 / 65

Policy

A policy is the agent’s behavior

It is a map from current state to action to execute:

π : s ∈ S −→ a ∈ A

Policy could be deterministic:

a = π(s)

... or stochastic:

π(a|s) = P[At = s|St = s]

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 19 / 65

Model

A model predicts next state and reward

Allows modeling of stochastic environments with probability transition
functions:

I P predicts the next state

T (s, a, s ′) = Pa
ss′ = P[St+1 = s ′|St = s,At = a]

Usually not known by the agent

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 20 / 65

Rewards

Immediate reward rt is a scalar feedback value that depends on the
current state rt given that current state is St .

Reward function R determines (immediate) reward rt at each step
of the agent’s life rt = R(St)

It is very sparse and does not evaluate of the goodness of the last
action but the goodness of the whole chain of actions (trajectory).

Sometimes written in this form r(s, a):

R(s, a) = E[rt+1|St = s,At = a]

Notice that

R(s, a) =
∑
s′

Pa
ss′ · R(s ′)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 21 / 65

Rewards: examples

Fly stunt manoeuvres in a helicopter
I +ve reward for following desired trajectory
I -ve reward for crashing

Defeat the world champion at Go
I +ve/-ve reward for winning/losing a game

Make a humanoid robot walk
I +ve reward for forward motion
I -ve reward for falling over

Play Atari games better than humans
I +ve reward for increasing/decreasing score

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 22 / 65

[Kinds of experiences]

Agents will learn from experiences that in this case are sequences of
actions

Interaction of the agent with the environment can be for organized in
two different ways:

I Trials (or episodic learning): The agent has a final state after which
he receive the reward. In some cases it has to be achieved after a
limited maximum time H. After he arrives to the goal state (or surpass
the maximum time allowed), a new trial is started.

I Non-ending tasks: The agent has no limit in time or it has not a clear
final state. Learning by trials can be also simulated with non-ending
tasks by adding random extra-transitions from goal state to initial
states.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 23 / 65

Long-term reward

Formal definition of RL

Learning a mapping from situations to actions to maximize long-term
reward, without using a model of the world.

The agent’s job is to maximise cumulative reward over an episode

Long term reward must be defined in terms of the goal of the agent

Definition of long-term reward must be derived from local rewards

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 24 / 65

Long-term Return

First intuitive definition of long-term reward:

Infinite horizon undiscounted return

Rt = rt+1 + rt+2 + rt+3 + . . . =
∞∑
k=0

rt+k+1

Problem: Long-term reward should have a limit.

Finite horizon undiscounted return

Rt = rt+1 + rt+2 + rt+3 + . . .+ rH =
H∑

k=0

rt+k+1

Problem: Optimal policy depends on horizon H and becomes no-stationary

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 25 / 65

Long-term Return

First intuitive definition of long-term reward:

Infinite horizon undiscounted return

Rt = rt+1 + rt+2 + rt+3 + . . . =
∞∑
k=0

rt+k+1

Problem: Long-term reward should have a limit.

Finite horizon undiscounted return

Rt = rt+1 + rt+2 + rt+3 + . . .+ rH =
H∑

k=0

rt+k+1

Problem: Optimal policy depends on horizon H and becomes no-stationary

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 25 / 65

Long-term Return

With H = 3, π(S1) is different if you look at the problem from S0 or S1.

S0 S1

S2

S3 S4 S5

a=A1,A2, r=0

a=A1, r=5

a=A2, r=0

a=A1,A2, r=0 a=A1,A2, r=10

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 26 / 65

Long-term Return

Infinite horizon discounted return

The return Rt is the total discounted reward from time-step t.

Rt = rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + . . . =
∞∑
k=0

γk rt+k+1

The discount γ ∈ [0, 1] is the present value of future rewards. Usually
very close to 1.

The value of receiving reward r after k + 1 time-steps is γk r .

This values immediate reward above delayed reward: γ close to 0
leads to myopic evaluation γ close to 1 leads to far-sighted evaluation

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 27 / 65

Long-term Return

γ = 0.7

S1

S2

S3 S4 S5

a=A1, r=5

a=A2, r=0

a=A1,A2, r=0 a=A1,A2, r=10

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 28 / 65

Long-term Return

Infinite horizon discounted return is limited by:

Rt ≤
∞∑
k=0

γk rmax =
rmax

1− γ

So, also useful for learning non-ending tasks, because addition is
unlimited.

Greedy policies are stationary

Elegant and convenient recursive definition (see Bellman eqs. later)

Choice of reward function and maximization of Long-term Return
should lead to desired behavior.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 29 / 65

Long-term Return

Infinite horizon discounted return is limited by:

Rt ≤
∞∑
k=0

γk rmax =
rmax

1− γ

So, also useful for learning non-ending tasks, because addition is
unlimited.

Greedy policies are stationary

Elegant and convenient recursive definition (see Bellman eqs. later)

Choice of reward function and maximization of Long-term Return
should lead to desired behavior.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 29 / 65

Long-term Return examples

Pole balancing example:

Episodic learning.

Three possible actions: {−F , 0,F}
Sate is defined by (x , ẋ , θ, θ̇)

Markovian problem because (x ′, ẋ ′, θ′, θ̇′) = F (x , ẋ , θ, θ̇)

Goal: |θ| bellow a threshold (similar to a Segway problem)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 30 / 65

Long-term Return examples

Reward definition:

Case 1: γ = 1, r = 1 for each step except r = 0 when pole falls.
=⇒ R = number of time steps before failure

Return is maximized by avoiding failure for as long as possible.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 31 / 65

Long-term Return examples

Reward definition:

Case 2: γ < 1, r = 0 for each step, and r = −1 when pole falls.
=⇒ R = −γk for k time steps before failure

Return is maximized by avoiding failure for as long as possible.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 32 / 65

Long-term Return examples

Other examples:

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 33 / 65

https://gym.openai.com/envs/

Recap

Definition of RL

Framework

Concepts learned:
I Model
I Policy: deterministic and non-deterministic
I Reward functions, immediate reward
I Discounted and undiscounted Long-term reward
I ... γ, π, markovian condition

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 34 / 65

Value functions

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 35 / 65

Value function

Value function is a prediction of future reward

Used to evaluate goodness/badness of states

Depends on the agent’s policy...

... and is used to select between actions

state-value function V π(s)

V π(s) is defined as the expected return starting from state s, and then
following policy π

V π(s) = Eπ[Rt |St = s] = Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s

}

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 36 / 65

Q-Value function

action-value function Qπ(s, a)

Qπ(s, a) is the expected return starting from state s, taking action a, and
then following policy π

Qπ(s, a) = Eπ[Rt |St = s,At = a] = Eπ

{ ∞∑
k=0

γk rt+k+1 | st = s, at = a

}

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 37 / 65

Bellman expectation equation

The value function can be decomposed into two parts:

immediate reward rt+1

discounted value of successor state γV π(St+1)

V π(s) = Eπ[Rt |St = s]

= Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |St = s]

= Eπ[rt+1 + γ(rt+2 + γrt+3 + . . .)|St = s]

= Eπ[rt+1 + γRt+1|St = s]

= Eπ[rt+1 + γV π(St+1)|St = s]

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 38 / 65

Bellman Expectation Equation for V π

So, the state-value function can again be decomposed recursively into
immediate reward plus discounted value of successor state,

Bellman equation for state-value function

Vπ(s) = Eπ[rt+1 + γV π(St+1)|St = s]

Equivalent expressions without the expectation operator:

V π(s) =
∑
s′
P
π(s)
ss′ [R(s ′) + γV π(s ′)]

V π(s) =
∑
s′
P
π(s)
ss′ R(s ′) +

∑
s′
P
π(s)
ss′ γV π(s ′)

V π(s) = R(s, π(s)) + γ
∑
s′
P
π(s)
ss′ V π(s ′)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 39 / 65

[Extension to non-deterministic policies]

When policy is defined as a probability function of choosing one action in
that state π(a|s) then, we redefine:

P
π(s)
ss′ =

∑
a∈A

π(a|s)Pa
s,s′

R(s, π(s)) =
∑
a∈A

π(a|s)R(s, a)

and the same Bellman equations work.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 40 / 65

Bellman Expectation Equation for Qπ

The action-value function can similarly be decomposed:

Qπ(s, a) = Eπ[Rt |St = s,At = a]

= Eπ[rt+1︸︷︷︸
because a

+ γrt+2 + γ2rt+3 + . . .︸ ︷︷ ︸
following π

|St = s,At = a]

= Eπ[rt+1 + γ(rt+2 + γrt+3 + . . .)|St = s,At = a]

= Eπ[rt+1 + γRt+1|St = s,At = a]

= Eπ[rt+1 + γV π(St+1)|St = s,At = a]

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 41 / 65

Bellman Expectation Equation for Qπ

Notice that:
V π(St) = Qπ(St , π(St))

So,

Bellman equation for state-action value function

Qπ(s, a) = Eπ[rt+1 + γQπ(St+1, π(St+1))|St = s,At = a]

Equivalent expressions without the expectation operator:

Qπ(s, a) =
∑
s′
Pa
ss′ [R(s ′) + γV π(s ′)]

Qπ(s, a) =
∑
s′
Pa
ss′ [R(s ′) + γQπ(s ′, π(s ′))]

Qπ(s, a) =
∑
s′
Pa
ss′R(s ′) +

∑
s′
Pa
ss′γQ

π(s ′, π(s ′))

Qπ(s, a) = R(s, a) + γ
∑
s′
Pa
ss′Q

π(s ′, π(s ′))

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 42 / 65

Bellman Expectation Equation for Qπ

Notice that:
V π(St) = Qπ(St , π(St))

So,

Bellman equation for state-action value function

Qπ(s, a) = Eπ[rt+1 + γQπ(St+1, π(St+1))|St = s,At = a]

Equivalent expressions without the expectation operator:

Qπ(s, a) =
∑
s′
Pa
ss′ [R(s ′) + γV π(s ′)]

Qπ(s, a) =
∑
s′
Pa
ss′ [R(s ′) + γQπ(s ′, π(s ′))]

Qπ(s, a) =
∑
s′
Pa
ss′R(s ′) +

∑
s′
Pa
ss′γQ

π(s ′, π(s ′))

Qπ(s, a) = R(s, a) + γ
∑
s′
Pa
ss′Q

π(s ′, π(s ′))

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 42 / 65

Maze example

Rewards: -1 per time-step

Actions: N, S, W, E

States: Agent’s location

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 43 / 65

Maze example: policy

Arrows represent policy π(s) for each state s

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 44 / 65

Maze example: value function

Numbers represent V π(s) for each state s, for γ = 1

How much is Qπ(〈2, 1〉, ↓)?

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 45 / 65

Policy evaluation (1)

Given π, policy evaluation methods obtain V π.

First method: Algebraic solution using Bellman equations in matrix
form

V π(s) = R(s, π(s)) + γ
∑
s′

P
π(s)
ss′ V π(s ′)

V π = R + γPπV π

V π − γPπV π = R

(I − γPπ)V π = R

Algebraic solution

V π = (I − γPπ)−1R

Computational cost is O(n3) where n is the number of states

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 46 / 65

Policy evaluation (1)

Given π, policy evaluation methods obtain V π.

First method: Algebraic solution using Bellman equations in matrix
form

V π(s) = R(s, π(s)) + γ
∑
s′

P
π(s)
ss′ V π(s ′)

V π = R + γPπV π

V π − γPπV π = R

(I − γPπ)V π = R

Algebraic solution

V π = (I − γPπ)−1R

Computational cost is O(n3) where n is the number of states

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 46 / 65

[Policy evaluation (1)]

When you have R(s) instead of R(s, a), solution is expressed as:

V π = (I − γPπ)−1PπR

just because (see page 39) R(s, a) can be expressed as:

R(s, π(s)) =
∑
s′

P
π(s)
ss′ R(s ′)

in matrix form:

PπR

That’s what we do in the notebook (see end of lecture)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 47 / 65

Policy evaluation (2)

Second method: iterative value policy evaluation
I Given arbitrary V as estimation of V π, we can tell the error using

Bellman equations:

error = max
s∈S

∣∣∣∣∣V (s)−
∑
s′

P
π(s)
ss′ [R(s ′) + γV (s ′)]

∣∣∣∣∣
I Consider to apply iteratively Bellman equations to update V for all

states (Bellman operator)

V (s)←
∑
s′

P
π(s)
ss′ [R(s ′) + γV (s ′)]

I Convergence can be proved: applying Bellman operator, error is
reduced by a γ factor (contraction)

I So, apply updates of Bellman operator until convergence.
I Solution is a fixed point of the application of this operator

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 48 / 65

Policy evaluation (2)

Iterative value policy evaluation

Given π, the policy to be evaluated, initialize V (s) = 0 ∀s ∈ S
repeat

∆← 0
for each s ∈ S do
v ← V (s)

V (s)←
∑
s′

P
π(s)
ss′

[
R(s ′) + γV (s ′)

]
∆← max(∆, |v − V (S)|)

end for
until ∆ < θ (a small threshold)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 49 / 65

Policy evaluation (2)

Value iteration converges to optimal value: V → V π

Update of all states using the Bellman equation

V (s)←
∑
s′

P
π(s)
ss′

[
R(s ′) + γV (s ′)

]
is called also the Bellman operator

It can be proved that iterative application of the Bellman operator is
max-norm contraction that ends in a fixed point

The fixed point is exactly the solution V π

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 50 / 65

Optimal Policies

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 51 / 65

Relationship between value functions and policies

We can define a partial ordering of policies “≤” in the following way:

π′ ≤ π ⇐⇒ V π′
(s) ≤ V π(s) ∀s

Under this ordering, we van prove that:
I There exists at least an optimal policy (π∗)
I Could be not unique
I In the set of optimal policies some are deterministic
I All share the same value function

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 52 / 65

Relationship between value functions and policies

We say a policy π is greedy when:

π(St) = arg max
a∈A

Eπ[Rt+1]

if value states are estimations of Rt , then in greedy policies:

π(s) = arg max
a∈A

∑
s′

Pa
ss′
[
R(s ′) + γV π(s ′)

]
π(s) = arg maxa∈AQπ(s, a)

V π(s) = max
a∈A

∑
s′

Pa
ss′
[
R(s ′) + γV π(s ′)

]
V π(s) = maxa∈AQπ(s, a)

It is easy to see that the optimal policy is greedy.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 53 / 65

Relationship between value functions and policies

Infinite number of actions (f.i. continuous space of actions)

Implementations of:

π(St) = arg max
a∈A

Eπ[Rt+1]

is easy when we have a finite number of actions. When we have an
infinite number of actions like in case of continuous space of actions
(parametrized actions), computation is harder!

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 54 / 65

Finding Policies: Model based methods

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 55 / 65

Finding policies

Knowing that optimal policy is greedy...

... and using recursive Bellman equations

we can apply Dynamic Programming (DP) techniques to find the
optimal policies

Main methods to find optimal policies using DP
I Policy iteration (PI)
I Value iteration (VI)

Model based method : In these methods, knowledge of the model is
assumed.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 56 / 65

Finding policies

Knowing that optimal policy is greedy...

... and using recursive Bellman equations

we can apply Dynamic Programming (DP) techniques to find the
optimal policies

Main methods to find optimal policies using DP
I Policy iteration (PI)
I Value iteration (VI)

Model based method : In these methods, knowledge of the model is
assumed.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 56 / 65

Finding policies: Policy iteration

A policy π can be improved iif

∃ s ∈ S , a ∈ A such that Qπ(s, a) > Qπ(s, π(s))

Obvious. In this case, π is not optimal and can be improved setting
π(s) = a

Simple idea for the algorithm:
1 Start from random policy π
2 Compute V π

3 Check for each state if the policy can be improved (and improve it)
4 If policy cannot be improved, stop. In other case repeat from 2.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 57 / 65

Finding policies: Policy iteration

Policy Iteration (PI)

Initialize π,∀s ∈ S to a random action a ∈ A(s), arbitrarily
repeat
π′ ← π
Compute V π for all states using a policy evaluation method
for each state s do
π(s)← arg max

a∈A

∑
s′

Pa
ss′
[
R(s ′) + γV π(s ′)

]
end for

until π(s) = π′(s) ∀s

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 58 / 65

Finding policies: Policy iteration

Theorem

Policy iteration is guaranteed to converge and at convergence, the current
policy and its value function are the optimal policy and the optimal value
function!

At each iteration the policy improves. This means:
I that a given policy can be encountered at most once (so number of

iterations is bounded) ...
I ... and the number of possible policies is finite (|A||S|), so it must stop

at some point (usually in polynomial time).
I At end, the policy cannot be improved. That means that the policy is

optimal (because there are not suboptimal policies that cannot be
improved)

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 59 / 65

Finding policies: Value iteration

Problem with Policy iteration: policy evaluation inside the main loop

Policy evaluation takes a lot of time. Has to be done before
improving the policy

We can stop policy evaluation before complete convergence of policy
evaluation

In the extreme case, we can even stop policy evaluation after a single
sweep (one update of each state).

This algorithm is called Value Iteration and can be proved to converge
to the optimal policy

It combines in one step improvement of the policy and computation
of V

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 60 / 65

Finding policies: Value iteration

Value Iteration (VI)

Initialize V (s) ∀s ∈ S arbitrarily (for instance to 0)
repeat

∆← 0
for each s ∈ S do
v ← V (s)

V (s)← max
a

∑
s′

Pa
ss′
[
R(s ′) + γV (s ′)

]
∆← max(∆, |v − V (S)|)

end for
until ∆ < θ (a small threshold)

Return deterministic policy, π, such that:

π(s) = arg max
a∈A

∑
s′

Pa
ss′
[
R(s ′) + γV π(s ′)

]

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 61 / 65

Policy iteration or value iteration?

Number of iteration in policy iteration before convergence is
polynomial, and usually needs less iterations to stop than Value
iteration

Value iteration needs a lot of iterations to converge to small errors,
however, value iteration converges to optimal policy long before it
converges to correct value in this MDP

Policy iteration requires fewer iterations that value iteration, but each
iteration requires solving a linear system instead of just applying
Bellman operator

In practice, policy iteration is often faster, especially if the transition
probabilities are structured (e.g., sparse) to make solution of linear
system efficient

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 62 / 65

Finding policies: Asynchronous versions

All the DP methods described so far require exhaustive sweeps of the
entire state set.

Asynchronous DP does not use complete sweeps.

Pick a state at random and apply the appropriate backup. Repeat
until convergence criterion is met:

Still need lots of computation, but does not get locked into hopelessly
long sweeps

Can you select states to backup intelligently? YES: an agent’s
experience can act as a guide.

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 63 / 65

Lab

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 64 / 65

Lab session

Install software. For this lab you only need Python 3.x installed,
numpy, matplotlib and Jupyter.

Go to web page of the course and download notebooks for:
1 Policy evaluation
2 Policy iteration and Value iteration

Mario Martin (CS-UPC) Reinforcement Learning February 26, 2019 65 / 65

	What is reinforcement learning?: RL Framework
	RL elements:
	Policy
	Model
	Reward and Long-term reward

	Value functions
	Bellman equations

	Optimal Policies
	Finding Policies: Model based methods
	Lab

