
Lógica en la Informática / Logic in Computer Science

Thursday January 12th, 2017

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:
eval(propositional logic) = max{ eval(Problems 1,2,3,4), eval(partial exam) }.
eval(first-order logic) = eval(Problems 5,6,7).

1) Let F and G be arbitrary propositional formulas.

1a) Can it happen that F |= G and F |= ¬G? Prove it from the definitions of propositional logic.

1b) Assume F |= G. Prove, from the definitions of propositional logic, that then F ≡ F ∧G.
Hint: prove F ≡ F ∧G distinguishing the two cases: I |= F and I 6|= F (and use F |= G in one case).

2) The Tseitin transformation T transforms an arbitrary propositional formula F into a CNF (a set of clauses
with auxiliary variables) T (F) that is equisatisfiable: F is SAT iff T (F) is SAT. Moreover, the size of T (F)
is linear in the size of F. Answer very briefly: Is there any known transformation T ′ into an equisatisfiable
linear-size DNF? If yes, which one? If not, why?

3) Answer very briefly: What is 2-SAT? Is it polynomial? Why?

4) Answer very briefly: Which clauses are needed to encode the pseudo-Boolean constraint 2x+3y+5z+6u+

8v ≤ 11 into SAT, if no auxiliary variables are used? Which clauses are needed in general, with no auxiliary
variables, for a constraint a1x1 + . . . + anxn ≤ k?

5) Is the following first-order formula satisfiable? If not, explain why. If yes, give a model (and no explanations).
∀x ¬p(x, x) ∧
∀x ∀y ∀z (p(x, y) ∧ p(y, z)→ p(x, z)) ∧
∀x ∃y p(x, y) ∧
∀x ∀y (p(x, y)→ ∃z (p(x, z) ∧ p(z, y)))

6)
6a) Explain in a few words how you would formally prove, given two first-order formulas F and G, that F 6|= G.
6b) Same question for F |= G.
6c) F is ∀x p(a, x) ∧ ∃y ¬q(y) and G is ∃v∃w (¬q(w) ∧ p(v, a)). Do we have F |= G? Prove it.
6d) F is ∀x∃y p(x, y) and G is ∃y∀x p(x, y). Do we have F |= G? Prove it.

7) Write a program return(L,A) in swi prolog (using library(clpfd) or not, feel free) that outputs (writes)
the minimal number of coins needed for returning the amount A if (infinitely many) coins of each value of the
list L are available. Two examples:
?-return([1,5,6],10). writes 2 (since 2*5 = 10).
?-return([1,2,5,13,17,35,157],361). writes 5 (since 1*13 + 2*17 + 2*157 = 361).

