
Topic 7. Complexity

Data Structures and Algorithms

FIB

Fall 2018

Antoni Lozano
(translated by Albert Oliveras)

Q2 2017–2018
Version of December 19, 2018

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 1 / 108



Topic 7. Complexity

1 Classes
Decision problems
Polynomial and exponential time
Nondeterminism

2 Reductions
Concept of reduction
Examples of reductions
Properties

3 NP-completeness
NP-completeness theory
NP-complete problems

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 2 / 108



Topic 7. Complexity

1 Classes
Decision problems
Polynomial and exponential time
Nondeterminism

2 Reductions
Concept of reduction
Examples of reductions
Properties

3 NP-completeness
NP-completeness theory
NP-complete problems

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 3 / 108



Classes

Algorithm analysis studies the amount of resources that an algorithm needs
to solve a problem.

Complexity theory considers all possible algorithms that solve the same
problem.

Algorithm analysis focuses on algorithms, whereas complexity theory
focuses on problems

We will study some basic tools to classify problems according to their
complexity
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Decision problems

In order to better classify problems, we will consider their decision versions.

Definition
A decision problem is a problem where one has to determine whether an
instance satisfies a certain property.
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Decision problems

Lots of problems seen so far are or can be made decisional.

Some decision problems on graphs:

connectivity: given a graph, determine whether it is connected

reachability: given a graph G = (V ,E) and two vertices i , j ∈ V ,
determine whether there is a path from i to j in G

shortest path: given a graph G = (V ,E), two vertices i , j ∈ V and a
natural number k , determine whether there is a path between i and j in
G of length at most k

longest path: given a graph G = (V ,E), two vertices i , j ∈ V and a
natural number k , determine whether there is a path between i and j in
G of length at least k

3-colorability: given a graph, determine whether it is 3-colorable
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Decision problems

Some problems do not make sense in their decision version.

Decision n-queens problem (1st version)

Given a natural number n, determine whether we can place n queens on an
n × n board so that no two queens threaten each other.

It is known that there are solutions for all n 6= 2,3. Hence, the following
algorithm decides the problem in time Θ(1).

QUEENS(n)
if n = 2 o n = 3 then

return FALSE
else

return TRUE
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Decision problems

What is interesting is not whether there is a solution, but finding one.

Decision n-queens problem (2nd version)

Given a natural number n and k values r1, . . . rk , with k ≤ n, determine
whether we can place n queens on an n × n board so that no two queens
threaten each other and for all i such that 1 ≤ i ≤ k , the queen in row i is in
column ri .

This version, despite being decisional, allows one to find a solution with

(n − 1) + (n − 2) · · ·+ 2 =
n−1∑
i=2

i =
n(n − 1)

2
− 1 ∈ Θ(n2)

executions of the algorithm that solves it.
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Decision problems

Some other decision problems:

1 primality: given a natural number, determine whether it is a prime

2 traveling salesperson problem (TSP): given n cities, the distances
among them and a number of kilometers k , determine whether there is a
route of at most k kilometers that visits each city exactly once and goes
back to the origin

A decision problem is a set consisting of an infinite number of instances.

If a problem consists of a finite number of instances, it can be solved by a
constant-time algorithm (e.g. 8-queens).
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Decision problems

A decision problem is formally represented as a set.

If T is a property that can be checked on the elements of an instance set E ,
we can formulate the following decision problem:

Problem A
Given x ∈ E , determine whether T (x) holds.

Formally, A can be described as the set:

A = { x ∈ E | T (x) }.
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Decision problems

The problem instances will belong to some concrete domains such as:

natural numbers

tuples of natural numbers

graphs

weighted dags

Boolean formulas

In each case, we will consider a size or length function.

Size function

Given x ∈ E , where E is a domain, the size of x , represented as |x |, is the
number of symbols of a standard encoding of x .
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Decision problems
Given a problem A defined over an input set E , we will distinguish between

positive instances: the ones belonging to A

negative instances: the ones belonging to E − A

Primality

The primality problem can be described informally

Primality (PRIMES)
Given a natural number x , determine whether x is prime.

Or formally as the set of positive inputs:

PRIMES = {x ∈ N | x is prime }.

A size function for the natural numbers counts the number of digits of its
binary representation:

|x | = number of digits of x in binary = blog2 xc+ 1.
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Decision problems

Once we can describe problems as mathematical objects (decision problems
as sets), we can group them into classes according to their complexity.

We will consider classes of problems that can be solved using a certain
amount of resources

A class groups problems in the same way as a problem groups instances

We have to distinguish between three levels of abstraction:

Instances ——> strings of characters
Problems —-> sets of instances
Classes ——-> sets of problems
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Polynomial and exponential time

Let us assume that t : N→ R+ is a function.

Algorithms of cost t

We say that an algorithm A has cost t if its worst-case cost belongs to O(t).

Problems decidable in time t
If an algorithm A takes inputs from a set E and has a binary output, we write

A : E → {0,1}.

We say that a decision problem A is decidable in time t if there exists an
algorithm A : E → {0,1} of cost t such that, for all x ∈ E :

x ∈ A⇒ A(x) = 1

x /∈ A⇒ A(x) = 0
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Polynomial and exponential time

Class TIME(t)

Given a function t : N→ R+, we group the problems decidable in time t :

TIME(t) = {A | A is decidable in time t }.

TIME(n) TIME(n2) TIME(n3) · · · TIME(2n)
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Polynomial and exponential time

We remind that there is a huge difference between having a polynomial or an
exponential algorithm for a problem. In Topic 1 we saw two tables showing:

quantitative differences (table 1)

qualitative differences (table 2)

between polynomials and exponentials.
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Polynomial and exponential time

Table 1 (Garey/Johnson, Computers and Intractability)

Comparison between polynomial and exponential functions.

cost 10 20 30 40 50

n 0.00001 s 0.00002 s 0.00003 s 0.00004 s 0.00005 s
n2 0.0001 s 0.0004 s 0.0009 s 0.0016 s 0.0025 s
n3 0.001 s 0.008 s 0.027 s 0.064 s 0.125 s
n5 0.1 s 3.2 s 24.3 s 1.7 min 5.2 min
2n 0.001 s 1.0 s 17.9 min 12.7 days 35.7 years
3n 0.059 s 58 min 6.5 years 3855 cents. 2× 108 cents.
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Polynomial and exponential time

Table 2 (Garey/Johnson, Computers and Intractability)

Effect of technological improvements on polynomial and exponential
algorithms.

cost current technology technology ×100 technology ×1000

n N1 100N1 1000N1
n2 N2 10N2 31.6N2
n3 N3 4.64N3 10N3
n5 N4 2.5N4 3.98N4
2n N4 N4 + 6.64 N4 + 9.97
3n N5 N5 + 4.19 N5 + 6.29
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Polynomial and exponential time

Class P

We define the class P as the union of all polynomial-time classes:

P =
⋃
k>0

TIME(nk ).

That is, a problem belongs to P if it is decidable in time nk for some k .

Class EXP

We define the class EXP as the union as the union of all exponential classes:

EXP =
⋃
k>0

TIME(2nk
).

That is, a problem is in EXP if it is decidable in time 2nk
for some k .

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 19 / 108



Polynomial and exponential time

Examples

Problems in P:

connectivity

reachability

primality

shortest path

2-colorability

Problems in EXP (not known to be in P):

longest path

3-colorability

travelling salesperson problem

Other problems in EXP:

generalized chess, checkers and go
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Polynomial and exponential time

Theorem
P ( EXP.

Strict inclusion in the theorem can be divided into two parts:

1 P ⊆ EXP. Obvious from the definitions:

P =
⋃
k>0

TIME(nk ) ⊆
⋃
k>0

TIME(2nk
) = EXP

2 P 6= EXP. Proved using the diagonalization technique
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Polynomial and exponential time

P

EXP

◦ REACHABILITY

◦ CHESS
◦ SHORTEST PATH

◦ LONGEST PATH

◦ PRIMES
◦ TSP
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Nondeterminism

Algorithms seen so far are deterministic: they follow a unique
computation path from the input to the output

The execution of an algorithm A : E → {0,1} on a domain E can be
seen as a path:

input x ∈ E

output 0 or 1
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Nondeterminism

A nondeterministic algorithm can reach a result via different paths. Its
behavior is more similar to a tree.

Nondeterministic algorithms (informal idea)

An algorithm A : E → {0,1} is nondeterministic if it can use a new function

CHOOSE(y)

that, for an input x and y ≤ x , splits the computation into y branches, and
returns a distinct value between 0 and y on each branch.

Computation tree: The computation starts in a deterministic way until
the first CHOOSE instruction; for every value returned by CHOOSE, an
independent computation branch is generated with the corresponding
value

Returned value: We say that A returns 1 if some branch returns 1;
otherwise, A returns 0

Cost: The cost of A is that of the branch with highest cost
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Nondeterminism

Example: Composites

The problem

COMPOSITES = {x | ∃y 1 < y < x and y divides x }

has a trivial exponential deterministic algorithm

input x
for y = 2 until x − 1

if y divides x then
return 1

return 0

and a polynomial nondeterministic algorithm

input x
y ← CHOOSE(x − 1)
if y > 1 and y divides x then

return 1
return 0
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Nondeterminism

input 27

0

0

1

0

2

0

3

1

4

0

5

0

· · ·

· · ·

24

0

25

0

26

0

output 1
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Nondeterminism

In the previous example, we say that 3 is a witness of the fact that 27 is
not a prime

That is, in the problem COMPOSITES there exist:

Possible witnesses (y < x) of the fact that x is composite
A polynomial-time verifier algorithm that, given x and y , checks
whether y divides x

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 27 / 108



Nondeterminism

Unlike COMPOSITES, the problem GENERALIZED CHESS has no short
witnesses that allow one to check that a player has a winning strategy.

But there are a lot of problems for which it is easy to find short witnesses. For
all of them, there are polynomial nondeterministic algorithms.
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Nondeterminism

Example: 3-colorability

The 3-colorability problem, represented by the set

3-COLOR = { G | G is 3-colorable }

has an exponential-time brute-force algorithm

input G = (V ,E)
n← |V |
for each tuple (c1, . . . , cn) where ∀i ≤ n ci ∈ {0,1,2}

if (c1, . . . , cn) is a 3-coloring of G then
return 1

return 0
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Nondeterminism

Example: 3-colorability

and a polynomial nondeterministic algorithm

input G = (V ,E)
n← |V |
for i = 1 until n

ci ← CHOOSE(2)
if (c1, . . . , cn) is a 3-coloring of G then

return 1
else

return 0
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Nondeterminism

The formal definition of nondeterministic polynomial algorithms distinguishes:

the witness computation

the deterministic computations
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Nondeterminism

Decidability in nondeterministic polynomial time

Let Σ be an alphabet and A a decision problem defined over inputs of a set E .
We say that A is decidable in nondeterministic polynomial time if there exist

a polynomial algorithm V : E × Σ∗ → {0,1} (called verifier) and

a polynomial p(n)

such that for all x ∈ E , we have

x ∈ A⇒ V(x , y) = 1 for some y ∈ Σ∗ such that |y | = p(|x |)

x /∈ A⇒ V(x , y) = 0 for all y ∈ Σ∗ such that |y | = p(|x |)

If x ∈ A, the y such that V(x , y) = 1 are called witnesses or certificates.
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Nondeterminism

In order to know that a problem A is decidable in nondeterministic polynomial
time we will have to check that:

1 positive inputs have polynomial-sized witnesses
(witnesses have to be defined)

2 witnesses can be verified in polynomial time
(a verifier has to be designed)
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Nondeterminism
Composites

Let us consider the problem

COMPOSITES = {x | ∃y 1 < y < x and y divides x }

1 The witnesses for x are all y 6= 1, x that divide x

2 The polynomial is p(n) = n

3 The verifier is

V(x , y)
if (1 < y < x) and (y divides x) then

return 1
else

return 0

COMPOSITES is decidable in nondeterministic polynomial time because

x ∈ COMPOSITES ⇔ V(x , y) = 1 for some y s.t. |y | = p(|x |)
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Nondeterminism

3-colorability

Let us consider the problem

3-COLOR = { G | G is 3-colorable }

1 The witnesses for G = (V ,E) are all 3-colorings C of G of the form
C = (c1, c2, . . . , cn), where n = |V | and ci ∈ {0,1,2} for all i ≤ n

2 The polynomial (with reasonable encodings of G and C) can be p(n) = n

3 The verifier is

V(G,C)
if C is a 3-coloring of G then

return 1
else

return 0
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Nondeterminism

All problems decidable in nondeterministic polynomial time are grouped in
one class.

Class NP
We define the class NP (from nondeterministic polynomial time) as:

NP = {A | A is decidable in nondeterministic polynomial time}.

How does NP compare to P and EXP?
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Nondeterminism

Main difference between P and NP:

solutions to problems in P can be found in polynomial time

solutions to problems in NP can be verified in polynomial time

Example: Perfect squares and composites

1 SQUARES = {x ∈ N | ∃y 1 ≤ y < x and x = y2 }
2 COMPOSITES = {x ∈ N | ∃y 1 < y < x and y divides x }

Example: 2 and 3-colorability

1 2-COLOR = { G | G is 2-colorable }
2 3-COLOR = { G | G is 3-colorable }
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Nondeterminism

Theorem
P ⊆ NP.

Proof
Any deterministic algorithm is nondeterministic (but does not use CHOOSE).

Equivalently, for all A ∈ P, we can create verifiers V such that for any x :

x ∈ A⇒ V(x , y) = 1 for all y ∈ Σ∗ such that |y | = |x |

x /∈ A⇒ V(x , y) = 0 for all y ∈ Σ∗ such that |y | = |x |

To find V(x , y), it is only needed to simulate A(x) and return the same value 0
or 1 (independently of y ). Hence, A ∈ NP.
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Nondeterminism

Differences between NP and EXP:

problems in NP have solutions verifiable in polynomial time

problems in EXP can have exponentially large solutions

in order to solve problems in NP there is a standard algorithm that
searches for a witness, but this is not the case for EXP problems
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Nondeterminism

Theorem
NP ⊆ EXP.

Proof

Let A ∈ NP. Hence, there is a polynomial p(n) and a verifier V such that

x ∈ A⇒ V(x , y) = 1 for some y ∈ Σ∗ such that |y | = p(|x |)

x /∈ A⇒ V(x , y) = 0 for all y ∈ Σ∗ such that |y | = p(|x |)

We can consider an exponential algorithm for A that looks for a witness:

input x
for all y such that |y | = p(|x |)

if V(x , y) = 1 then
return 1

return 0

It is easy to see that the previous algorithm is exponential and decides A.
Hence, A ∈ EXP.
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Nondeterminism

We know that P ⊆ NP ⊆ EXP

We also know that P 6= EXP

Thus, we can assure that either P 6= NP or NP 6= EXP (or both), and we
are left with three possibilities:

(c)(b)(a)

P = NP

EXPEXP = NP

P

EXP

P NP

We will take (a) as our working hypothesis.

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 41 / 108



Nondeterminism

P

NP

EXP

◦ REACHABILITY

◦ CHESS
◦ SHORTEST PATH

◦ LONGEST PATH

◦ PRIMALITY
◦ TSP
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Concept of reduction

The cup of tea story
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Concept of reduction

Reductions

Let A and B be two decision problems with input sets E and E ′, respectively.
We say A reduces to B in polynomial time if there exists a polynomial-time
algorithm F such that

x ∈ A⇒ F(x) ∈ B

x /∈ A⇒ F(x) /∈ B

In this case, we write A ≤p B (or A ≤p B via F) and we say that F is a
polynomial-time reduction from A to B.
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Examples of reductions

Parity

Let us consider the language of even numbers

EVEN = {x ∈ N | ∃y ∈ N x = 2y }

and that of odd numbers

ODD = {x ∈ N | ∃y ∈ N x = 2y + 1 }

As one can see, EVEN reduces to ODD via an algorithm F that adds 1 to the
input: F(x) = x + 1. It is obvious that for all x :

x ∈ EVEN ⇔ F(x) ∈ ODD.

In this case, one can also reduce ODD to EVEN using the same algorithm F .
That is, ODD ≤p EVEN via F .
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Examples of reductions

Partitions
Consider the following two problems:

Partition
Given natural numbers x1, x2, . . . , xn, determine whether they can be divided
into two groups having the same sum.

Knapsack
Given natural numbers x1, x2, . . . , xn and a capacity C ∈ N, determine
whether there is a selection of the xi ’s that sums exactly C.

Formally:

PARTITION = {(x1, . . . , xn) | ∃I ⊆ {1, . . . ,n}
∑
i∈I

xi =
∑
i /∈I

xi}

KNAPSACK = {(x1, . . . , xn,C) | ∃I ⊆ {1, . . . ,n}
∑
i∈I

xi = C}
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Examples of reductions

Partitions
The algorithm

F(x1, . . . , xn)
S ←

∑n
i=1 xi

if S is odd then
return (x1, . . . , xn,S + 1)

else
return (x1, . . . , xn,S/2)

is a polynomial-time reduction from PARTITION to KNAPSACK:

(x1, . . . , xn) ∈ PARTITION ⇔ F(x1, . . . , xn) ∈ KNAPSACK.
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Examples of reductions

Exercise
We define the following collection of coloring problems:

k -Colorability (k -COLOR)
Given an undirected graph G, determine whether the vertices in G can
be colored with at most k colors, so that each pair of adjacent vertices
of get different colors.

Prove that, for all k ≥ 1, it holds that:

k -COLOR ≤p (k + 1)-COLOR.
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Examples of reductions

Definition
A Hamiltonian path in a graph G is a path in G containing all of its vertices
without repetitions.

Exercise
We define the Hamiltonian path problem (HP) i and the Hamiltonian path
problem between two points (HP2) as:

HP = {G | G has a Hamiltonian path}

HP2 = { (G,u, v) | G has a Hamiltonian path with endpoints u, v}

Propose:

1 a reduction proving HP ≤p HP2

2 a reduction proving HP2 ≤p HP
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Properties

Properties: Reflexivity

For all A, A ≤p A.

We can consider the algorithm that computes the identity function:

F(x)
return x

It is obvious that, for all x

x ∈ A ⇔ F(x) = x ∈ A.
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Properties

Properties: Transitivity

For all A, B, C, if A ≤p B and B ≤p C, then A ≤p C.

If

A ≤p B via F and

B ≤p C via G,

then the composition G ◦ F (F|G in UNIX pipe notation) proves that A ≤p C.

We will consider that G ◦ F(x) = G(F(x)).
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Properties

Exercise
Prove that

3-COLOR ≤p k -COLOR

for all k ≥ 4 by two different methods:

1 using transitivity of reductions

2 providing an explicit reduction
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Properties

Corollary

Reductions form a preorder.

Question
Observe that, although reductions form a preorder, they do not form a partial
order due to the fact that they do not satisfy antisymmetry:

∀A,B A ≤p B ∧ B ≤p A ⇒ A = B
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Properties

Closure of P under reductions
For all A, B, if A ≤p B and B ∈ P, then A ∈ P.

If

B is a polynomial algorithm for B and

F is a polynomial algorithm that proves A ≤p B,

then the composition F ◦ B is a polynomial algorithm for A:

1 B ◦ F is polynomial since it is a composition of polynomial-time
algorithms

2 B ◦ F(x) accepts⇔ B accepts F(x)⇔ F(x) ∈ B ⇔ x ∈ A
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Properties

Notation: Polynomial equivalence

Given two decision problems A,B, we write A ≡p B if A ≤p B and B ≤p A.

Problem: Equivanlence classes of P

1 Prove that ≡p is an equivalence relation (reflexive, symmetric, and
transitive)

2 Prove that for all A,B, if A ∈ P and B 6= ∅,Σ∗, then A ≤p B

3 Obtain the partition of P into equivalence classes induced by relation ≡p
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Topic 7. Complexity

1 Classes
Decision problems
Polynomial and exponential time
Nondeterminism

2 Reductions
Concept of reduction
Examples of reductions
Properties

3 NP-completeness
NP-completeness theory
NP-complete problems
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NP-completeness theory

– I can’t find an efficient algorithm, I guess I’m just too dumb.

Garey & Johnson, Computers and Intractability
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NP-completeness theory

– I can’t find an efficient algorithm because no such algorithm is possible!

Garey & Johnson, Computers and Intractability
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NP-completeness theory

– I can’t find an efficient algorithm, but neither can all these famous people.

Garey & Johnson, Computers and Intractability
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NP-completeness theory

Definition
A problem A is NP-hard if for any problem B ∈ NP it holds that B ≤p A.

NP

◦◦
◦

◦
◦

◦ A
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NP-completeness theory

Definition
A problem A is NP-complete if it is NP-hard and A ∈ NP.

NP

◦◦
◦

◦
◦

◦ A
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NP-completeness theory

Any NP-complete problem “represents” the whole NP class in relation to P.

More formally...

Proposition

Let A be an NP-complete problem. Then, P = NP if and only if A ∈ P.

⇒ Since A is NP-complete, A ∈ NP and hence A ∈ P.

⇐ Let A ∈ P.

1 Due to the closure of P under reductions, we know that for all B
such that B ≤p A we have B ∈ P.

2 Since A is NP-complete, we know that for all B ∈ NP, B ≤p A.

Using 1 and 2, NP ⊆ P and hence P = NP.
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NP-completeness theory

Any two NP-complete problems are equivalent.

More formally...

Definition
We write A ≡p B when A ≤p B and B ≤p A.

Proposition

If A and B are NP-complete, then A ≡p B.

Since A and B are NP-complete, we have

1 A ∈ NP and

2 B is NP-hard

and then, A ≤p B.

Symmetrically, we can argue that B ≤p A. Therefore, A ≡p B.
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NP-completeness theory

But...do NP-complete problems exist?
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NP-completeness theory

Boolean formulas

A Boolean formula (BF) is a formula over Boolean variables with no
quantifiers

We will use the connectives:
∨ (disjunction), ∧ (conjunction) and ¬ (negation)

For example,
F (x , y , z) = (x ∨ y ∨ ¬z) ∧ ¬(x ∧ y ∧ z)

is a Boolean formula.

Conjunctive Normal Form (CNF)

A literal is a positive or negative variable (x , ¬x)

A clause is a disjunction of literals (x ∨ ¬y ∨ z)

A Boolean formula is in CNF if it is a conjunction of clauses

F (x , y , z) = (x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z)
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NP-completeness theory

Satisfiability

A Boolean formula is satisfiable if there exists an assignment from variables
to {0,1} under which the formula evaluates to true. For example,

F (x , y , z) = (x ∨ ¬y ∨ z) ∧ (¬x ∨ ¬z)

is satisfiable with x = 1, y = 0, z = 0. We write F (100) = 1.

We define

SAT = { F | F is a satisfiable Boolean formula }

CNF-SAT = { F | F is a satisfiable BF in CNF }

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.
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NP-completeness theory

Cook-Levin Theorem (1971)

CNF-SAT is NP-complete.

In order to prove Cook-Levin theorem, we need to show:

1 CNF-SAT ∈ NP

2 CNF-SAT is NP-hard
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NP-completeness theory

(1) CNF-SAT ∈ NP

The witnesses are functions from Boolean variables to {0,1}.

In any reasonable encoding of a formula F with n variables, n ≤ |F |.
Since a witness α has n bits, |α| = n ≤ |F |.

Hence, choosing p(n) = n, we have that |α| ≤ p(|F |).

We can verify whether an assignment α satisfies F in polynomial time:

replace variables by their values given by α
evaluate the connectives bottom up
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NP-completeness theory

Example

If we consider the following BF in CNF

F (x , y , z) = (x ∨ ¬y ∨ z) ∧ (x ∨ ¬z)

and the assignment α = 100 (that is, x = 1, y = 0, z = 0), the verifier would
evaluate:

F (α) = (1 ∨ ¬0 ∨ 0) ∧ (1 ∨ ¬0) (replace values)

F (α) = (1 ∨ 1 ∨ 0) ∧ (1 ∨ 1) (negations)

F (α) = 1 ∧ 1 (disjunctions)

F (α) = 1 (conjunctions)
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NP-completeness theory

Lemma

Given an algorithm A : E → {0,1} with worst-case polynomial-space cost,
we can find a BF in CNF FA in polynomial time such that for all y ∈ E :

FA(y) = 1⇔ A(y) = 1

(2) CNF-SAT is NP-hard.

Let A ∈ NP. Then, there is a polynomial q and a verifier V s.t. for all x :

x ∈ A⇔ ∃y |y | = q(|x |) ∧ V(x , y) = 1.

Let Vx (y) be a new verifier, for a fixed x , such that

Vx (y) = 1⇔ |y | = q(|x |) ∧ V(x , y) = 1.

Then,
x ∈ A⇔ ∃y FVx (y) ⇔ FVx (y) ∈ CNF-SAT.

Hence, A ≤p CNF-SAT.
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NP-completeness theory

Finding a first NP-complete problem (CNF-SAT) makes it possible to find
others via reductions.
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NP-complete problems

Clique problem

We say that H is a complete subgraph of G if it contains all possible edges
among its vertices, i.e., if H is isomorphic to Ki for some i . Now define

CLIQUE = { (G, k) | G has a complete subgraph with k vertices }.

Given graph G

1

2

3

4

5

6

7

8 9
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Clique problem

We say that H is a complete subgraph of G if it contains all possible edges
among its vertices, i.e., if H is isomorphic to Ki for some i . Now define

CLIQUE = { (G, k) | G has a complete subgraph with k vertices }.

Given graph G

1

2

3

4

5

6

7

8 9

observe that (G,4) ∈ CLIQUE but (G,5) /∈ CLIQUE.
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NP-complete problems

Theorem
CLIQUE is NP-complete

In order to prove that CLIQUE is NP-complete we have to see that:
1 CLIQUE ∈ NP

2 CLIQUE is NP-hard

(1) CLIQUE ∈ NP

Let (G, k) be an instance of CLIQUE.

Witnesses are the vertices of a k -sized complete subgraph of G
(in the previous example, the set C = {3,4,5,6})

The polynomial p(n) = n is enough because a witness C satisfies
|C| ≤ |(G, k)| = p(|(G, k)|)

We can verify in polynomial time whether a set C is a witness: any pair
of vertices in C should have an edge in G (

(n
2

)
≤ n2 checks)
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NP-complete problems

Theorem
CLIQUE is NP-complete

In order to prove that CLIQUE is NP-complete we have to see that:

1 CLIQUE ∈ NP

2 CLIQUE is NP-hard

(2) CLIQUE is NP-hard

We will prove that CNF-SAT ≤p CLIQUE. Then,

Since CNF-SAT is NP-hard, any S ∈ NP satisfies S ≤p CNF-SAT

By transitivity, any S ∈ NP satisfies S ≤p CLIQUE

Hence, CLIQUE is NP-hard
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NP-complete problems

We can express the previous property in general.

Proposition

Let A be an NP-complete problem and B a problem such that B ∈ NP and
A ≤p B. Then, B is also NP-complete.

Since A is NP-hard, any S ∈ NP satisfies S ≤p A

By transitivity, any S ∈ NP satisfies S ≤p B

Hence, B is NP-hard
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NP-complete problems

CNF-SAT ≤p CLIQUE

Let F be a Boolean formula in CNF with:

clauses C1, . . . ,Cm

literals l1, . . . , lr

We define the reduction algorithm R(F ) = (G,m), where G = (V ,E) is:

V = {(i , j) | li appears in Cj }
(Vertices represent occurrences of literals in clauses)

E = { {(i , j), (k , l)} | j 6= l ∧ ¬li 6= lk }
(Edges represent pairs of literals that can be simultaneously true)
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NP-complete problems

Example

F (x1, x2, x3) = C1 ∧ C2 ∧ C3, where

C1 = (x1 ∨ x2), C2 = (¬x1 ∨ ¬x2), C3 = (x2 ∨ ¬x3)

l1 = x1, l2 = x2, l3 = x3, l4 = ¬x1, l5 = ¬x2, l6 = ¬x3

The reduction R(F ) = (G,3), where G is the graph

(4,2) (5,2)

(2,3)

(6,3)(2,1)

(1,1)
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NP-complete problems

In general, we have that F ∈ CNF-SAT ⇔ (G,m) ∈ CLIQUE:

⇒ Let α be an assignment satisfying F . Hence, there are m literals that α
simultaneously satisfies and hence they form a complete subgraph in G.

⇐ If G has a complete subgraph with m vertices, each vertex belongs to a
different clause. Hence, we can simultaneously satisfy one literal in each
clause, thus satisfying F .

Previous example with l2 = 1, l4 = 1

(4,2) (5,2)

(2,3)

(6,3)(2,1)

(1,1)
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NP-complete problems

Definitions

H is an independent subset of G if it consists of isolated vertices

H is a vertex cover of G if it has an endpoint of any edge in G

Exercise
Given the following problems:

CLIQUE = { (G, k) | G has a complete subgraph with k vertices }

IS = { (G, k) | G has an independent subset of k vertices }

VC = { (G, k) | G has a vertex cover of k vertices }
prove that

1 CLIQUE ≤p IS

2 IS ≤p VC

3 VC ≤p CLIQUE
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NP-complete problems

Lots of NP-complete problems have “particular cases” that are in P.
For example, in CNF-SAT we can fix the number of literals per clause in order
to obtain an infinite family of problems.

k -Bounded Satisfiability (k -SAT)
Given a Boolean formula in CNF over n variables and at most k
literals per clause, determine whether it is satisfiable.

We will see how to classify k -SAT for the different values of k .
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NP-complete problems

1-Bounded Satisfiability (1-SAT)
Given a Boolean formula F in CNF with n variables and 1 literal
per clause, determine whether it is satisfiable.

For example,
F (x , y , z, t) = (x) ∧ (¬y) ∧ (z) ∧ (¬t).

1-SAT is decidable in polynomial time with the following algorithm:

input F
if F has two contradictory literals then

return 0
else

return 1
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NP-complete problems
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NP-complete problems

2-Bounded Satisfiability (2-SAT)
Given a Boolean formula F in CNF with n variables and ≤ 2 literals
per clause, determine whether it is satisfiable.

For example,

F (x , y , z) = (x ∨ y) ∧ (x ∨ ¬z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z).

2-SAT is decidable in polynomial time

transforming the formula into a directed graph

applying a paths algorithm to the graph
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NP-complete problems
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NP-complete problems

Sketch of the algorithm

Given a 2-CNF Boolean formula

F (x , y , z) = (x ∨ y) ∧ (x ∨ ¬z) ∧ (¬x ∨ y) ∧ (¬y ∨ ¬z)

it can be rewritten using implications

F (x , y , z) = (¬x ⇒ y) ∧ (z ⇒ x) ∧ (x ⇒ y) ∧ (y ⇒ ¬z)

that are based on the equivalences

(a ∨ b) ≡ (¬a⇒ b) ≡ (¬b ⇒ a)

(a) ≡ (a ∨ a) ≡ (¬a⇒ a) ≡ (a⇒ ¬a)
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NP-complete problems

The Boolean formula with implications

F (x , y , z) = (¬x ⇒ y) ∧ (z ⇒ x) ∧ (x ⇒ y) ∧ (y ⇒ ¬z)

is transformed into a digraph DF and we apply the following lemma.

x ¬x

y

¬yz

¬z

Lemma
F is unsatisfiable if and only if ∃x for which DF has paths from x to ¬x and
from ¬x to x .
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NP-complete problems

3-Bounded Satisfiability (3-SAT)
Given a Boolean formula F in CNF with n variables and ≤ 3 literals
per clause, determine whether it is satisfiable.

Theorem
3-SAT is NP-complete.

To prove it, we need two facts:

1 3-SAT ∈ NP
(similar to CNF-SAT)

2 3-SAT is NP-hard
(we show CNF-SAT ≤p 3-SAT)
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NP-complete problems

CNF-SAT ≤p 3-SAT

The following method transforms a Boolean formula in CNF into an
equisatisfiable one in 3-CNF.

Given a BF F in CNF,

1 Let F ′ be an empty BF

2 For each clause C = (a1 ∨ · · · ∨ ak ) in F :

if k ≤ 3, add C to F ′

if k > 3, add the clause

(a1∨a2∨z1)∧ (¬z1∨a3∨z2)∧ (¬z2∨a4∨z3) . . . (¬zk−3∨ak−1 ∨ak )

to F ′, where z1, . . . , zk−3 are new variables.

3 Return F ′
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NP-complete problems

Example

Given a clause with five literals C = (a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5), the reduction
returns

C′ = (a1 ∨ a2 ∨ z1) ∧ (¬z1 ∨ a3 ∨ z2) ∧ (¬z2 ∨ a4 ∨ a5).

It is obvious that if C is true with assignment α, C′ can be satisfied with
α and appropriate values for z1 and z2

If C′ is true with assignment β, some ai will be true and C will be true
with β
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NP-complete problems

Definition

A graph G = (V ,E) with n vertices is k -colorable if there exists a total function

χ : V → {1, . . . , k}

such that χ(u) 6= χ(v) for any edge {u, v} ∈ E . Function χ is a k -coloring.

1

2

3

4

5

6

3-coloring
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NP-complete problems

With the number of colors k as an external parameter, we can formulate the
coloring problem as a function of k .

k -Colorability (k -COLOR)
Given a graph G, determine whether it is k -colorable.

Polynomial algorithms are known for the following cases:

1-COLOR

2-COLOR

For 3-COLOR, we prove NP-completeness:

We already showed that 3-COLOR ∈ NP

Next, we show that it is NP-complete via a reduction from 3-CNF-SAT
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NP-complete problems

CNF-SAT ≤p 3-COLOR

Let F be a Boolean formula in CNF. We will construct a graph G that is
3-colorable if and only if F is satisfiable.

There will be 3 special vertices called R, G, B forming a triangle:

B

GR

We can assume that in any coloring, vertices R, G, B have the colors:
R→ red, G→ green, B→ blue
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NP-complete problems

We add a vertex for each literal. Then, we connect each literal and its
negation to vertex B.

B

xx
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NP-complete problems

For each clause, we add a subgraph as follows. In the case

(x ∨ y ∨ z ∨ u ∨ v ∨ w).

x y z u v w

G G G G G G

G G

Property: A coloring of the upper vertices with red or green can be
extended to a global 3-coloring if and only if at least one has green color.
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NP-complete problems

If all of the above are red....

x y z u v w

G G G G G G

G G

...we cannot complete the 3-coloring.
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NP-complete problems
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NP-complete problems

If the number of literals is odd, the rightmost vertex will be R.
For example,

(x ∨ y ∨ z ∨ u ∨ v)

x y z u v

G G G G G

G R
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NP-complete problems

If G is the graph with all vertices and edges defined as before, then

F is satisfiable⇔ G is 3-colorable.

Since G can be constructed in polynomial time, we have that

CNF-SAT ≤p 3-COLOR.

Theorem
3-COLOR is NP-complete.
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NP-complete problems

For the other k -COLOR problems, we have the following.

Proposition

For all k > 3, 3-COLOR ≤p k -COLOR.

The reduction consists of, given a graph G, adding to it a complete subgraph
with k − 3 vertices connected to all vertices of G.

Corollary

For all k > 3, k -COLOR is NP-complete.

Hence, we have:

k -COLOR ∈ P for all k ≤ 2

k -COLOR is NP-complete for all k ≥ 3
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NP-complete problems

What can we say about colorability of planar graphs? Let us consider the
following family of problems.

k -Planar Colorability (k -COLOR-PL)
Given a planar graph G, determine whether it is k -colorable.

Planarity can be checked in polynomial time.
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NP-complete problems
Definition
A graph is planar if it can be drawn on the plane without any edge
intersection.

Planar graphs have applications in circuit design and graphics.

K5 K3,3

Kuratowski Theorem
A graph is planar if and only if it does not contain a subgraph homeomorphic
to K5 or K3,3.

K3,3 and homeomorphic graph
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NP-complete problems

Kuratowski Theorem
A graph is planar if and only if it does not contain a subgraph homeomorphic
to K5 or K3,3.

Planarity test

Brute force: O(n6)

Contract edges of degree 2
Check whether some set of 5 vertices is K5
Check whether some set of 6 vertices is K3,3

Efficient: O(n)

Apply DFS

Data Structures and Algorithms (FIB) Topic 7. Complexity Fall 2018 100 / 108



NP-complete problems

3-COLOR ≤p 3-COLOR-PL

Given a graph G, we will considered a representation of G, possibly with edge
intersections. Each intersection will be replaced by the gadget W :

W has interesting properties:

1 in any 3-coloring of W , opposite extreme points have the same color

2 any color assignment where opposite extreme points have the same
color can be extended to a 3-coloring of W
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NP-complete problems

There are two colors available for vertex u.
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NP-complete problems

u

There are two colors available for vertex u.
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NP-complete problems

This allows two colorings (up to isomorphism).

It is easy to check that they fullfill properties (1) i (2).
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NP-complete problems

The graph we obtain after the replacements

in the representation of G

is planar and

is 3-colorable if and only if G is 3-colorable
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NP-complete problems
Example

Let us assume that we have K3,3 as input to 3-COLOR:

But we consider the following representation with just one intersection:
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NP-complete problems
A 3-coloring for K3,3 induces a 3-coloring for the this graph (and viceversa):
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NP-complete problems

Corollary

3-COLOR-PL is NP-complete.

Hence, we have:

k -COLOR-PL ∈ P for all k ≤ 2

3-COLOR-PL is NP-complete

k -COLOR-PL ∈ P for all k ≥ 4

(due to the 4-color theorem)
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NP-complete problems

So far, we have seen the following tree of reductions.

CNF-SAT

3-SAT CLIQUE

IS

VC

3-COLOR

3-COLOR-PL
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