
Lógica en la Informática / Logic in Computer Science

SOLUTIONS. Tuesday November 15, 2011

Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) We already know the ladder encoding for at-most-one, that is, for expressing in CNF that at
most one of x1 . . . xn is true. It uses n auxiliary variables ai, where each ai means “at least one of
x1 . . . xi is true”. We also know that an encoding for at-most-one is arc-consistent for unit propagation
if, whenever one of x1 . . . xn becomes true, the SAT solver’s unit propagation mechanism will set the
other variables to false.

1a List, without giving any explanations, which and how many clauses are used in this encoding.
Argue whether the encodng is arc-consistent for unit propagation or not.

Solution: For each i in 1..n there will be three clauses:
A) ¬xi ∨ ai
B) ¬ai ∨ ai+1 (this clause only for i in 1 . . . n− 1)
C) ¬ai ∨ ¬xi+1 (this clause only for i in 1 . . . n− 1).

Total: 3n− 2 clauses. To prove that it is arc-consistent for unit propagation, assume some xi (with i
in 1..n) becomes true. Then by successive unit propagations, the following literals become true too:

To the right:

ai by A) ¬xi ∨ ai
ai+1 by B) ¬ai ∨ ai+1

ai+2 by B) ¬ai+1 ∨ ai+2
...

...

an by B) ¬an−1 ∨ an

¬xi+1 by C) ¬ai ∨ ¬xi+1
...

...

¬xn by C) ¬an−1 ∨ ¬xn

and to the left:

¬ai−1 by C) ¬ai−1 ∨ ¬xi
¬ai−2 by B) ¬ai−2 ∨ ai−1
¬ai−3 by B) ¬ai−3 ∨ ai−2

...
...

¬a1 by B) ¬a1 ∨ a2

¬xi−1 by A) ¬xi−1 ∨ ai−1
...

...

¬x1 by A) ¬x1 ∨ a1

1b Extend the ladder encoding for at-most-two constraints, with variables ai and bi, where bi means
“at least two of x1 . . . xi are true”. List, without giving any explanations, which and how many clauses
are used, and how many auxiliary variables.

Solution: For each i in 1..n there will be five clauses:
A) ¬xi ∨ ai
B) ¬ai ∨ ai+1

C) ¬bi ∨ bi+1

D) ¬ai ∨ ¬xi+1 ∨ bi+1

E) ¬bi ∨ ¬xi+1

where types clauses B,C,D,E exist only for i in 1 . . . n− 1. Total: 5n− 4 clauses.



1c Argue whether this at-most-two encoding is arc-consistent for unit propagation or not (that is,
whenever two of x1 . . . xn become true, unit propagation sets the other variables to false).

Solution: To prove that it is arc-consistent for unit propagation, assume some xi and xj with
1 ≤ i < j ≤ n become true. Then the successive unit propagations are:

To the right:

ai by A) ¬xi ∨ ai
ai+1 by B) ¬ai ∨ ai+1

ai+2 by B) ¬ai+1 ∨ ai+2
...

...

an by B) ¬an−1 ∨ an

bj by D) ¬aj−1 ∨ ¬xj ∨ bj
bj+1 by C) ¬bj ∨ bj+1

bj+2 by C) ¬bj+1 ∨ bj+2
...

...

bn by C) ¬bn−1 ∨ bn

¬xj+1 by E) ¬bj ∨ ¬xj+1
...

...

¬xn by E) ¬bn−1 ∨ ¬xn

and to the left:

¬bj−1 by E) ¬bj−1 ∨ ¬xj
¬bj−2 by C) ¬bj−2 ∨ bj−1

...
...

¬b1 by C) ¬b1 ∨ b2

¬ai−1 by D) ¬ai−1 ∨ ¬xi ∨ bi
¬ai−2 by B) ¬ai−2 ∨ ∨ai

...
...

¬a1 by B) ¬a1 ∨ ∨a2
¬xi−1 by A) ¬xi−1 ∨ ai−1

...
...

¬x1 by A) ¬x1 ∨ a1

Finally, for each xk with i < k < j (if there is any), the literals ak−1 and ¬bk have been propagated,
and hence by D) ¬ak−1 ∨ ¬xk ∨ bk, these literals ¬xk are also propagated. Altogether, if variables xi
and xj with 1 ≤ i < j ≤ n become true, then by unit propagation all other variables in x1 . . . xn
become false, thus proving arc consistency.

2) We are given two very large propositional formulas F1 and F2, in a simple format. For example,
x1 ∧ ((x2 ∨ x3) ∨ ¬(xy ∧ x5)) is written like:

0=and(x1,1)

1=or(2,3)

2=or(x2,x3)

3=not(4)

4=and(x4,x5)

Explain in the simplest possible way what you would do for using the Barcelogic SAT solver to
determine whether F1 and F2 are logically equivalent.

Solution: To use the Barcelogic solver (or any other state-of-the-art SAT solver) the input has to be
a CNF formula (a set of clauses). We can use the Tseitin transformation to transform these formulas
into CNF: we introduce a new variable for each non-leaf node of a formula. If the node is of the form
n = and(x, y), we generate three clauses: ¬zn ∨ x, ¬zn ∨ y, and zn ∨ ¬x ∨ ¬y. If the node is of the
form n = or(x, y), we generate three clauses: zn ∨¬x, zn ∨¬y, and ¬zn ∨ x∨ y. If the node is of the
form n = not(x), we generate the two clauses zn ∨¬x, and ¬zn ∨x (or simply replace all occurrences
of zn by ¬x, introducing no variable zn for this node).

Let the sets of clauses S1 and S2 be the resulting Tseitin transformations of F1 and F2, using
names z1 and z2 respectively for the new node variables. So the root variables are z10 and z20 .

Logical equivalence of F1 and F2 means that they have the same models, that is, there is no model
of S1 ∪ S2 such that one of z10 and z20 is true and the other one is false. So we can call Barcelogic with
input S1 ∪ S2 ∪ { ¬z10 ∨ ¬z20 , z10 ∨ z20 }, and it will return unsatisfiable iff F1 and F2 are logically
equivalent.

Note: one can also directly check unsatisfiability of (F1 ∧¬F2)∨ (F2 ∧¬F1) i.e., if S is the Tseitin
transformation of this formula, with root symbol z0, Barcelogic returns “unsatifiable” on the clause
set S ∪ { z0 } iff F1 and F2 are logically equivalent. But this is less efficient (think why).



3) A very large chain of supermarkets sells its products on the internet to N customers. They know,
for each one of their P products, which customers have bought it. Now they want to make a survey
study (ask a number of questions) to a subset of at most K of their customers, in such a way that
for each one of their products, at least one of the buyers of that product is in the surveyed subset.
Describe how to use a SAT solver to find a an adequate subset of K customers. (if it exists).

Solution: We encode the problem into a CNF such that a solution exists iff the SAT solver, when
run on this CNF, returns a model. Moreover, from each model a solution can be easily reconstructed.

Let {1 . . . N} be the set of all customers, and, for each product p ∈ {1 . . . P}, let Bp be the set of
its buyers, with Bp ⊆ {1 . . . N}.

Solution 3A: Consider N propositional variables xi, for each i in {1 . . . N}, meaning that “cus-
tomer i is in the surveyed subset”. Then we can express for each product p that at least one of its
buyers is in the surveyed subset, with a single clause

∨
i∈Bp

xi (for each product p, one clause with
|Bp| literals). In addition we need to express that at most K customers are in the surveyed subset.
This we can do with a cardinality constraint x1 + . . . + xN ≤ K that can be encoded, for instance,
with a sorting network using O(N log2N) clauses and the same number of auxiliary variables.

Solution 3B: We can consider propositional variables xi,j , for i in {1 . . . N} and j in {1 . . .K},
meaning that “customer i is the j-th member of the surveyed subset”. Then we can express for each
product p that at least one of its buyers is one of the K members of the surveyed subset, with a
single clause

∨
i∈Bp

(xi,1 ∨ . . . ∨ xi,K). This requires one clause with |Bp| ·K literals for each product
p. In addition, for each j in {1 . . .K}, we need to express that at most one customer is the j-th
member of the surveyed subset. This we can do with for each j in {1 . . .K} an at-most-one constraint
x1,j + . . . + xN,j ≤ 1, using any of the known encodings (quadratic, ladder, Heule, log, ...).


