Manipulation and Bribery

AGT-MIRI

Spring 2022
1 Representations
2 Manipulation
3 Bribery
To represent an election with m candidates and n voters, we have to provide a description of the votes of the voters.
To represent an election with m candidates and n voters, we have to provide a description of the votes of the voters.

A vote is a permutation of the set of candidates.

Representations

Manipulation

Bribery

AGT-MIRI

Social Choice Theory
To represent an election with \(m \) candidates and \(n \) voters, we have to provide a description of the votes of the voters.

A vote is a permutation of the set of candidates.

Extensive: A vote for each player
Which has size \(O(m!n) \).
To represent an election with m candidates and n voters, we have to provide a description of the votes of the voters.

- A vote is a permutation of the set of candidates.
- **Extensive:** A vote for each player
 Which has size $O(m!n)$.
- **Weighted:** A weighted set of votes.
 The weight indicates the number of players selecting this particular vote. The sum of the weights is the number of players.
 Which has size $O(m! \log n)$
To represent an election with m candidates and n voters, we have to provide a description of the votes of the voters.

- A vote is a permutation of the set of candidates.
- **Extensive:** A vote for each player
 Which has size $O(m!n)$.
- **Weighted:** A weighted set of votes.
 The weight indicates the number of players selecting this particular vote. The sum of the weights is the number of players.
 Which has size $O(m! \log n)$
- **Prized:** In addition to votes, a prize for each voter is given.
 This has additional size $O(n \log P)$ where P is the largest prize.
1 Representations
2 Manipulation
3 Bribery
We analyze the coalition manipulation problem on scoring protocols.
We analyze the coalition manipulation problem on scoring protocols.

A scoring protocol is defined by a tuple $\alpha = (\alpha_1, \ldots, \alpha_m)$ with $\alpha_1 \geq \cdots \geq \alpha_m$.

α_i is the number of points assigned to the i-th alternative in a vote.
Coalition manipulation: scoring protocols

- We analyze the coalition manipulation problem on scoring protocols.
- A scoring protocol is defined by a tuple $\alpha = (\alpha_1, \ldots, \alpha_m)$ with $\alpha_1 \geq \cdots \geq \alpha_m$.
- α_i is the number of points assigned to the i-th alternative in a vote.
- In such kind of elections there is always a winner but there might be multiple winners.
We analyze the coalition manipulation problem on scoring protocols.

A scoring protocol is defined by a tuple \(\alpha = (\alpha_1, \ldots, \alpha_m) \) with \(\alpha_1 \geq \cdots \geq \alpha_m \).

\(\alpha_i \) is the number of points assigned to the \(i \)-th alternative in a vote.

In such kind of elections there is always a winner but there might be multiple winners.

We assume that the input is given in weighted form.
MANIPULATION MP α

Given: A set S of weighted votes over m candidates, the weights for a set T of votes, and a preferred candidate p from among the m candidates.

Question: Is there a way to cast the votes in T such that p wins the election with respect to α?
Manipulation MP_α

Given: A set S of weighted votes over m candidates, the weights for a set T of votes, and a preferred candidate p from among the m candidates.

Question: Is there a way to cast the votes in T such that p wins the election with respect to α?

Unique Manipulation UMP_α

Given: A set S of weighted votes over m candidates, the weights for a set T of voters, and a preferred candidate p from among the m candidates.

Question: Is there a way to cast the votes in T such that p is the unique winner of the election with respect to α?
Claim

Let $\alpha = (\alpha_0, \ldots, \alpha_m)$ be a scoring protocol. For every positive integer s, there exists a set of votes S over candidates $\{p, a, b, c_1, \ldots, c_\ell, d_1, \ldots, d_r\}$ such that

- $\text{score}_S(p) = \text{score}_S(x)$, for $x \in \{a, b, c_1, \ldots, c_\ell\}$, and
- $\text{score}_S(d_i) + s \leq \text{score}_S(p)$, for $1 \leq i \leq r$.

From s, such an S can be computed in polynomial time in $|s|$.

$\text{score}_S(c)$ is the score assigned to candidate c according to S.
Proof of Claim

- If $r = 0$, take $S = \emptyset$. So, assume that $r > 0$.
Proof of Claim

- If $r = 0$, take $S = \emptyset$. So, assume that $r > 0$.
- For a preference order $a_0 > a_1 > \cdots > a_{k-1}$, and integer t, $[a_0 > a_1 > \cdots > a_{k-1}]^t$, denotes the preference order that results after a cyclic shift of t positions to the right, i.e., $a_t \mod k > \cdots > a_{(t+k-1) \mod k}$.
Proof of Claim

- If $r = 0$, take $S = \emptyset$. So, assume that $r > 0$.
- For a preference order $a_0 > a_1 > \cdots > a_{k-1}$, and integer t, $[a_0 > a_1 > \cdots > a_{k-1}]^t$, denotes the preference order that results after a cyclic shift of t positions to the right, i.e., $a_t \mod k > \cdots > a_{(t+k-1) \mod k}$.
- S has $(\ell + 3)r$ voters, each of weight s.
Proof of Claim

- If \(r = 0 \), take \(S = \emptyset \). So, assume that \(r > 0 \).
- For a preference order \(a_0 > a_1 > \cdots > a_{k-1} \), and integer \(t \),
 \([a_0 > a_1 > \cdots > a_{k-1}]^t \), denotes the preference order that
 results after a cyclic shift of \(t \) positions to the right, i.e.,
 \(a_t \mod k > \cdots > a_{(t+k-1) \mod k} \).
- \(S \) has \((\ell + 3)r\) voters, each of weight \(s \).
- For \(0 \leq i \leq \ell + 2 \), and \(0 \leq j \leq r - 1 \), add a voter of weight \(s \)
 \([a > b > p > c_1 > \cdots > c_\ell]^{i} \rightarrow [d1 > \cdots > dr]^{i} \).
Proof of Claim

- For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

\[
[a > b > p > c_1 > \cdots > c_\ell]^i \rightarrow [d_1 > \cdots > d_r]^j.
\]
Proof of Claim

- For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

$$[a > b > p > c_1 > \cdots > c_\ell]^i \succ [d_1 > \cdots > d_r]^j.$$

- $\text{score}_S(p) = sr(\alpha_1 + \cdots + \alpha_{\ell + 3}).$
Proof of Claim

- For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

 $[a > b > p > c_1 > \cdots > c_\ell]_i \succ [d_1 > \cdots > d_r]_i$.

- $score_S(p) = sr(\alpha_1 + \cdots + \alpha_{\ell+3})$.

- $score_S(a) = score_S(b) = score_S(c_i) = score_S(p)$.

AGT-MIRI Social Choice Theory
Proof of Claim

For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

$$[a > b > p > c_1 > \cdots > c_{\ell}] \rightarrow [d_1 > \cdots > d_r] \rightarrow.$$

- $score_S(p) = sr(\alpha_1 + \cdots + \alpha_{\ell+3}).$
- $score_S(a) = score_S(b) = score_S(c_i) = score_S(p).$
- $score_S(d_i) = s(\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_m).$
Proof of Claim

- For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

 \[[a > b > p > c_1 > \cdots > c_\ell]^i, > [d_1 > \cdots > d_r]^j. \]

- $\text{score}_S(p) = sr(\alpha_1 + \cdots + \alpha_{\ell+3})$.
- $\text{score}_S(a) = \text{score}_S(b) = \text{score}_S(c_i) = \text{score}_S(p)$.
- $\text{score}_S(d_i) = s(\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_m)$.
- $r(\alpha_1 + \cdots + \alpha_{\ell+3}) \geq r(\ell + 3)\alpha_{\ell+3+1} \geq (\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_{\ell+3+1}) \geq (\ell + 3)(\alpha_{\ell+3+1 + \cdots + \alpha_m})$.

AGT-MIRI Social Choice Theory
Proof of Claim

- For $0 \leq i \leq \ell + 2$, and $0 \leq j \leq r - 1$, add a voter of weight s

 $$[a > b > p > c_1 > \cdots > c_{\ell}]^i \succ [d_1 > \cdots > dr]^j.$$

- $score_S(p) = sr(\alpha_1 + \cdots + \alpha_{\ell+3})$.
- $score_S(a) = score_S(b) = score_S(c_i) = score_S(p)$.
- $score_S(d_i) = s(\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_m)$.
- $r(\alpha_1 + \cdots + \alpha_{\ell+3}) \geq r(\ell + 3)\alpha_{\ell+3+1} \geq (\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_{\ell+3+1}) \geq (\ell + 3)(\alpha_{\ell+3+1} + \cdots + \alpha_m)$.
- So, $score_S(p) \geq score_S(d_i)$.

\qed
Claim

Let $\alpha = (\alpha_1, \ldots, \alpha_m)$ be a scoring protocol. Then, for all sets of voters S and all candidates p, the following hold.

- For all integers k, $\alpha + k = (\alpha_1 + k, \ldots, \alpha_m + k)$ and $k\alpha = (k\alpha_1, \ldots, k\alpha_m)$ are scoring protocols in which p is a winner (unique winner) with respect to S and α iff p is a winner (unique winner) with respect to S and $\alpha + k$ ($k\alpha$).
A complexity dichotomy
A complexity dichotomy

Theorem

For each m and each scoring protocol $\alpha = (\alpha_1, \ldots, \alpha_m)$, MP_α and UMP_α are in P if $\alpha_2 = \cdots = \alpha_m$, and are NP-complete in all other cases.
Proof of theorem: Polynomial cases

If $\alpha_1 = \cdots = \alpha_m$, all candidates are always tied, so all of them are winners and unique winners only if $m = 1$.
Proof of theorem: Polynomial cases

- If $\alpha_1 = \cdots = \alpha_m$, all candidates are always tied, so all of them are winners and unique winners only if $m = 1$.
- If $\alpha_1 > \alpha_2 = \cdots = \alpha_m$, by the previous claim, the election is equivalent to $(1, 0, \ldots, 0)$.
Proof of theorem: Polynomial cases

- If $\alpha_1 = \cdots = \alpha_m$, all candidates are always tied, so all of them are winners and unique winners only if $m = 1$.
- If $\alpha_1 > \alpha_2 = \cdots = \alpha_m$, by the previous claim, the election is equivalent to $(1, 0, \ldots, 0)$.
- But, we know that plurality is manipulable in polynomial time.
Proof of theorem: hard cases

- By the previous claim we can assume that $\alpha_m = 0$.

- The reduction is from Partition

Given: $n \geq 1$ positive integers k_1, \ldots, k_n that sum to $2K$.

Question: Is there a subset of the integers that sums to K?

Let $\ell = |\{i | 1 \leq i \leq m, \alpha_i = 0\}| - 1$.

Since $\alpha_m = 0$, $\ell \geq 0$.

The proof requires a construction for $\ell = 1$ and another for $\ell \neq 1$. We present only the case $\ell \neq 1$.

\[\frac{\ell}{m} = 1 \]
Proof of theorem: hard cases

- By the previous claim we can assume that $\alpha_m = 0$.
- The reduction is from Partition

 Given: $n \geq 1$ positive integers k_1, \ldots, k_n that sum to $2K$.

 Question: Is there a subset of the integers that sums to K?
Proof of theorem: hard cases

- By the previous claim we can assume that $\alpha_m = 0$.
- The reduction is from Partition
 - Given: $n \geq 1$ positive integers k_1, \ldots, k_n that sum to $2K$.
 - Question: Is there a subset of the integers that sums to K?
- Let $\ell = |\{i \mid 1 \leq i \leq m, \alpha_i = 0\}| - 1$.

Proof of theorem: hard cases

- By the previous claim we can assume that $\alpha_m = 0$.
- The reduction is from
 - **Partition**
 - **Given:** $n \geq 1$ positive integers k_1, \ldots, k_n that sum to $2K$.
 - **Question:** Is there a subset of the integers that sums to K?
- Let $\ell = |\{i \mid 1 \leq i \leq m, \alpha_i = 0\}| - 1$.
- Since $\alpha_m = 0$, $\ell \geq 0$.
Proof of theorem: hard cases

- By the previous claim we can assume that $\alpha_m = 0$.
- The reduction is from

 Partition

 Given: $n \geq 1$ positive integers k_1, \ldots, k_n that sum to $2K$.
 Question: Is there a subset of the integers that sums to K?

- Let $\ell = |\{i \mid 1 \leq i \leq m, \alpha_i = 0\}| - 1$.
- Since $\alpha_m = 0$, $\ell \geq 0$.
- The proof requires a construction for $\ell = 1$ and another for $\ell \neq 1$. We present only the case $\ell \neq 1$.
Proof of theorem

- Let $\ell = |\{ i \mid 1 \leq i \leq m, \alpha_i = 0\}| - 1$.
- Let $r = m - \ell - 3$.
- As $\alpha_2 \neq 0$, $r \geq 0$.
Proof of theorem

- Let $\ell = |\{ i | 1 \leq i \leq m, \alpha_i = 0\}| - 1$.
- Let $r = m - \ell - 3$.
- As $\alpha_2 \neq 0$, $r \geq 0$.
- The election has m candidates: $p, a, b, c_1, \ldots, c_\ell, d_1, \ldots, d_r$.
Proof of theorem

- Let $\ell = |\{i \mid 1 \leq i \leq m, \alpha_i = 0\}| - 1$.
- Let $r = m - \ell - 3$.
- As $\alpha_2 \neq 0$, $r \geq 0$.
- The election has m candidates: $p, a, b, c_1, \ldots, c_\ell, d_1, \ldots, d_r$.
- The set of voters S is created in two parts, $S = S_1 \cup S_2$.
The case $\ell \neq 1$: S_1
The case $\ell \neq 1$: S_1

- One vote of weight $2K(2\alpha_1 - \alpha_{r+2}) - 1$

 $a > d_1 > \cdots > d_r > b > p > c_1 > \cdots > c_\ell$.

"..." means that the remaining candidates follow in some arbitrary order.
The case \(\ell \neq 1: S_1 \)

- One vote of weight \(2K(2\alpha_1 - \alpha_{r+2}) - 1 \)
 \[a > d_1 > \cdots > d_r > b > p > c_1 > \cdots > c_\ell. \]

- One vote of weight \(2K(2\alpha_1 - \alpha_{r+2}) - 1 \)
 \[b > d_1 > \cdots > d_r > a > p > c_1 > \cdots > c_\ell. \]
The case $\ell \neq 1$: S_1

- One vote of weight $2K(2\alpha_1 - \alpha_{r+2}) - 1$

 $a > d_1 > \cdots > d_r > b > p > c_1 > \cdots > c_\ell$

- One vote of weight $2K(2\alpha_1 - \alpha_{r+2}) - 1$

 $b > d_1 > \cdots > d_r > a > p > c_1 > \cdots > c_\ell$

- For $1 \leq i \leq \ell$, one vote of weight $4\alpha_1 K - 1$

 $c_i > d_1 > \cdots > d_r > c_{1+(i \mod \ell)} > a > b > p > \ldots$

“…” means that the remaining candidates follow in some arbitrary order.
The case $\ell \neq 1$: S_1

- $score_{S_1}(p) = 0$
The case $\ell \neq 1$: S_1

- $\text{score}_{S_1}(p) = 0$
- $\text{score}_{S_1}(a) = \text{score}_{S_1}(b) = 2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2})$
The case \(\ell \neq 1: S_1 \)

- \(\text{score}_{S_1}(p) = 0 \)
- \(\text{score}_{S_1}(a) = \text{score}_{S_1}(b) = 2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2}) \)
- \(\text{score}_{S_1}(d_i) \leq \text{score}_{S_1}(d_1) \)
The case $\ell \neq 1$: S_1

- $\text{score}_{S_1}(p) = 0$
- $\text{score}_{S_1}(a) = \text{score}_{S_1}(b) = 2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2})$
- $\text{score}_{S_1}(d_i) \leq \text{score}_{S_1}(d_1)$
- $\text{score}_{S_1}(d_1) = 2(2K(2\alpha_1 - \alpha_{r+2} - 1) + \ell(4\alpha_1K - 1))\alpha_2$
The case $\ell \neq 1$: S_2

- We use the construction of the first Claim to construct S_2 taking $s = \text{score}_{S_1}(d_1) + 1$.

$\text{AGT-MIRI} \quad \text{Social Choice Theory}$
The case $\ell \neq 1$: S_2

- We use the construction of the first Claim to construct S_2 taking $s = \text{score}_{S_1}(d_1) + 1$.
- We know:
 - $\text{score}_{S_2}(p) = \text{score}_{S_2}(x)$, for $x \in \{a, b, c_1, \ldots, c_\ell\}$, and
 - $\text{score}_{S_2}(d_i) + \text{score}_{S_1}(d_1) + 1 \leq \text{score}_{S_2}(p)$, for $1 \leq i \leq r$.
The case $\ell \neq 1$: S_2

- We use the construction of the first Claim to construct S_2 taking $s = \text{score}_{S_1}(d_1) + 1$.
- We know:
 - $\text{score}_{S_2}(p) = \text{score}_{S_2}(x)$, for $x \in \{a, b, c_1, \ldots, c_\ell\}$, and
 - $\text{score}_{S_2}(d_i) + \text{score}_{S_1}(d_1) + 1 \leq \text{score}_{S_2}(p)$, for $1 \leq i \leq r$.
- Let $s_2 = \text{score}_{S_2}(p)$.

The case $\ell \neq 1$: S_2

- We use the construction of the first Claim to construct S_2 taking $s = \text{score}_S(d_1) + 1$.
- We know:
 - $\text{score}_{S_2}(p) = \text{score}_{S_2}(x)$, for $x \in \{a, b, c_1, \ldots, c_\ell\}$, and
 - $\text{score}_{S_2}(d_i) + \text{score}_{S_1}(d_1) + 1 \leq \text{score}_{S_2}(p)$, for $1 \leq i \leq r$.
- Let $s_2 = \text{score}_{S_2}(p)$

- Let $S = S_1 \cup S_2$, and set the weights of the n voters in T to $2k_1(\alpha_1 - \alpha_{r+2}), 2k_2(\alpha_1 - \alpha_{r+2}), \ldots, 2k_n(\alpha_1 - \alpha_{r+2})$.
- Let us show that this is a reduction.
The case $\ell \neq 1$: Partition has solution

Let $I \subseteq [n]$ be such that $\sum_{i \in I} k_i = K$.

The case $\ell \neq 1$: Partition has solution

- Let $I \subseteq [n]$ be such that $\sum_{i \in I} k_i = K$.
- The vote of the i-th voter in T is
 \begin{align*}
 p &> d_1 > \cdots > d_r > a > b > c_1 > \cdots > c_\ell, \text{ if } i \in I \\
 p &> d_1 > \cdots > d_r > b > a > c_1 > \cdots > c_\ell, \text{ if } i \notin I
 \end{align*}
The case \(\ell \neq 1 \): Partition has solution

- Let \(I \subseteq [n] \) be such that \(\sum_{i \in I} k_i = K \).
- The vote of the \(i \)-th voter in \(T \) is
 \[
 p > d_1 > \cdots > d_r > a > b > c_1 > \cdots > c_\ell, \text{ if } i \in I
 \]
 \[
 p > d_1 > \cdots > d_r > b > a > c_1 > \cdots > c_\ell, \text{ if } i \notin I
 \]
- This is equivalent to say that we have a vote of each type with weight \(2K(\alpha_1 + \alpha_{r+2}) \).
The case $\ell \neq 1$: Partition has solution
The case $\ell \neq 1$: Partition has solution

- $score(p) = s_2 + 4\alpha_1 K(\alpha_1 + \alpha_{r+2})$
- $score(a) = score(b) = (2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2}) + s_2 + 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} = s_2 + (4K\alpha_1 - 1)(\alpha_1 + \alpha_{r+2}) < score(p)$
The case $\ell \neq 1$: Partition has solution

- $\text{score}(p) = s_2 + 4\alpha_1 K(\alpha_1 + \alpha_{r+2})$
- $\text{score}(a) = \text{score}(b) = (2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2}) + s_2 + 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} = s_2 + (4K\alpha_1 - 1)(\alpha_1 + \alpha_{r+2}) < \text{score}(p)$
- For $1 \leq i \leq \ell$,
 $\text{score}(c_i) = (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) + s_2 < \text{score}(p)$
The case $\ell \neq 1$: Partition has solution

- $\text{score}(p) = s_2 + 4\alpha_1 K (\alpha_1 + \alpha_{r+2})$
- $\text{score}(a) = \text{score}(b) = (2K(2\alpha_1 - \alpha_{r+2} - 1)(\alpha_1 + \alpha_{r+2}) + s_2 + 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} = s_2 + (4K\alpha_1 - 1)(\alpha_1 + \alpha_{r+2}) < \text{score}(p)$
- For $1 \leq i \leq \ell$, $\text{score}(c_i) = (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) + s_2 < \text{score}(p)$
- For $1 \leq i \leq r$, $\text{score}(d_i) \leq \text{score}(d_1) =
\text{score}_S(d_1) + \text{score}_T(d_1) < \text{score}_S(p) + \text{score}_T(p) = \text{score}(p)$
The case $\ell \neq 1$: Votes in T can be cast

- Suppose the votes in T are cast in such a way that p is a winner of the election.
- Without loss of generality, assume that p is the most preferred candidate in the preference order of each voter in T. Then
 \[
 \text{score}(p) = s_2 + 4\alpha_1 K (\alpha_1 + \alpha_{r+2}).
 \]
The case \(\ell \neq 1 \): Votes in \(T \) can be cast

- Suppose that for some \(i \), \(\text{score}_T(c_i) > 0 \).
The case $\ell \neq 1$: Votes in T can be cast

- Suppose that for some i, $\text{score}_T(c_i) > 0$.
- Since all weights of T are multiples of $2(\alpha_1 + \alpha_{r+2})$,
 $\text{score}_T(c_i) \geq 2(\alpha_1 + \alpha_{r+2})$.

The case $\ell \neq 1$: Votes in T can be cast

- Suppose that for some i, $\text{score}_T(c_i) > 0$.
- Since all weights of T are multiples of $2(\alpha_1 + \alpha_{r+2})$, $\text{score}_T(c_i) \geq 2(\alpha_1 + \alpha_{r+2})$.
- But then,
 $$\text{score}(c_i) \geq (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) + s_2 + 2(\alpha_1 + \alpha_{r+2}) = s_2 + (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) > \text{score}(p).$$
The case \(\ell \neq 1 \): Votes in \(T \) can be cast

- Suppose that for some \(i \), \(\text{score}_T(c_i) > 0 \).
- Since all weights of \(T \) are multiples of \(2(\alpha_1 + \alpha_{r+2}) \),
 \(\text{score}_T(c_i) \geq 2(\alpha_1 + \alpha_{r+2}) \).
- But then,
 \[
 \text{score}(c_i) \geq (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) + s_2 + 2(\alpha_1 + \alpha_{r+2}) =
 s_2 + (4\alpha_1 K - 1)(\alpha_1 + \alpha_{r+2}) > \text{score}(p).
 \]
- This contradicts the assumption that \(p \) is a winner.
The case \(\ell \neq 1 \): Votes in \(T \) can be cast

- There are only \(\ell + 1 \) 0's in \(\alpha \). Since \(\text{score}_T(c_i) = 0 \), for \(1 \leq i \leq \ell \), each voter in \(T \) must have at least one of \(a \) or \(b \) somewhere between (inclusively) 1st and \((r + 2)nd\) in his/her preference order.
The case $\ell \neq 1$: Votes in T can be cast

- There are only $\ell + 1$ 0's in α. Since $score_T(c_i) = 0$, for $1 \leq i \leq \ell$, each voter in T must have at least one of a or b somewhere between (inclusively) 1st and $(r + 2)$nd in his/her preference order.

- So, $score_T(a) + score_T(b) \geq 4K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
The case $\ell \neq 1$: Votes in T can be cast

- Suppose that $\text{score}_T(a) > 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
The case \(\ell \neq 1 \): Votes in \(T \) can be cast

- Suppose that \(\text{score}_T(a) > 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} \).
- Since all weights of \(T \) are multiples of \(2(\alpha_1 + \alpha_{r+2}) \), it follows that \(\text{score}_T(a) \geq 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} + 2(\alpha_1 + \alpha_{r+2}) = (2K\alpha_{r+2} + 2)(\alpha_1 + \alpha_{r+2}) \).
The case $\ell \neq 1$: Votes in T can be cast

- Suppose that $\text{score}_T(a) > 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
- Since all weights of T are multiples of $2(\alpha_1 + \alpha_{r+2})$, it follows that $\text{score}_T(a) \geq 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} + 2(\alpha_1 + \alpha_{r+2}) = (2K\alpha_{r+2} + 2)(\alpha_1 + \alpha_{r+2})$.
- Then (keeping in mind our choice of S_2) $\text{score}(a) \geq 2K(\alpha_1 + \alpha_{r+2})(\alpha_1 + \alpha_{r+2}) + s_2 + (2K\alpha_{r+2} + 2)(\alpha_1 + \alpha_{r+2}) = s_2 + (2K(2\alpha_1 - \alpha_{r+2}) + 1 + 2K\alpha_{r+2})(\alpha_1 + \alpha_{r+2}) = s_2 + (4K\alpha_1 + 1)(\alpha_1 + \alpha_{r+2}) > \text{score}(p)$. Contradicting the assumption that p is a winner.
The case $\ell \neq 1$: Votes in T can be cast

- Suppose that $score_T(a) > 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
- Since all weights of T are multiples of $2(\alpha_1 + \alpha_{r+2})$, it follows that $score_T(a) \geq 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2} + 2(\alpha_1 + \alpha_{r+2}) = (2K\alpha_{r+2} + 2)(\alpha_1 + \alpha_{r+2})$.
- Then (keeping in mind our choice of S_2)
 \[
 score(a) \geq 2K(\alpha_1 + \alpha_{r+2})(\alpha_1 + \alpha_{r+2}) + s_2 + (2K\alpha_{r+2} + 2)(\alpha_1 + \alpha_{r+2}) = s_2 + (4K\alpha_1 + 1)(\alpha_1 + \alpha_{r+2}) > score(p).
 \]
- Contradicting the assumption that p is a winner.
The case $\ell \neq 1$: Votes in T can be cast

Since a and b are completely symmetric, it follows that

$$\text{score}_T(a) = \text{score}_T(b) = 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}.$$
The case $\ell \neq 1$: Votes in T can be cast

- Since a and b are completely symmetric, it follows that $\text{score}_T(a) = \text{score}_T(b) = 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
- But then the weights of those voters in T who prefer a to b sum to $2K(\alpha_1 + \alpha_{r+2})$.
The case $\ell \neq 1$: Votes in T can be cast

- Since a and b are completely symmetric, it follows that $\text{score}_T(a) = \text{score}_T(b) = 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
- But then the weights of those voters in T who prefer a to b sum to $2K(\alpha_1 + \alpha_{r+2})$.
- But then, there is a subset $I \subseteq [n]$ such that $\sum_{i \in I} 2k_i(\alpha_1 + \alpha_{r+2}) = 2K(\alpha_1 + \alpha_{r+2})$.
The case $\ell \neq 1$: Votes in T can be cast

- Since a and b are completely symmetric, it follows that $\text{score}_T(a) = \text{score}_T(b) = 2K(\alpha_1 + \alpha_{r+2})\alpha_{r+2}$.
- But then the weights of those voters in T who prefer a to b sum to $2K(\alpha_1 + \alpha_{r+2})$.
- But then, there is a subset $I \subseteq [n]$ such that $\sum_{i \in I} 2k_i(\alpha_1 + \alpha_{r+2}) = 2K(\alpha_1 + \alpha_{r+2})$.
- So, $\sum_{i \in I} k_i = K$.

1. Representations

2. Manipulation

3. Bribery
Question: Is it possible, by modifying the preferences of a given number of voters, to make some preferred candidate a winner?
Question: Is it possible, by modifying the preferences of a given number of voters, to make some preferred candidate a winner?

This is a variant of manipulation.
Bribery in elections

- Question: Is it possible, by modifying the preferences of a given number of voters, to make some preferred candidate a winner?
- This is a variant of manipulation.
- The problem models a type of attack where, the person interested in the success of a particular candidate, picks a group of voters and convinces (or pays) them to vote as he or she says.
Bribery Problem

The problem
Plurality
Negative bribery
Approval voting

Bribery Problem

Name: F-Bribery
Input: A preference profile \(\succ \), a preferred candidate \(c \) and a nonnegative integer \(k \).

Question: Is it possible to make \(c \) a winner of the F election by changing the preference lists of at most \(k \) voters?

The problem belongs to NP provided F is computable in polynomial time.
Name: F-Bribery

Input: A preference profile \succ, a preferred candidate c and a nonnegative integer k.

Question: Is it possible to make c a winner of the F election by changing the preference lists of at most k voters?
Bribery Problem

Name: F-Bribery
Input: A preference profile \succ, a preferred candidate c and a nonnegative integer k.
Question: Is it possible to make c a winner of the F election by changing the preference lists of at most k voters?

- The problem belongs to NP provided F is computable in polynomial time.
Bribery Problem

- We will study the problem on variants of plurality.
We will study the problem on variants of plurality.

Plurality with weights:
We will study the problem on variants of plurality.

Plurality with weights:
- Voter i has weight w_i.
We will study the problem on variants of plurality.

Plurality with weights:
- Voter i has weight w_i.
- Voter i gives w_i points to its most preferred candidate and 0 to the others.
We will study the problem on variants of plurality.

Plurality with weights:
- Voter i has weight w_i.
- Voter i gives w_i points to its most preferred candidate and 0 to the others.
- The candidate with the higher number of votes wins.
Bribery with money

Name: Plurality-weighted-$bribery$

Input: A set C of m candidates. A collection V of n voters specified via: a preference profile \succ, weights (w_1, \ldots, w_n), and their prices (p_1, \ldots, p_n). A distinguished candidate $c \in C$ and a non-negative integer k, the budget.

Question: Is there a set B of voters such that $\sum_{i \in B} p_i \leq k$ and there is a way to bribe the voters from B in such a way that c becomes a winner?
Bribery with money

Name: Plurality-weighted-$\$\text{bribery}$

Input: A set C of m candidates. A collection V of n voters specified via: a preference profile \succ, weights (w_1, \ldots, w_n), and their prices (p_1, \ldots, p_n). A distinguished candidate $c \in C$ and a non-negative integer k, the budget.

Question: Is there a set B of voters such that $\sum_{i \in B} p_i \leq k$ and there is a way to bribe the voters from B in such a way that c becomes a winner?
Theorem

Plurality-bribery belongs to P

Proof.
Consider the following algorithm.
Initially we have bribed zero voters. We check whether c is a winner on \succ. If so, we answer yes. Otherwise, until doing so will exceed the bribe limit, pick any current winner b, bribe one of the voters ranking first b to rank first c. If c is now a winner answer yes. Answer no.
Plurality

Theorem

Plurality-bribery belongs to P

Proof.

Consider the following algorithm. Initially we have bribed zero voters. We check whether \(c \) is a winner on \(\succ \). If so, we answer yes. Otherwise, until doing so will exceed the bribe limit, pick any current winner \(b \), bribe one of the voters ranking first \(b \) to rank first \(c \). If \(c \) is now a winner answer yes. Answer no.
Plurality

Theorem

Plurality-bribery belongs to P

Proof.

Consider the following algorithm.
Plurality

Theorem

Plurality-bribery belongs to P

Proof.

Consider the following algorithm.

- Initially we have bribed zero voters. We check whether c is a winner on \succ. If so, we answer yes.
Plurality

Theorem

Plurality-bribery belongs to P

Proof.

Consider the following algorithm.

- Initially we have bribed zero voters. We check whether c is a winner on \succ. If so, we answer yes.
- Otherwise, until doing so will exceed the bribe limit, pick any current winner b, bribe one of the voters ranking first b to rank first c. If c is now a winner answer yes.
Theorem

Plurality-bribery belongs to P

Proof.

Consider the following algorithm.

- Initially we have bribed zero voters. We check whether \(c \) is a winner on \(\succ \). If so, we answer yes.

- Otherwise, until doing so will exceed the bribe limit, pick any current winner \(b \), bribe one of the voters ranking first \(b \) to rank first \(c \). If \(c \) is now a winner answer yes.

- Answer no.
Representations
Manipulation
Bribery

The problem
Plurality
Negative bribery
Approval voting

Plurality

Proof (cont).

If the algorithm says yes, obviously bribery is possible. An easy induction proof shows that, if it is possible to ensure that c is a winner via at most k bribes, our algorithm answers yes.
Plurality

Proof (cont).

- If the algorithm says yes, obviously bribery is possible.
Proof (cont).

- If the algorithm says yes, obviously bribery is possible.
- An easy induction proof shows that, if it is possible to ensure that c is a winner via at most k bribes, our algorithm answers yes.
Representations
Manipulation
Bribery

The problem
Plurality
Negative bribery
Approval voting

Plurality with weights

Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates
Plurality with weights

Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates

Proof.
Plurality with weights

Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates

Proof.

We construct a reduction from \textsc{Partition}:

Given integers x_1, \ldots, x_n with $\sum_{i=1}^n x_i = 2x$.
Is there a set $S \subseteq \{1, \ldots, n\}$ so that $\sum_{i \in S} x_i = \sum_{j \notin S} x_j = x$?
Plurality with weights

Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates

Proof.

We construct a reduction from Partition:
Given integers x_1, \ldots, x_n with $\sum_{i=1}^{n} x_i = 2x$.
Is there a set $S \subseteq \{1, \ldots, n\}$ so that $\sum_{i \in S} x_i = \sum_{j \notin S} x_j = x$?

- The election will have two candidates, a and c, and n voters.
Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates

Proof.

We construct a reduction from Partition:

Given integers x_1, \ldots, x_n with $\sum_{i=1}^{n} x_i = 2x$.

Is there a set $S \subseteq \{1, \ldots, n\}$ so that $\sum_{i \in S} x_i = \sum_{j \notin S} x_j = x$?

- The election will have two candidates, a and c, and n voters.
- Voter i has weight and prize equal to s_i.
Plurality with weights

Theorem

Plurality-weighted-dollar bribery is NP-complete, even for two candidates

Proof.
We construct a reduction from PARTITION:
Given integers x_1, \ldots, x_n with $\sum_{i=1}^{n} x_i = 2x$.
Is there a set $S \subseteq \{1, \ldots, n\}$ so that $\sum_{i \in S} x_i = \sum_{j \notin S} x_j = x$?

 - The election will have two candidates, a and c, and n voters.
 - Voter i has weight and prize equal to s_i.
 - Every voter prefers a to c.
Plurality with weights

Theorem

Plurality-weighted-bribery is NP-complete, even for two candidates

Proof.
We construct a reduction from Partition:
Given integers x_1, \ldots, x_n with $\sum_{i=1}^{n} x_i = 2x$.
Is there a set $S \subseteq \{1, \ldots n\}$ so that $\sum_{i \in S} x_i = \sum_{j \notin S} x_j = x$?

- The election will have two candidates, a and c, and n voters.
- Voter i has weight and prize equal to s_i.
- Every voter prefers a to c.
- $k = x$.
Plurality

Proof (cont).

If the partition instance has a solution \(S \), we can bribe the voters in \(S \). We expend all the budget and make \(c \) a winner.

Otherwise, for any set \(S \) with cost \(\leq x \), \(S \) assigns \(\leq x \) points to \(c \), but \(V \setminus S \) assigns \(> x \) points to \(a \).

Therefore, the bribery problem has no solution.
Plurality

Proof (cont).

- If the partition instance has a solution S, we can bribe the voters in S. We expend all the budget and make c a winner.
Proof (cont).

- If the partition instance has a solution S, we can bribe the voters in S. We expend all the budget and make c a winner.
- Otherwise, for any set S with cost $\leq x$, S assigns $\leq x$ points to c, but $V \setminus S$ assigns $> x$ points to a.
Proof (cont).

- If the partition instance has a solution S, we can bribe the voters in S. We expend all the budget and make c a winner.

- Otherwise, for any set S with cost $\leq x$, S assigns $\leq x$ points to c, but $V \setminus S$ assigns $> x$ points to a. Therefore, the bribery problem has no solution.
Theorem

Both Plurality-$bribery and Plurality-weighted bribery are in P.
Plurality with weights

Theorem

Both Plurality-\$bribery and Plurality-weighted bribery are in P.

Proof.
Theorem

Both Plurality-\$bribery and Plurality-weighted bribery are in P.

Proof.

Assume that c will have r votes after the bribery (or in the weighted case, vote weight r), where r is some number to be specified later.
Theorem

Both Plurality-$\$-$bribery and Plurality-weighted bribery are in P.

Proof.

Assume that c will have r votes after the bribery (or in the weighted case, vote weight r), where r is some number to be specified later.

To make c a winner, we need to make sure that everyone else gets at most r votes.
Plurality with weights

Proof (cont).

We have to choose enough cheapest (heaviest) voters of candidates that defeat \(c\) so that after bribing them to vote for \(c\) each candidate other than \(c\) has at most \(r\) votes.

We have to make sure that \(c\) gets at least \(r\) votes by bribing the cheapest (the heaviest) of the remaining voters. If during this process \(c\) ever becomes a winner, without exceeding the budget, then we know that bribery is possible.
Plurality with weights

Proof (cont).

We have to choose enough cheapest (heaviest) voters of candidates that defeat c so that after bribing them to vote for c each candidate other than c has at most r votes.

We have to make sure that c gets at least r votes by bribing the cheapest (the heaviest) of the remaining voters.

If during this process c ever becomes a winner, without exceeding the budget, then we know that bribery is possible.
Plurality with weights

Proof (cont.).

We have to choose enough cheapest (heaviest) voters of candidates that defeat c so that after bribing them to vote for c each candidate other than c has at most r votes.
Plurality with weights

Proof (cont).

- We have to choose enough cheapest (heaviest) voters of candidates that defeat c so that after bribing them to vote for c each candidate other than c has at most r votes.
- We have to make sure that c gets at least r votes by bribing the cheapest (the heaviest) of the remaining voters.
Proof (cont).

- We have to choose enough cheapest (heaviest) voters of candidates that defeat c so that after bribing them to vote for c each candidate other than c has at most r votes.

- We have to make sure that c gets at least r votes by bribing the cheapest (the heaviest) of the remaining voters.

- If during this process c ever becomes a winner, without exceeding the budget, then we know that bribery is possible.
Representations
Manipulation
Bribery

Plurality
Negative bribery
Approval voting

Plurality with weights

Proof (cont).
How do we pick the value of r?
In the case of plurality-
$bribery, we can simply run the above
procedure for all possible values of r, i.e., $0 \leq r \leq n$, and
accept exactly if it succeeds for at least one of them.
For plurality-weighted-bribery it is enough to try all values
r that can be obtained as a vote weight of some candidate
(other than c) via bribing some number of his or her heaviest
voters. There are only polynomially many such values and so the
whole algorithm works in polynomial time.
Plurality with weights

Proof (cont).

In the case of plurality-bribery, we can simply run the above procedure for all possible values of r, i.e., $0 \leq r \leq n$, and accept exactly if it succeeds for at least one of them.

For plurality-weighted-bribery it is enough to try all values r that can be obtained as a vote weight of some candidate (other than c) via bribing some number of his or her heaviest voters.

There are only polynomially many such values and so the whole algorithm works in polynomial time.
Proof (cont).

- How do we pick the value of r?

In the case of plurality-bribery, we can simply run the above procedure for all possible values of r, i.e., $0 \leq r \leq n$, and accept exactly if it succeeds for at least one of them. For plurality-weighted-bribery it is enough to try all values r that can be obtained as a vote weight of some candidate (other than c) via bribing some number of his or her heaviest voters. There are only polynomially many such values and so the whole algorithm works in polynomial time.
Proof (cont).

- How do we pick the value of r?
- In the case of plurality-bribery, we can simply run the above procedure for all possible values of r, i.e., $0 \leq r \leq n$, and accept exactly if it succeeds for at least one of them.
Plurality with weights

Proof (cont).

- How do we pick the value of r?
- In the case of plurality-bribery, we can simply run the above procedure for all possible values of r, i.e., $0 \leq r \leq n$, and accept exactly if it succeeds for at least one of them.
- For plurality-weighted-bribery it is enough to try all values r that can be obtained as a vote weight of some candidate (other than c) via bribing some number of his or her heaviest voters.
Plurality with weights

Proof (cont).

- How do we pick the value of r?
- In the case of plurality-b bribery, we can simply run the above procedure for all possible values of r, i.e., $0 \leq r \leq n$, and accept exactly if it succeeds for at least one of them.
- For plurality-weighted-bribery it is enough to try all values r that can be obtained as a vote weight of some candidate (other than c) via bribing some number of his or her heaviest voters.
- There are only polynomially many such values and so the whole algorithm works in polynomial time.
In the previous algorithms, voters are bribed to vote for the desired candidate. This might make the bribery easily detectable. To minimize this effect, we would like to bribe voters to vote for other candidates instead of \(c \). The negative-bribery version of a bribery problem is the same problem with the restriction that it is illegal to bribe people to vote for the desired candidate.
In the previous algorithms voters are bribed to vote for the desired candidate.
In the previous algorithms voters are bribed to vote for the desired candidate.

This might have made the bribery easily detectable.
In the previous algorithms voters are bribed to vote for the desired candidate.

This might made the bribery easily detectable.

To minimize this effect we would like to bribe voters to vote for other candidates instead of c.
In the previous algorithms voters are bribed to vote for the desired candidate.

This might made the bribery easily detectable.

To minimize this effect we would like to bribe voters to vote for other candidates instead of \(c \).

The **negative-bribery** version of a bribery problem is the same problem with the restriction that it is illegal to bribe people to vote for the designed candidate.
Theorem

Plurality-negative-bribery belongs to P.
Negative bribery

Theorem

Plurality-negative-bribery belongs to P.

Proof.

Let (C, V, c, k) be the bribery instance we want to solve.
Negative bribery

Theorem

*Plurality-negative-*b*ribery belongs to P.*

Proof.

- Let (C, V, c, k) be the bribery instance we want to solve.
- We need to make c a winner by taking votes away from popular candidates and distributing them among the less popular ones.
Negative bribery

Theorem

Plurality-negative-bribery belongs to P.

Proof.

- Let (C, V, c, k) be the bribery instance we want to solve.
- We need to make c a winner by taking votes away from popular candidates and distributing them among the less popular ones.
- For a candidate a, define $Sc(a)$ to be the total vote weight of voters who most prefer a.
Negative bribery

We partition the set of all candidates into three sets: candidates that defeat c, from whom votes need to be taken away are defeated by c, to whom we can give extra votes, and have the same score as p.

C above $= \{ a | a \in C, Sc(a) > Sc(c) \}$.

C below $= \{ a | a \in C, Sc(a) < Sc(c) \}$.

C equal $= \{ a | a \in C, Sc(a) = Sc(c) \}$.

AGT-MIRI Social Choice Theory
Negative bribery

Proof (cont.)

We partition the set of all candidates into three sets:
candidates that defeat c, from whom votes need to be taken away are defeated by c, to whom we can give extra votes, and have the same score as p.

C above $=$ $\{a | a \in C, Sc(a) > Sc(c)\}$.

C below $=$ $\{a | a \in C, Sc(a) < Sc(c)\}$.

C equal $=$ $\{a | a \in C, Sc(a) = Sc(c)\}$.
Proof (cont.)

We partition the set of all candidates into three sets: candidates that
We partition the set of all candidates into three sets:
candidates that
- defeat c, from whom votes need to be taken away
- are defeated by c, to whom we can give extra votes, and
- have the same score as p.
Proof (cont.)

- We partition the set of all candidates into three sets: candidates that
 - defeat c, from whom votes need to be taken away
 - are defeated by c, to whom we can give extra votes, and
 - have the same score as p.

and define
Proof (cont.)

We partition the set of all candidates into three sets:
- candidates that defeat c, from whom votes need to be taken away
- are defeated by c, to whom we can give extra votes, and
- have the same score as p.

and define

$$C_{above} = \{ a | a \in C, Sc(a) > Sc(c) \}.$$
$$C_{below} = \{ a | a \in C, Sc(a) < Sc(c) \}.$$
$$C_{equal} = \{ a | a \in C, Sc(a) = Sc(c) \}.$$
Representations
Manipulation
Bribery

The problem
Plurality
Negative bribery
Approval voting

Negative bribery

Proof (cont.)

Voters have weight 1, so we will bribe no voters into or out of \(C \) equal and won't bribe voters to move within their own "group," e.g., bribing a voter to shift from one \(C \) below candidate to another.

To make sure that \(c \) becomes a winner, bribe, for \(a \in C \) above,

\[S_c(a) - S_c(c) \]

The number of votes that a candidate \(a \in C \) below can accept without preventing \(c \) from winning is \(S_c(c) - S_c(a) \).

Then a negative bribery is possible if

\[\sum_{a \in C \text{ above}} (S_c(a) - S_c(c)) \leq \sum_{a \in C \text{ below}} (S_c(c) - S_c(a)) \]
Proof (cont.)

- Voters have weight 1, so we
Negative bribery

Proof (cont.)

- Voters have weight 1, so we
 - will bribe no voters into or out of C_{equal} and
 - won’t bribe voters to move within their own “group,” e.g., bribing a voter to shift from one C_{below} candidate to another.
Proof (cont.)

- Voters have weight 1, so we will bribe no voters into or out of C_{equal} and won't bribe voters to move within their own “group,” e.g., bribing a voter to shift from one C_{below} candidate to another.
- To make sure that c becomes a winner, bribe, for $a \in C_{above}$, $Sc(a) - Sc(c)$ voters.
Proof (cont.)

- Voters have weight 1, so we
 - will bribe no voters into or out of C_{equal} and
 - won't bribe voters to move within their own “group,” e.g., bribing a voter to shift from one C_{below} candidate to another.

- To make sure that c becomes a winner, bribe, for $a \in C_{above}$, $Sc(a) - Sc(c)$ voters.

- The number of votes that a candidate $a \in C_{below}$ can accept without preventing c from winning is $Sc(c) - Sc(a)$.
Proof (cont.)

- Voters have weight 1, so we
 - will bribe no voters into or out of C_{equal} and
 - won't bribe voters to move within their own “group,” e.g., bribing a voter to shift from one C_{below} candidate to another.

- To make sure that c becomes a winner, bribe, for $a \in C_{above}$, $Sc(a) - Sc(c)$ voters.

- The number of votes that a candidate $a \in C_{below}$ can accept without preventing c from winning is $Sc(c) - Sc(a)$.

- Then a negative bribery is possible if

$$\sum_{a \in C_{above}} (Sc(a) - Sc(c)) \leq \sum_{a \in C_{below}} (Sc(c) - Sc(a)).$$
Theorem

Plurality-weighted-negative-bribery is NP-complete
Theorem

Plurality-weighted-negative-bribery is NP-complete

Proof.

We construct a reduction from Partition.
Theorem

Plurality-weighted-negative-bribery is NP-complete

Proof.

We construct a reduction from Partition.

- Let \(\{x_1, \ldots, x_n\} \) be a sequence of non-negative integers. Let \(x_1 + \cdots + x_n = 2X \).
- The election has three candidates \(c, a_1, a_2 \) and the bribery budget is \(k = n + 1 \).
- There are \(n + 1 \) weighted voters:
 - \(v_0 \) with weight \(X \), whose preferences are \(s > a_1 > a_2 \), and
 - \(v_1, \ldots, v_n \) with weights \(s_1, \ldots, s_n \), each with preferences \(a_1 > a_2 > c \).
The goal of the briber is to ensure c's victory via bribing up to n voters (i.e., all). The only reasonable bribe is to transfer the vote of v_i, $1 \leq i \leq n$, from a_1 to a_2. Then, A is a solution to partition iff bribing A makes c a winner.
The goal of the briber is to ensure \(c \)'s victory via bribing up to \(n + 1 \) voters (i.e., all).
Proof (cont.)

- The goal of the briber is to ensure c’s victory via bribing up to \(n + 1 \) voters (i.e., all).
- The only reasonable bribe is to transfer the vote of \(v_i \), \(1 \leq i \leq n \), from \(a_1 \) to \(a_2 \).
Negative bribery

Proof (cont.)

- The goal of the briber is to ensure c’s victory via bribing up to $n + 1$ voters (i.e., all).
- The only reasonable bribe is to transfer the vote of v_i, $1 \leq i \leq n$, from a_1 to a_2.
- Then, A is a solution to partition iff bribing A makes c a winner.
Bribery: Approval voting

Theorem

Approval-bribery is NP-complete

Recall that Approval-Manipulation can be solved in polynomial time.
Bribery: Approval voting

Theorem

Approval-bribery is NP-complete

Recall that Approval-Manipulation can be solved in polynomial time.
References