
Lógica en la Informática / Logic in Computer Science

Tuesday November 22nd, 2016

Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) Let S be a set of propositional clauses over a set of n predicate symbols, and let Res(S) be its
closure under resolution. For each one of the following cases, indicate whether Res(S) is infinite or
finite, and, if finite, of which size. Very briefly explain why.

1a) If clauses in S have at most two literals.

Answer: [Remember: Resolution is a deduction rule where from two clauses of the form p ∨ C and
¬p∨D (the premises), the new clause C∨D (the conclusion) is obtained. Here p is a predicate symbol,
and C and D are (possibly empty) clauses. The closure under resolution Res(S) contains all clauses
that can be obtained from S by zero or more resolution steps; formally, it is the union, for i in 0..∞,
of all Si where S0 = S and Si+1 = Si ∪ Res1(Si), where Res1(Si) is the set of clauses that can be
obtained by one step of resolution with premises in Si.]

Note that if clauses in S have at most two literals, clauses in Res(S) too. Each clause is a set (i.e.,
no repetitions) of literals. If there are n predicate symbols, there are 2n literals. There are

(2n
2

)
clauses

(i.e., subsets) of two literals, plus 2n clauses of 1 literal, plus the empty clause, which altogether is
O(n2). Therefore, this is the maximal size of Res(S) in this case.

1b) S is a set of Horn clauses.

Answer: Note that if clauses in S are Horn (i.e., they have at most one positive literal), clauses in
Res(S) too. How many Horn clauses over n predicate symbols exist? There are n negative literals, so
there are 2n clauses with only negative literals. For each one these, adding to it one positive literal,
gives us the remaining Horn clauses. Total: 2n +n · 2n, so this is the maximal number of Horn clauses
that exist and hence the maximal size of Res(S) in this case.

1c) Every clause in S has either two literals or is a Horn clause.

Answer: Starting from Horn clauses and two-literal clauses in S does not help in bounding the size
of Res(S). In fact, from certain S of this form, by resolution one can obtain any clause: for any clause
with a negative literal ¬p, such as ¬p∨C, by one resolution step with a two-literal clause p∨ q we get
the clause q ∨C, and another step with ¬q ∨ p we get the clause p∨C, i.e., we can change the sign of
any literal of any clause.

Still, for a given set of n predicate symbols, Res(S) is always finite, because each clause is a subset
of the set of 2n literals, so there are at most 22n clauses in Res(S).

1d) S is an arbitrary set of propositional clauses.

Answer: Each clause is a subset of the set of 2n literals, so there are at most 22n clauses in Res(S).
In fact S can already have 22n clauses.

2) Let C1 and C2 be propositional clauses, and let D be the conclusion by resolution of C1 and C2.

2a) Is D a logical consequence of C1∨C2? Prove it formally, using only the definitions of propositional
logic.

Answer: If D is the conclusion by resolution of C1 and C2, then C1 and C2 are of the form p ∨ C ′
1

and ¬p ∨ C ′
2, for some predicate symbol p and clauses C ′

1 and C ′
2, and D is C ′

1 ∨ C ′
2.

In general, it is not true that p∨C ′
1∨¬p∨C ′

2 |= C ′
1∨C ′

2. Note that p∨C ′
1∨¬p∨C ′

2 is a tautology.
So C1 ∨ C2¬ |= D whenever D is not a tautology. Proof by counter example: take C ′

1 = C ′
2 = q for

some symbol q and any interpretation I with I(q) = 0. Then I |= p ∨ q ∨ ¬p ∨ q but I 6|= q, which
completes our proof.

2b) Is D a logical consequence of C1∧C2? Prove it formally, using only the definitions of propositional
logic.

Answer: It true that (p ∨ C ′
1) ∧ (¬p ∨ C ′

2) |= C ′
1 ∨ C ′

2. By definition of logical consequence, we have
to prove that for all I, if I |= (p ∨ C ′

1) ∧ (¬p ∨ C ′
2) then I |= C ′

1 ∨ C ′
2.

We prove it by case analysis. Take an arbitary I. Assume I |= (p ∨ C ′
1) ∧ (¬p ∨ C ′

2).
Case A): I(p) = 1.

I |= (p ∨ C ′
1) ∧ (¬p ∨ C ′

2) implies, by definition of satisfaction, that
evalI((p ∨ C ′

1) ∧ (¬p ∨ C ′
2)) = 1 which implies, by definition of evaluation of ∧, that

min(evalI(p ∨ C ′
1), evalI(¬p ∨ C ′

2)) = 1 which implies, by definition of min, that
evalI(¬p ∨ C ′

2) = 1 which implies, by definition of evaluation of ∨, that
max(evalI(¬p), evalI(C ′

2)) = 1 which implies, by definition of evaluation of ¬, that
max(1− evalI(p), evalI(C ′

2)) = 1 which implies, by definition of evalI(p), that
max(1− I(p), evalI(C ′

2)) = 1 which implies, since I(p) = 1, that
max(0, evalI(C ′

2)) = 1 which implies
evalI(C ′

2) = 1 which implies
max(evalI(C ′

1), evalI(C ′
2)) = 1 which implies, by definition of evaluation of ∨, that

evalI(C ′
1 ∨ C ′

2) = 1 which implies, by definition of satisfiction, that
I |= C ′

1 ∨ C ′
2.

Case B): I(p) = 0.
The proof is analogous to Case A, with the difference that now from min(evalI(p∨C ′

1), evalI(¬p∨
C ′
2)) = 1 we obtain evalI(p ∨ C ′

1) = 1 and hence (since I(p) = 0) evalI(C ′
1) = 1 which implies

evalI(C ′
1 ∨ C ′

2) = 1 and hence I |= C ′
1 ∨ C ′

2.

2c) Let S be a set of propositional clauses and let Res(S) be its closure under resolution. Is it true
that S is satisfiable if, and only if, the empty clause is not in Res(S)? Very briefly explain why.

Answer: Yes.
=⇒: S satisfiable implies that S has a model I, and, since S |= Res(S) (see below), this implies

I |= Res(S), which implies, since the empty clause is unsatisfiable, that the empty clause is not in
Res(S). We have S |= Res(S) since Res(S) is obtained from S by finitely many times adding to the
set a new clause that (as we have seen in 2b) is a logical consequence of two clauses we already have.

⇐=: See the solution of lecture notes 3, excercise 20: if the empty clause is not in Res(S) then we
can build a model I for Res(S) (and hence for its subset S), which proves that S is satisfiable. This
is done by induction on the number N of symbols in Res(S). The base case N = 0 is obvious. For the
induction step, case N > 0, pick a symbol p that appears in Res(S). Consider the set S′ of all clauses
of Res(S) without p. Then by the induction hypothesis S′ has a model I ′ (because S′ has one symbol
less, it is closed under resolution and it has no empty clause). Now we can extend I ′ to a model I for
Res(S) by setting I(p) adequately. If I ′ |= C for all p ∨C in Res(S) we set I(p) = 0 and we are done
because then I becomes a model of all clauses with p in Res(S). Otherwise, we have I ′ 6|= C for some
p ∨ C in Res(S). Then we must set I(p) = 1 to satisfy this clause, and now we need to prove that
then I is still a model of all clauses of the form ¬p ∨D in Res(S); this is true because if ¬p ∨D and
p∨C are in Res(S), then also C ∨D is in Res(S) and hence in S′ (because C ∨D has no p). But then
I ′ |= C ∨D and I ′ 6|= C implies I ′ |= D and hence I |= D and I |= ¬p ∨D.

3) Consider the well-known NP-complete vertex cover problem: Given a natural number k and a
graph with n vertices and m edges {(u1, v1), . . . , (um, vm)} with ui, vi ∈ {1 . . . n}, it asks whether the
graph has a k-cover, that is, a subset of size k of the vertices such that for each edge (ui, vi) at least
one of ui and vi is in the cover.

3a) How would you use a SAT solver to decide it?

Answer:
Variables:

xj , meaning “vertex j is in the k-cover” for j ∈ {1 . . . n} (n variables).
Clauses/constraints:

-there is one two-literal clause xu ∨ xv for each edge (u, v)
-one cardinality constraint x1 + . . . + xn ≤ k, expressing that the cover has at most k vertices.

The cardinality constraints can be encoded into clauses with, for example, a sorting network. We can
use any SAT solver: the set cover problem has a solution iff this set of clauses has a model.

3b) How would you use a SAT solver for the optimization version of vertex cover, that is, given only
the graph, to find its smallest possible k-cover?

Answer: Note that for k = n we are sure there is a solution. Run the solver on the set of clauses
with initial k = n − 1. If it finds a model with M ones (M elements in the cover), then run again,
replacing the cardinality constraint by x1 + . . .+xn < M . Repeat this, (each time finding models with
smaller cover), until the solver returns unsat. The last model found is the optimal one.

Another algorithm is to make calls to the solver with k = 0, k = 1, k = 2,... and then the first
model found is optimal. Yet another algorithm is to do a binary search. But the first algorithm given
here works very well, because A) it is usually easier to find a model than to prove unsatisfiability and
B) the M frequently decreases in large jumps.

3c) In one exam last year, we considered the following decision problem, called minOnes: given a
natural number k and a set S of clauses over variables {x1, . . . , xn}, it asks whether S has any model
I with at most k ones, that is, with I(x1) + . . . + I(xn) ≤ k. Its optimization version is, given only
S, to find its model with the minimal number of ones. If the set of clauses S only has clauses with at
most two literals, does the optimization version of minOnes become polynomial? Explain briefly why.

Answer: NO! (unless P=NP). It is the same as the NP-complete vertex cover problem (see 3a)!! If it
were polynomial, vertex cover would also become polynomial: take S consisting of only the (2-literal!)
clauses for the edges, find the model of S with the minimal number of ones, and check whether this
minimal number is larger than k or not.

