Minimum spanning trees

A network construction problem: Minimum

Spanning Tree

CLRS 23, KT 4.5, DPV 5.1

m We have a set of locations.

The problem m For some pairs of locations it is possible to build a link

connecting the two locations, but it has a cost.

m We want to build a network (if possible), connecting all
the locations, with total minimum cost.

m So, the resulting network must be a tree.

Network construction: Minimum Spanning Tree

m We have a set of locations. Build a link connecting the
locations i and j has a cost w(v;, vj).

The problem

m We want to build tree spanning all the locations with total
minimum cost.

The MST

Properties of trees

m A tree on n nodes has n — 1 edges.

UL G m Any connected undirected graph with n vertices and n — 1

edges is a tree.

m An undirected graph is a tree iff there is a unique path
between any pair of nodes.

Let G = (V, E) be a (undirected) graph.
m G'= (V' E')is asubgraph of Gif V/C V and E' C E.
m A subgraph G’ = (V’/, E’) of G is spanning if V' = V.

m A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree

MINIMUM SPANNING TREE problem (MST)

The problem Given as input an edge weighted graph G = (V, E, w), where
w: E — R. Find atree T = (V,E’) with E' C E, such that it

minimizes w(T) = > .cg(r) w(e).

Some definitions

For a graph G = (V, E):
A path is a sequence of consecutive
edges.

A cycle is a path ending in an edge
connecting to the initial vertex, with
no other repeated vertex.

A cut is a partition of V into two
sets S and V — S.

The cut-set of a cut is the set of
edges with one end in S and the
otherin V —S. cut(5,V - 5) =
{e=(u,v)€eE|lueSv¢S}

MST: Properties

Given a weighted graph G = (V, E, w), assume that all edge
weights are different.

A MST T in G has the following properties:

m Cut property
e € T < e is the lightest edge across some cut in G.

m Cycle property
e & T < e is the heaviest edge on some cycle in G.

The MST algorithms use two rules for adding/discarding edges.

MST: Properties

The < implication of the cut property yields the blue rule
(include), which allow us to include safely in T a min weight
edge from some identified cut.

The = implication of the cycle property will yield the red rule
(exclude) which allow us to exclude from T a max weight edge
from some identified cycles.

The cut property

Let G = (V,E,w), w: E — R", such that all weights are
different. Let T be a MST of G.

Removing an edge e = (u,v) from T yields two disjoint trees
T,and T,, sothat V(T,)=V - V(T,),ue T,and v € T,.
Let us call S, = V(T,) and S, = V(T,).

Claim

e € E(T) is the min-weight edge among those in cut(Sy, Sv).

Proof.

Otherwise, we can replace e by an edge in the cut with smaller
weight. Thus, forming a new spanning tree with smaller
weight. Ol

The cut property

Claim (The cut rule)

For S C V, let e = (u, v) be the min-weight edge in
cut(S,V—S5), theneec T.

Assume e € T and that u € S and

v & S. As T is a spanning tree there
must be a path from uto vin T. As
ue Sandv ¢S, thereis an edge

e’ € cut(S,V — S) in this path.
Replacing €’ with e produces another
spanning tree. But then, as

w(e) > w(e’), T was not optimal.

The cycle property

For an edge e ¢ T, adding it to T creates a graph T + e
having a unique cycle involving e. Lets call this cycle Ce.

Claim

For e ¢ E(T), e is the max-weight edge in Ce.

Otherwise, removing any edge different from e in T + e
produces a spanning tree with smaller total weight. O

The cycle property

Claim (The cycle rule)

For a cycle C in G, the edge e € C with max-weight can not
be part of T.

Observe that, as G is connected,
G' = (V,E — {e}) is connected.
Furthermore, a MST for G’ is a MST
for G. O

C=cycle spanning {a,c,d.f}

Generic greedy for MST: Apply blue and/or red

rules

The two rules show the optimal substructure of the MST.
So, we can design a greedy algorithm.

m Blue rule: Given a cut-set between S and V — S with no
blue edges, select from the cut-set a non-colored edge with
min weight and paint it blue

m Red rule: Given a cycle C with no red edges, selected a
non-colored edge in C with max weight and paint it red.

m Greedy scheme:

Given G, apply the red and blue rules until having n — 1
blue edges, those form the MST.

Robert Tarjan: Data Structures and Network Algorithms,
SIAM, 1984

Application of red/blue rules

Application of red/blue rules

Application of red/blue rules

Application of red/blue rules

Application of red/blue rules

Application of red/blue rules

Greedy for MST : Correctness

The greedy scheme finishes in at most m steps and at the end
of the execution the blue edges form a MST

m As in each iteration an edge is added or discarded, the
algorithm finishes after at most m applications of the rules.

m As the red edges cannot form part of any MST and the
blue ones belong to some MST, the selections are correct.

m A set of n — 1 required edges form a spanning tree!
L]

We need implementations for the algorithm!

A short history of MST implementation

There has been extensive work to obtain the most efficient
algorithm to find a MST in a given graph:

m O. Borilivka gave the first greedy algorithm for the MST in 1926. V.
Jarnik gave a different greedy for MST in 1930, which was
re-discovered by R. Prim in 1957. In 1956 J. Kruskal gave a different
greedy algorithms for the MST. All those algorithms run in O(mlg n).

A generic algorithm

m Fredman and Tarjan (1984) gave a O(mlog™ n) algorithm,
introducing a new data structure for priority queues, the Fibbonacci
heap. Recall log™ n is the number of times we have to apply
iteratively the log operator to n to get a value <1, for ex.
log™ 1000 = 2.

m Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan
to O(mlog(log* n)).

m Karger, Klein and Tarjan (1995) O(m) randomized algorithm.

m In 1997 B. Chazelle gave an O(ma(n)) algorithm, where «(n) is a
very slowly growing function, the inverse of the Ackermann function.

Basic algorithms for MST

m Jarnik-Prim (Serial centralized) Starting from a vertex v,
grows T adding each time the lighter edge already
connected to a vertex in T, using the blue rule.

Uses a priority queue

m Kruskal (Serial distributed) Considers every edge, in order
of increasing weight, to grow a forest by using the blue
and red rules. The algorithm stops when the forest
became a tree.

Uses a union-find data structure.

)

Jarnik - Prim greedy algorithm.

V. Jarnik, 1936, R. Prim, 1957

m The algorithmgs keeps a tree T and adds one edge (and
Prim's one node) to T at each step.

algorithm

m Initially the tree T has one arbitrary node r, and no edges.

m At each step T is enlarged adding a minimum weight edge
in the C(T) = cut — set(V(T),V — V(T)).

m Note that an edge e is in the cut-set if e has one end in

V(T) and the other outside.

Jarnik - Prim greedy algorithm.

MST (G, w,r)
Primis T - {r}
sieorthm for i =2 to |V| do
Let e be a min weight edge in the cut(V(T),V — V(T))
T=TuU{e}
end for

Example.

Example.

Example.

Example.

Prim’s
algorithm

Example.

Prim’s
algorithm

Example.

Prim’s
algorithm

Example.

Prim’s
algorithm

Example.

Prim’s
algorithm

Jarnik - Prim greedy algorithm.

Use a priority queue to choose min weight e in the cut set. In
doing so we have to discard some edges

MST (G, w,r)
T = ({r},0); @ =0;5=0
Prim's Insert in Q all edges e = (r, v) with key w(r, v)

algorithm

while s < n—1 and Q is not empty do
(uv v, W) = Q-pOp()
if u¢ V(T)orve V(T) then
Let ' be the vertex from (u, v) that is not in T
Insert in Q all the edges e = (', V') € E(G) for
v ¢ V(T) with key w(e)
add eto T; ++s
end if
end while

Jarnik - Prim greedy algorithm: Correctness

m The algorithm discards edge e:
Such an edge e = (u, v) has u,v € V(T), so it forms a
orints cycle with the edges in T. But, e is the edge with highest
algorithm weight in this cycle. This is an application of the red rule.

m The algorithm adds to T edge e:
Then e has minimum weight among all edges in Q, as @
contains all edges in the cut-set(V(T),V — V(T)). This
is the blue rule

m Therefore the algorithm computes a MST.

Jarnik - Prim greedy algorithm: Cost

Time: depends on the implementation of the priority queue Q.
Prim’s We have < m insertions on the priority queue.

algorithm
Q an unsorted array: T(n) = O(|V|?);
Q a heap: T(n) = O(|E|lg|V]).
Q a Fibonacci heap: T(n) = O(|E| + |V|lg|V])

Kruskal's algorithm.

J. Kruskal, 1956

Similar to Jarnik - Prim, but chooses minimum weight edges, in
some cut. The selected edges form a forest until the last step.
MST (G, w,r)
Sort E by increasing weight
T=0
for i=1to |V| do
Let e € E : with minimum weight among those that do
not form a cycle with T
T=Tu{e}
end for

Example.

Example.

Example.

Example.

Example.

Example.

Example.

Example.

Kruskal's algorithm: Implementation

m We have a cost of O(mlg m) as we have to sort the edges.
But as m < n?, O(mlgm) = O(mlgn).

m We need an efficient implementation of the algorithm.

m To find an adequate data structure lets look to some

properties of the objects constructed along the execution
of the algorithm.

Another view of Kruskal's algorithm

edges sorted by weight
(f,d,2),(c, b,3),(e,f,4),(af,5),(ae,6)(cd,8),
(f,g,9),(a, c,10),(a, b,14),(d, h,15)

Example.

(f.d.2),(c,b,3),(e,f,4),(a,f,5),(a,e6),(c,d,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6)(cd,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c,b,3),(e,f.4),(a,f,5),(a,e,6)(cd,8),

(f.2.9). (a.c,10), (a, b, 14), (d. h. 15)

Example.

(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6)(cd,8),
(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(a e 6)(cd,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(ae,6)(cd,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(a, e, 6)(cd,8),
(f.g.9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(a, e, 6)(cd,8),

(f,g,9),(a,¢,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(a, e, 6)(cd,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f7 d’ 2)7 (C7 b7 3)? (e7 f’ 4)’ (a7 f? 5)7 (37 e7 6)’ (C7 d7 8)7
(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Example.

(f,d,2),(c, b,3),(e,f,4),(a,f,5),(a, e, 6)(cd,8),

(f,g,9),(a,c,10),(a, b,14),(d, h,15)

Using Union-Find for Kruskal

Kruskal evolves by building spanning forests, merging two
trees (blue rule) or discarding an edge (red rule) so as to
do not create a cycle.

m The connectivity relation is an equivalence relation: tRrv
iff there is a path between u and v.

m Kruskal, starts with a partition of V into n sets and ends
with a partition of V into one set.

m R partition the elements of V' in equivalence classes,
which are the connected components of the forest

Disjoint Set Union-Find

B. Galler, M. Fisher: An improved equivalence algorithm. ACM
Comm., 1964; R.Tarjan 1979-1985

m Union-Find is a data structure to maintain a dynamic
partition of a set.

m Union-Find is one of the most elegant data structures in
the algorithmic toolkit.

m Union-Find makes possible to design almost linear time
algorithms for problems that otherwise would be
unfeasible.

m Union-Find is a first introduction to an active research
fields in algorithmic; Self organizing data structures and
data stream computation.

Partition and equivalent relations

Remember a partition of an n element set S is collection
{S51,..., S5k} of subsets s.t.:

VS C S;UK1S; = S;VS;, S then S;N'S; = ()

Recall also that a partition implies an equivalence relation:

Vx,y € S,x=yiff x € S;&y € S;.

The collection {S1, ..., Sk} are the equivalence classes of the
equivalence relation.

Union-Find

Union-Find supports three operations on partitions of a set:
MAKESET (x): creates a new set containing the single

element x.
X — @

UNION (x,y): Merge the sets containing x and y, by using

their union
o, &4
—
® &b
FIND (x): Return the representative of the set containing x.

FIND()=¢ st © ® gaa

Warning about UNION operation

m Warning: For any x,y € S, we might need to do
UNION(x, y), for x,y that are not representatives.
Depending on the implementation this might or might not
be allowed.

m To determine the complexity under different
implementations, we consider that

UNION (x,y) = UNION (FIND(x), FIND(y)).

Union-Find implementation for Kruskal

MST (G(V,E),w,r), |V|=n,|E|=m
Sort E by increasing weight: {e1,...,en}
T=0
for all v € V do
MAKESET(v)
end for
for i=1to mdo
Assume that & = (u, v)
if FIND(u) # Find(v) then
T=TU {e,-}
UNION(u, v)
end if
end for

m Sorting takes time O(mlog n).

m The remaining part of the algorithm is a sequence of n MAKESET
and O(m) operations of type FIND/UNION

Amortized analysis

(See for ex. Sect. 17-1 to 17.3 in CLRS)

m An amortized analysis is any strategy for analyzing a
sequence of operations on a Data Structure, to show that
the "average” cost per operation is small, even though a
single operation within the sequence might be expensive.

m An amortized analysis guarantees the average performance
of each operation in the worst case.

m The easier way to think about amortized analysis is to
consider total number of steps for a sequence of
operations of a given size.

Union Find implementations: Cost

(4.6 KT)
For a set with n elements.

m Using an array holding the representative.
m MAKESET and FIND takes O(1)
m UNION takes O(n).
m Using an array holding the representative, a list by set, and
in a UNION keeping the representative of the larger set.

m MAKESET and FIND takes O(1)
m any sequence of k UNION takes O(k log k).

Complexity of Union Find implementations:

Amortized cost

For a set with n elements.

m Using a rooted tree by set, in a UNION keeping the
representative of the larger set.
m MAKESET and UNION takes O(1)
m FIND takes O(log n).

m Using a rooted tree by set, in a UNION keeping the
representative of the larger set, and doing path
compression during a FIND.

m MAKESET takes O(1)

m any intermixed sequence of k FIND and UNION takes
O(ka(n)).

a(n) is the inverse Ackerman’s function which grows
extremely slowly. For practical applications it behaves as a
constant.

http://www.gabrielnivasch.org/fun/inverse-ackermann

Union-Find implementation for Kruskal

MST (G(V,E),w,r), |V|=n,|E|=m
Sort E by increasing weight: {e1,...,en}
T=0
forall ve V do
MAKESET(v)
end for
for i=1to mdo
Assume that & = (u, v)
if FIND(v) # Find(v) then
T=TU {e,-}
UNION(u, v)
end if
end for

m Sorting take time O(mlogn).
m The remaining part of the algorithm has cost
n+ O(ma(n)) = O(n+ m).

But due to the sorting instruction, Kuskal takes O(n+ mlgn).
Unless we use a range of weights that allow us to use RADIX.

Some applications of Union-Find

Kruskal's algorithm for MST.
Dynamic graph connectivity in very large networks.
Cycle detection in undirected graphs.

Random maze generation and exploration.
Strategies for games: Hex and Go.

Least common ancestor.

Compiling equivalence statements.

Equivalence of finite state automata.

Clustering

Clustering: process of finding interesting structure in a set of
data.

m Given a collection of objects, organize them into similar
coherent groups with respect to some (distance function d(-,-)).

m The distance function not necessarily has to be the physical
(Euclidean) distance. The interpretation of d(-,-) is that for any
two objects x, y, the larger that d(x, y) is, the less similar that
x and y are.

m There are many problems in clustering, but for most of them,
d(-,-) must have be a metric: d(x,x) =0 and d(x,y) > 0, for

x#y; d(x,y) =d(y,x); d(x,y) +d(y,z) < d(x, z).

m If x,y are two species, we can define d(x, y) as the years that
they diverged in the course of evolution.

Generic clustering setting

Given a set of data points U = {xy, x2, ..., Xy} together with a
distance function d on X, and given a k > 0, a k-clustering is
a partition of X into k disjoint subsets.

Generali

Sumitomo
]

Clustering

Frankiin Res. Werril Lynch

The single-link clustering problem

Let U be a set of n data points, assume {Cy,...,Cx} is a
k-clustering for U.
Define the spacing s in the k-clustering as the minimum

distance between any pair of points in different clusters.

The single-link clustering problem: Given U = {x1,x2,...,Xn},
a distance function d, and k > 0, find a k-clustering of U
maximizing the spacing s.

Notice there are exponentially many different k-clustering of U.

TrKruskal: An algorithm for the single-link
clustering problem

m Represent U as vertices of an undirected graph where the
edge (x,y) has weight d(x,y).
m Apply Kruskal’s algorithm until the forest has k trees.

Complexity and correctness

TrKruskal solves the single-link clustering problem in O(n? g n)

Proof.

We have to create a complete graph and sort the n? edges.
This has cost O(n” g n)

Correctness
Let C ={C,..., Ck} be the k-clustering produced by
TrKruskal, and let s be its spacing.

Assume there is another k-clustering C" = {({,..., C.} with
spacing s’ and s.t. C # C’. We must show that s’ < s.

Complexity and correctness

If C #£C/, then 3C, € Cs.t. VC[€', C, L (.
That means 3x,y € G, s.t. x,y € G, st. x€ Cland y € C.
Japath x~ yin G, = 3(x',y’) € E(MST) with x’ € C{ and
y'e Cpandst. s’ <d(x,y') <s.

—~/
End Proof

	The problem
	Properties
	The cut and the cycle properties
	A generic algorithm

	Prim's algorithm
	Kruskal's algorithm
	Description
	Using union-find
	Cost
	Clustering

