Balls and Bins

RA-MIRI QT Curs 2020-2021
Balls and Bins

Basic Model: Given \(n \) balls, we throw each one independently and uniformly into a set of \(m \) bins.

\[
\Pr [\text{ball } i \rightarrow \text{bin } j] = \frac{1}{m}.
\]

Probability space: \(\Omega = \{(b_1, b_2, \ldots, b_n)\} \) where \(b_i \in \{1, \ldots, m\} \) denotes the index of the bin containing ball \(i \)-th. ball: \(|\Omega| = m^n\).

For any \(w \in \Omega, \Pr [w] = \left(\frac{1}{m}\right)^n\)
Balls and Bins as a model

Balls and Bins models are very useful in different areas of computer science. For ex.:

► The **hashing data structure**: the keys are the balls and the slots in the array are the bins.

► Many situations in **routing in nets**: the balls represent the connectivity requirements and the bins the paths in the network

► **Load balancing randomized algorithms**, the balls are the jobs and the bins are the servers.

Recall that, as an application of Chernoff bounds, we proved that for \(n \) balls (jobs) and \(m \) bins (servers), under a uniform and independent distribution of jobs to servers, for \(n \gg m \), the probability the load of a server deviates from the expected load, was \(1/m^3 \).
General rules for the analysis of Balls & Bins

\(n \) balls to \(m \) bins.

- \(X_j \) is the random variable counting the number of balls into bin-\(j \). Then \(X_j \in B(n, \frac{1}{m}) \).
- As we know: \(X_1, \ldots X_m \) are not independent.
- The average load in a bin is \(\mu = E[X_j] = n/m \).
- Rule of thumb to do the analysis:
 - If \(n \gg m \), (\(\mu \) large) use Chernoff bounds,
 - if \(n = m \), (\(\mu \in \Theta(1) \)), use the Poisson approximation.

Recall that for very small \(x \),
\[e^x \sim 1 + x \]
\[e^{-x} \sim 1 - x. \]
The Poisson Distribution

Recall that for \(X \in B(n, p) \), for large \(n \) and small \(p \), we can have a good approximation:
\[
\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!},
\]
where \(\lambda = \mathbb{E}[X] = \mu = pn \).

For any \(\lambda \in \mathbb{R}^+ \), a r.v. \(X \) is said to have a Poisson \(P(\lambda) \) distribution, if its PMF is
\[
p_X(k) = \frac{e^{-\lambda} \lambda^k}{k!}, \text{ for any } k = 0, 1, 2, 3, \ldots
\]

Poisson is one of the most ”natural” distributions: number of typos, number of rain drops in a square meter of roof, etc..
Assume that \(Y \in P(\lambda) \) approximates \(X \in B(n, p) \), then as
\[E[X] = np \] seems natural that \(E[Y] = np = \lambda \) and as
\[\text{Var}[X] = np(1 - p) = \lambda(1 - p) \] and as \(p \) is small \(\text{Var}[X] \sim \lambda \) and
\[\text{Var}[Y] = \lambda. \] Formally, If \(Y \in P(\lambda) \):

- \(E[Y] = \lambda. \)

\[
E[Y] = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} (\lambda + \frac{2\lambda^2}{2!} + \frac{3\lambda^2}{3!} \cdots)
\]

\[
= e^{-\lambda} \lambda (1 + \lambda + \frac{2\lambda^2}{2!} + \frac{3\lambda^2}{3!} \cdots) = e^{-\lambda} \lambda e^\lambda
\]
Variance of Poisson r.v.

- \(\text{Var} [Y] = \lambda. \)

To prove it, instead of computing \(E [X^2] \) we compute \(E [X(X - 1)]. \)
Notice \(\text{Var} [X] = E [X^2] - E [X]^2 = E [X(X - 1)] + E [X] - E [X]^2. \)

\[
E [X(X - 1)] = \sum_{x=0}^{\infty} x(x - 1) \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=2}^{\infty} \frac{\lambda^2 \lambda^{x-2} e^{-\lambda}}{(x-2)!}
\]

\[
= e^{-\lambda} \lambda^2 \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} = e^{-\lambda} \lambda^2 \sum_{y=0}^{\infty} \frac{\lambda^y}{(y)!}
\]

\[
= e^{-\lambda} \lambda^2 e^\lambda
\]

So, \(\text{Var} [X] = \lambda^2 + \lambda - \lambda^2 \)
Lemma If $Y \in P(\lambda)$ and $Z \in P(\lambda')$ are independent, then $Y + Z \in P(\lambda + \lambda')$.

Proof

$$
\Pr[Y + Z = j] = \sum_{k=0}^{j} \Pr[(Y = k) \cap (Z = j - k)] = \sum_{k=0}^{j} \frac{e^{-\lambda} e^{-\lambda'} \lambda^k \lambda'^{j-k}}{k!(j-k)!} = \frac{e^{-(\lambda + \lambda')}}{j!} \sum_{k=0}^{j} \frac{j!}{k!(j-k)!} \lambda^k \lambda'^{j-k} = \frac{e^{-(\lambda + \lambda')}}{j!} \sum_{k=0}^{j} \binom{j}{k} \lambda^k (\lambda')^{j-k} = \frac{e^{-(\lambda + \lambda')}}{j!} \times (\lambda + \lambda')^j \Rightarrow (Y + Z) \in P(\lambda + \lambda') \quad \square
$$
Basic facts

Recall X_j counts the number of balls in the j-th bin.

- Probability all n balls fell in the same bin: $(\frac{1}{m})^n$.
- Probability that bin j is empty:
 \[\Pr[X_j = 0] = (1 - \frac{1}{m})^n \sim e^{-\frac{n}{m}} = e^{-\lambda}. \]
- Let Y be the number of empty bins, $E[Y]$.
 For $1 \leq j \leq m$, let Y_j be and the r.v. defined as $Y_j = 1$ iff bin j is empty, 0 otherwise. Then,
 \[E[Y] = \sum_{j=1}^{m} E[Y_j] = \sum_{j=1}^{m} \Pr[X_j = 0] = m(1 - 1/m)^n. \]
 So, the expected number of empty bins is
 \[E[Y] \sim me^{-\lambda}. \]
Probability the j-th bin contains 1 ball

We can assume that m and n are large, (so $p = 1/m$ is small), \(\lambda = n/m = \Theta(1) \)

Exact computation: \(\Pr[X_j = 1] = \binom{n}{1}(1/m)^1(1 - 1/m)^{n-1} \)
where \(\binom{n}{1} \) number choices exactly 1 ball goes into bin j,

\((1 - 1/m)^{n-1} \): remaining balls do not go to bin j.

\(\Pr[X_j = 1] = \frac{n}{m}(1 - 1/m)^n(1 - 1/m)^{-1} \)

Poisson approximation: Taking \(\lambda = \frac{n}{m} \) and \((1 - 1/m)^n \sim e^{-\lambda} \) and noticing \((1 - 1/m) \rightarrow 1 \):

\(\Pr[X_j = 1] \sim \lambda e^{-\lambda} \).

For $n = 3000$ and $m = 1000$, \(\lambda = 3 \), the exact value of \(\Pr[X_i = 1] = 0.149286 \) and the Poisson approximation is 0.149361.
Probability the j-th bin contains exactly r balls

We can assume that m and n are large, $n, m > r$.

Exact computation: $\Pr[X_j = r] = \binom{n}{r}(1/m)^r(1 - 1/m)^{n-r}$.

Poisson approximation:

$$(1 - 1/m)^{n-r} = (1 - 1/m)^n(1 - 1/m)^{-r} = e^{-\lambda} \cdot 1^{-r}$$

$$\binom{n}{r}(1/m)^r = \frac{1}{r!} \left(\frac{n}{m} \frac{n-1}{m} \cdots \frac{n-r+1}{m} \right)$$

$$= \frac{1}{r!} \lambda(1 - \frac{1}{n}) \cdots \lambda(1 - \frac{r+1}{n}) = \lambda^r$$

$$\Pr[X_j = r] \sim \frac{\lambda^r e^{-\lambda}}{r!}$$

For $n = 4000$ and $m = 2000$, $\lambda = 2$, and $r = 100$, the exact value of $\Pr[X_i = r] = 5.54572 \times 10^{-130}$ and the approximation is 1.83826×10^{-130}.
Probability that at least one bin has a collision

\[\Pr[\text{at least 1 bin has more than 1 ball }] = 1 - \Pr[\text{every bin } j \text{ has } X_j \leq 1]. \]

If \(k - 1 \) balls went to \(k - 1 \) different bins. Then,

\[\Pr[\text{The } k\text{th. ball goes into a non-empty bin}] = \frac{k - 1}{m} \]

\[\Pr[\text{The } k\text{th. ball goes into an empty bin}] = (1 - \frac{k - 1}{m}) \]

\[\Pr[\text{every bin } j \text{ has } X_j \leq 1] = \prod_{i=1}^{n-1} \left(1 - \frac{i - 1}{m}\right) \sim \prod_{i=1}^{n-1} e^{-i/m} \]

\[= e^{-\sum_{i=1}^{n-1} i/m} = e^{-\frac{1}{m} \sum_{i=1}^{n-1} i} = e^{-\frac{n(n-1)}{2m}} \sim e^{-\frac{n^2}{2m}} \]

Therefore, \(\Pr[\text{at least 1 bin } i \text{ has } X_i > 1] \sim 1 - e^{-\frac{n^2}{2m}}. \)
Birthday problem

How many students should be in a class in order to have that, with probability $> 1/2$, at least 2 have the same birthday

This is the same problem as above, with $m = 365$:

We need $e^{-\frac{n^2}{2m}} \leq \frac{1}{2} \Rightarrow \frac{n^2}{2m} \leq \ln 2 \sim 0.69$

$\Rightarrow n = \sqrt{2m \ln 2}$. If $m = 365$ then $n = 22.49$.

Therefore, if there are more than 23 students in a class, with probability greater than 1/2, more than 2 students will have the same birthday.
Coupon Collector’s problem

Abraham de Moivre (VIIc.)
How many balls do we need to throw to assure that w.h.p. every bin contains \(\geq 1 \) balls

- Let \(Y \) a r.v. counting the number of balls we have to throw until having no empty bins
- For \(i \in [m] \), let \(Y_i = \# \) balls thrown since the moment in which \(i - 1 \) bins are not empty and a ball fells into an empty bin. So
 - \(Y_1 = 1 \) and \(Y = \sum_{i=1}^{m} Y_i \).
- \(\Pr \) [a new ball going into non-empty bin] = \(\frac{i - 1}{m} \).
- \(\Pr \) [a new ball going into an empty bin] = \(1 - \frac{i - 1}{m} \).
Coupon Collector’s problem: $\mathbb{E}[Y]$

$Y_i = \#$ of balls we have to throw to hit an empty bin having $i - 1$ non-empty

$$\Pr[Y_i = k] = \left(\frac{i - 1}{m}\right)^{k-1} \binom{1 - \frac{i - 1}{m}}{p_i}.$$

Therefore $Y_i \in G(p_i)$ and $\mathbb{E}[Y_i] = \frac{m}{m+i+1}$.

$$\mathbb{E}[Y] = \sum_{i=1}^{m} \mathbb{E}[Y_i] = \sum_{i=1}^{m} \frac{m}{m-i+1} = m \sum_{j=1}^{m} \frac{1}{j} = m(\ln m + o(1)).$$
Coupon Collector’s problem: Concentration

Let $E[Y] = O(m \ln m) \sim cm \ln m$ for constant $c > 1$

- For any bin j, define the event A^r_j: bin j is empty after the first r throws.
- Notice events $A^r_1, A^r_2, \ldots A^r_m$ are not independent.
- $\Pr[A^r_j] = (1 - \frac{1}{m})^r \sim e^{-r/m}$
- For $r = cm \ln m \Rightarrow \Pr[A^{cm \ln m}_j] \leq e^{-cm \ln m/m} = m^{-c}$.
- Let W be a r.v. counting the number of balls needed to make that every bin has load ≥ 1.

$$
\Pr[W > cm \lg m] = \Pr[\bigcup_{i=1}^{m} A^{cm \ln m}_j] \leq \sum_{j=1}^{m} \Pr[A^{cm \ln m}_j] \\
\leq \sum_{j=1}^{m} m^{-c} = m^{1-c}.
$$
The previous bound using UB is more tight than the one using Chebyshev or Chernoff on random variable Y. (See homework)

In Section 5.4.1 of MU book, there is a sharper bound for the Coupon collector’s, using the Poisson approximation.
Maximum Load

This is a particular case of the job and servers with sharper bounds.

Theorem If we throw n balls independently and uniformly into $m = n$ bins, then the maximum load of a bin is at most $\left(\frac{4 \lg n}{\lg \lg n}\right)$, with probability $\leq 1 - \frac{1}{n}$, i.e., w.h.p.

Recall that, if for any bin $1 \leq j \leq n$, X_j is a r.v. with its load. We know $\{X_j\}$ are not independent and $\mathbb{E}[X_j] = n/n = 1$.

To show the above bound we use the following two inequalities:

$$\left(\frac{N}{K}\right)^K \leq \binom{N}{K} \leq \left(\frac{Ne}{K}\right)^K.$$ \hspace{1cm} (1)

Let $N > e$. If $K \geq \frac{2 \ln N}{\ln \ln N}$ then $K^K \geq N$.

$$\left(\frac{N}{K}\right)^K \leq \binom{N}{K} \leq \left(\frac{Ne}{K}\right)^K.$$ \hspace{1cm} (2)
Max-load: Proof Upper Bound

For $1 \leq k \leq n$, $\Pr[X_j \geq k] \leq \binom{n}{k} \frac{1}{n^k} \leq \left(\frac{ne}{k}\right)^k \frac{1}{n^k} \leq \left(\frac{e}{k}\right)^k$.

We want to prove that for $k \geq \frac{2\ln n}{\ln \ln n} \Rightarrow \Pr[X_j \geq \frac{2\ln n}{\ln \ln n}] \leq \frac{1}{n^2}$.

i.e. $\Pr[X_j \geq k] \leq \left(\frac{e}{k}\right)^k \leq \frac{1}{n^2} \Rightarrow \left(\frac{e}{k}\right)^k \geq n^\frac{2}{e}$

Taking \ln: $\frac{k}{e} \geq \frac{2\ln(n^{2/e})}{\ln \ln(n^{2/e})} = \frac{4\ln n}{e \ln(\frac{2}{e} \ln n)} \Rightarrow k \geq \frac{4\ln n}{\ln(\frac{2}{e} \ln n)}$

We proved that if $k \geq \frac{4\ln(n)}{\ln(2/e) \ln \ln(n)}$ then $\Pr[X_j \geq k] \leq \frac{1}{n^2}$.

Then, using U-B
$\Pr[\exists i \in [n] \mid X_j \geq k] \leq \sum_{i=1}^{n} \Pr[X_j \geq k] \leq \frac{n}{n^2} = \frac{1}{n}$.
Further considerations on Max-load

1. The same proof could be extended to the case of n balls and m bins, with the constrain $n < m \ln m$.

2. We can obtain the same result by using Chernoff’s bounds. (Nice exercise!)

3. In fact, the result could be extended to prove the Lower Bound: that w.h.p. the max-load is $\Omega\left(\frac{\ln n}{\ln\ln(n)}\right)$ balls. One easy way to prove the lower bound is using Chebyshev’s bound.

4. That result yields: Throwing n balls to n bins, w.h.p. we have a max-load of $\Theta\left(\frac{\ln n}{\ln\ln(n)}\right)$.

5. We can obtain sharper bounds for max-load, using strong inequalities (Azuma-Hoeffding) or the Poisson approximation.
1. A difficulty with the exact (binomial) B & B model is that random variables could be dependent (for ex. bin’s load).

2. We have seen how to approximate the expressions arising from the exact computations by a Poisson, if p is small and n is large.

3. However, under the right conditions, we can approach the whole solution to the problem by using Poisson r.v. instead of Binomial. In the binomial case we have exactly n balls with probability $p = 1/m$, in the Poisson case we have an intensity $\lambda = n/m$, where n is the expected number of balls being used.

4. The Poisson case is to use independent Poisson random variables. It can be shown, under certain conditions, that the approach gives a good approximation to the solution. See for ex. section 5.4 in MU.