Légica en la Informatica / Logic in Computer Science
June 8th, 2012. Results published: Tuesday June 19. Review: Wednesday June 20, 10h, Omega 139.
Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note: The answers will also be considered for evaluation of the transversal competences of English
and Reasoning (but both with 0% impact on the global evaluation of LI).

1) When the Canadian wildfire fighters work to extinguish a forest fire, each one of them is equipped
with a special mobile radio (there is no mobile phone coverage in the deepest forests). But sometimes
communication with the central is difficult due to radio interferences that happen when two or more
firefighters are at less than 500m distance from each other. Therefore, it is decided to use two different
radio frequencies. Every 10 seconds, all N radios communicate their GPS position to the central, which
re-assigns all frequencies based on the list of all pairs of firefighters (F, FY), (Fa, F3) ... Fp, F},) such
that F; and F] are closer than 500m to each other. For each i, different frequencies are given to F;
and F}. Note that each firefighter may appear many times in the list of pairs. To be able to solve this
problem quickly every 10 seconds, the Canadians decide to use a SAT encoding and a SAT solver.

la) How would you encode this problem into SAT and which kind of SAT solver would you use?

Answer: Define a SAT encoding with variables x;;, for ¢ in 1..N and j in {1,2}, meaning that
“firefighter ¢ uses frequency j”. Then, we need to express that:
-each firefighter gets at least one frequency: one clause x;; V z;2 for each 7 in 1..N (NN clauses)
-each firefighter gets at most one frequency: one clause —x;1 V —x;9 for each i in 1..N (N clauses)
-for each pair of firefighters (i,7’) that are closer than 500m to each other, two clauses, saying that
they get different frequencies:

—x;1 V —xyp (forbid that both of them get frequency 1)

—xi9 V g (forbid that both of them get frequency 2)
Since the resulting problem is a 2-SAT problem, it is solvable in polynomial time. Any SAT solver that
can do this is therefore recommendable. Either a model is found that gives us an adequate frequency
assignment, or else the SAT problem is unsatisfible and no such assignment exists. (Note that the
problem is equivalent to the polynomial problem of 2-coloring of the graph with firefighters as vertices
and with edges between too close firefighters).

1b) Same question, if a given number of frequencies K with K > 2 can be used.

Answer: Define a SAT encoding with variables z;;, for 4 in 1.V and j in 1..K, meaning that
“firefighter ¢ uses frequency j”.

-each firefighter gets at least one frequency: one clause x;1 V ...V x;x for each i in 1..N (N clauses)
-each firefighter gets at most one frequency: for each i in 1..N, an encoding of at-most-one{z;1 ... z;x };
for example, the quadratic encoding requires, for each 4, all clauses of the form -x;; V —x;; for
1<j<j <K, in total (g) clause for each 1.

-for each pair of firefighters (4, 4") that are too close, K clauses saying that they get different frequencies:
x5 V x5 (forbid that both of them get frequency j, for 1 < j < K)

The resulting problem is no longer a 2-SAT problem and it is not polynomial. It is the NP-complete
problem of K-coloring a graph, the same graph as before. Any state-of-the-art SAT solver can be used.

2) In SAT, the at-most-K constraint states that, of n variables {z1,...,x,}, at most K are true.
2a) How would you express this constraint in CNF without using any auxiliary variables?
How many clauses are needed?

Answer: We would need one clause of the form —y; V...V —yg41 for each subset {y;...yx+1} of
{z1,...,2,}, meaning that of each subset of K + 1 variables at least one must be false. So in total

(Kil) =(n-(n—1)---(n—K+1)) / K! clauses are needed. This amount grows exponentially in

n if, for example, K = n/2: (38) = 137,846,528,820.
2b) Which other encoding (using auxiliary variables) requires less clauses?

How many clauses are needed and how many auxiliary variables?

Answer: For example, sorting networks, which require O(nlog?n) clauses and also O(nlog?n) auxi-
liary variables. Other encodings exist (which work especially well if k& << n) based on modules with 2*
clauses for counting how many variables of each group of k are true, and merging these groups, which
requires O(k?) clauses for each merger, and at most 2n auxiliary variables. (see the lecture notes for
the details to be added to this answer).

3) Consider a first-order interpretation I with a finite domain Dy = {0, 1} and the full descriptions
of fr and of P; for a 1-ary function symbol f and a 3-ary predicate symbol P.
3a) Is it decidable whether I satisfies a given formula F'? If so, what is the complexity of this?

Answer: Yes, this is decidable. If the domain is finite, one can apply the standard evaluation algo-
rithm: if the outermost quantifier is Va, then one has to check that the remaining formula evaluates
to true for every value of the domain for z; if it is dz, then it s for some value, etc. This clearly ter-
minates, but the complexity is high. The best known algorithms are exponential (in fact it is P-space
complete in general, i.e., it is believed to be even harder than NP-complete problems). To see that
it is at least as hard as 3-SAT even for this simple set of symbols, note that a 3-SAT problem like
(ZT7VagVTz) A ... issatisfiable iff the formula 3x;3xs ... 3z, P(f(x7),xs, f(x2)) A ... evaluates
to true if f is interpreted as logical negation (f;(0) = 1 and f;(1) = 0) and Pr(z,y,z) = true iff at
least one of its arguments is 1.

3b) Now consider an interpretation I that has as (infinite) domain the integer numbers, and two
2-ary function symbols f and g interpreted as the integer sum and product respectively, and a 1-ary
predicate symbol P interpreted as Pr(0) = true and Pr(x) = false if x # 0. Is it decidable whether I
satisfies a given formula F'? If so, what is the complexity of deciding this?

Answer: This is undecidable. One can express well-known undecidable problems like checking whet-
her an arbitrary integer polynomial over several variables has roots: for example 23y 4322 +... = 0 has
solutions iff Ix3y3z P(f(f(9(9(g9(x,x),z),v),9(2, 2)),...)) evaluates to true in this interpretation.

4) Formalize and prove by resolution that sentence D is a logical consequence of the other three:
A: Everybody loves his father and his mother.
B: John is stupid.
C': When someone is stupid, at least one of his parents is stupid too.
D: There are stupid people that are loved by someone.

Answer: For the vocabulary: j is a constant symbol for “John”, f(x) and m(z) are function symbols
“for father of z” and and “mother of z”; S(x) is a predicate symbol: “x is Stupid”; L(z,y) is a
predicate symbol: “x loves y”, the sentences become:
A: Vo (L(z, f(z)) A L(z,m(z)))
B S()
C: Va(S@) — (S(f(@)) V S(m(x))))
-D: =3z 3y (S(z) A L(y,x))
In clausal form, these become:
Al. L(z, f(z))
A2, L(z,m(x))
B. S(j)
C. =S(2) Vv S(f(@) V S(m(x))
-D. =S(z) Vv -L(y,x)
By resolution we obtain:

6. S(f(5)) Vv S(m(4)) B+C
7. 2L(y, f(3)) vV S(m(7)) D+6
8. =L(y, f(4)) V ~L(z,m(j)) D+7
9. =L(z,m(y)) Al +8
10. O A2+49

5) Complete the following DPLL-like procedure for SAT in Prolog. Program everything, except built-
in predicates of GNU-Prolog and the predicate readclauses(F), which reads a list of clauses, where
each clause is a list of integers. For example, ps V —pg V po is represented by [3,-6,2]. It is mandatory
to follow the indications, and do things as simple as possible.

p:- readclauses(F), dpll([],F).
p:— write(’UNSAT’),nl.

dpl1(I,[1):- write(’IT IS SATISFIABLE. Model: ’), write(I),nl,!.

dpll(I,F):-
decision_lit(F,Lit), % Must select a unit clause if there is any. Otherwise, an arbitrary one.
simplif (Lit,F,F1), % Simplifies F. Warning: may fail and cause backtracking
dpll(... , ...).

Answer:

p:- readclauses(F), dpll([],F).
p:- write(°UNSAT’),nl.

dpll(I,[]1):- write(’IT IS SATISFIABLE. Model: ’), write(I),nl,!.
dpll(I,F):-

decision_lit(F,Lit),

simplif (Lit,F,F1),

dpll([Lit|I], F1).

decision_lit(F,Lit):- member([Lit],F),!. 7% unit propagation if possible
decision_lit([[Lit|_J|_],Lit). % otherwise, select 1st 1lit of 1st clause of F
decision_lit([[Lit|_]|_],Lit1):- Litl is -Lit. % or its negation!

simplif (_, [1,[1).
simplif (Lit, [CIS], S1):- % remove true clause (clause containing Lit)
member(Lit, C), !,
simplif(Lit,S,S1), !.
simplif (Lit, [CIF], [C1|F1]):- % remove false lit -Lit from clause
Litl is -Lit,
memberAndRest(Lit1, C, C1),!,

c1 \= [1, % causes failure if empty clause detected
simplif (Lit,F,F1),!.
simplif (Lit, [CIF], [CIF1]):- % nothing to simplify in 1st clause

simplif (Lit,F,F1),!.

memberAndRest (X, [X|L],L).
memberAndRest (X, [Y|L],[YI|L1]) :- memberAndRest(X,L,L1).

