
Lógica en la Informática / Logic in Computer Science

Monday June 15, 2015

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:
eval(propositional logic) = max{ eval(Problems 1,2,3), eval(partial exam) }.
eval(first-order logic) = eval(Problems 4,5,6).

1) Let F and G be propositional formulas over predicate symbols P = {p1, . . . , pn}. Let NF denote
the number of different models I:P → {0, 1} of the formula F , and similarly NG for G. For each one
of the following questions, give an answer that is precise as possible. Do not give any explanations.
Just answer: “NF=xx” or “At most xx. At least yy”.

1a) If F is a tautology, what is NF ?
Answer: NF = 2n

1b) How many models does F ∧ p1 have at most? and at least?
Answer: At least 0. At most min(NF , 2

n−1).
1c) How many models does F ∨ p1 have at most? and at least?

Answer: At least max(NF , 2
n−1) At most min(2n, NF + 2n−1)

1d) How many models does F ∨G have at most? and at least?
Answer: At least max{NF , NG}. At most min(2n, NF +NG).

1e) How many models does F ∧G have at most? and at least?
Answer: At least 0. At most min(NF , NG).

1f) If F |= G, how many models does F ∨G have at most? and at least?
Answer: At least NG. At most NG.

[Comment about the answers: In general, F and G can easily contradict each other, so we
can only say that yF ∧ G has at least 0 models. F ∧ G cannot have more models than F alone, or
than G alone, so it has at most min(NF , NG) models. For F ∨G: it has at least max(NF , NG) models,
and it could have up to NF +NG models unless this number is larger than 2n, so F ∨G has at most
min(2n, NF +NG) models. If F |= G, then all models of F are models of G so the models of F ∨G are
exactly the models of G (at least and at most NG). Questions 1b and 1c are a particular case where
G is p1, and then we know that NG = 2n−1. ]

2) Is it true that a formula F is a tautology if, and only if, its Tseitin transformation Tseitin(F )
is a tautology? Prove it. Your answer should be as short, clean and simple as possible, without any
unnecessary explanations.

Answer: No. It is not true. Counterexample: let F be the tautology p ∨ ¬p. Tseitin(F ) is a set
of clauses with a new auxiliary root variable aux with the 1-literal clause aux (and clauses indicating
that aux ↔ p ∨ ¬p). Then if I(aux) = 0, we have I 6|= Tseitin(F ) and hence Tseitin(F ) is not a
tautology.

[Comment about the answers: Every model of F can be extended to a model of Tseitin(F )
by interpreting adequately the new auxiliary variables in Tseitin(F ), and, conversely, every model of
Tseitin(F ) can be converted into a model of F by “forgetting” about the auxiliary symbols (therefore
both are equisatisfiable: if one of them is satisfiable, the other one also is).

But when extending a model of F to a model of Tseitin(F ) not all interpretations of the auxiliary
variables give a model of Tseitin(F ), and therefore, even if F is a tautology, as soon as a single
auxiliary variable is needed, Tseitin(F ) is not a tautology.]



3) Please answer this question 3a and 3b on separate paper sheets. An old rich arab
wants to distribute all his (many, many) goods among his (many, many) children. Since he loves all
of them equally, he wants the give to each child goods of the same total value. The set of goods is
G = {g1, . . . , gN}, each gi with value vi $, and there are M children.

3a) Explain how would you solve this using SAT (which variables, clauses, and constraints). If you
use any cardinality or pseudo-Boolean constraints, do not give their encoding into clauses.

Answer: we will use variables xi,c with 1 ≤ i ≤ N and 1 ≤ c ≤ M , meaning that “good gi is
given to the c-th child”. Using them, we will encode the following facts:

Each good i, with 1 ≤ i ≤ N , is given to at least one child:

N clauses xi,1 ∨ xi,2 ∨ . . . ∨ xi,M .

Each good i, with 1 ≤ i ≤ N , is given to at most one child:

N cardinality constraints xi,1 + xi,2 + . . .+ xi,M ≤ 1.

All children receive goods with the same value. This value is V =
∑N

i=1
vi/M . Now each child c,

with 1 ≤ c ≤ M , gets goods of total value V :

M pseudo-Boolean constraints v1 · x1,c + v2 · x2,c + . . .+ vN · xN,c = V .

3b) If, in addition, the first C goods are cars, and the father only wants to give cars to his first
(oldest) K children (zero or more cars to each one of these), how would you solve this using SAT?

Answer: We need to impose that the cars cannot be assigned to the last M −K children. This
is done with the unit clauses ¬xi,c, for all 1 ≤ i ≤ C and K < c ≤ M .

4) Write a Prolog predicate shortest([I1,J1], [I2,J2]) that writes to the output the shortest
path on a chess board a horse needs to go from square [I1,J2] to square[I2,J2]. Coordinates I,J
are in 1..8. The path is the list of intermediate board squares. Your solution should be short, clean
and simple, without any comments. Answer:

path( E,E, C,C ).

path( CurrentState, FinalState, PathUntilNow, TotalPath ):-

oneStep( CurrentState, NextState ),

\+member(NextState,PathUntilNow),

path( NextState, FinalState, [NextState|PathUntilNow], TotalPath ).

oneStep([I1,J1],[I2,J2]):- member( [A,B], [[1,2],[2,1]] ),

member( SignA, [1,-1] ), I2 is I1 + A*SignA,

member( SignB, [1,-1] ), J2 is J1 + B*SignB, between(1,8,I2), between(1,8,J2).

shortest([I1,J1],[I2,J2]):- between(1,64,N),

path( [I1,J1], [I2,J2], [[I1,J1]], Path ), length( Path, N ), write(path), nl.

5a) Consider the first-order predicate and function symbols P = {p2, q1} and F = {f2, g1, a0, b0, c0}. How
many different atoms without variables can be constructed usng P and F? Just write the amount, without
giving any explanations.

Answer: infinitely many.

5b) Is the satisfiability of first-order formulas without variables decidable? Why? Your answer should be short,
clean and simple as possible (no bla bla).

Answer: Yes. It is decidable. If F has no variables, then S, the clausal form of F , is finite and has no
variables either. We know that F is unsatisfiable iff S is unsatisfiable iff ✷ ∈ ResFact(S) (the closure under
first-order resolution and factoring of S).

But since S has no variables, resolution here is just propositional resolution, and factoring is just eliminating
repeated literals in a clause. Therefore, one can consider each different atom in S as a propositional predicate
symbol, getting a propositional clause set prop(S) and ✷ ∈ ResFact(S) iff ✷ ∈ PropositionalRes(prop(S)),
which is decidable.



6) Consider the following sentences:

1. All red horses run fast or there is a horse that does not run fast.

2. There is at least one red horse.

6a) Write first-order formulas F1 and F2 formalizing 1. and 2. Do not write anything else here.

Answer:

F1 : (∀x red(x) → fast(x)) ∨ (∃y ¬fast(y))
F2 : ∃x red(x)

6b) Is F1 a tautology? Prove it. Do not give any unnecessary explanations.

Answer:

Yes it is a tautology. We have F1 taut iff ¬F1 insat iff ✷ ∈ ResFact(clausalform(¬F1)).
Turning ¬F1 into clausal form:
¬((∀x ¬red(x) ∨ fast(x)) ∨ (∃y ¬fast(y)))
¬(∀x ¬red(x) ∨ fast(x)) ∧ ¬(∃y ¬fast(y))
(∃x red(x) ∧ ¬fast(x)) ∧ (∀y fast(y))
(red(cx) ∧ ¬fast(cx)) ∧ (∀y fast(y))
gives {red(cx),¬fast(cx), fast(y)} and by resolution between the last two clauses we get ✷.

6c) Do we have F1 |= F2? Prove it formally, as short and simple as you can (no bla bla).

Answer: No. We do not have F1 |= F2. Since we have seen that F1 is a tautology, to prove F1 6|= F2 we can
simply give as a counterexample any interpretation I such that I 6|= F2, that is, I 6|= ∃x red(x). For this, define
I such that DI = {e} and redI(e) = 0.


