Légica en la Informatica / Logic in Computer Science
Thursday January 9th, 2014
Time: 2h30min. No books, lecture notes or formula sheets allowed.
Questions 1,2,3 are the part of propositional logic, and 4,5,6 the part of first-order logic.

Results published: Monday Jan 20; Review /revisiéon: Wed Jan 22, 16h, Omega-139.

la) Is it true that if F' and G are propositional formulas, then F' = G or F' = ~G? Prove it using
only the formal definitions of propositional logic.

Answer: It is false. Counter example: if there are two symbols, p and ¢, F' is p and G is ¢, then
neither F' = G (e.g., if I(p) =1 and I(¢) =0 then I = F but I [~ G) nor F = -G (e.g., if I(p) =1
and I(g) =1 then I = F but I = -G).

1b) Let F' and G be propositional formulas such that F' — G is satisfiable and F is satisfiable. Is it
true that then G is satisfiable? Prove it using only the formal definitions of propositional logic.
Answer: It is false. Counter example: if F'is p and G is p A —p, then F' — G is satisfiable (if I(p) =0
then I = F — G) and F is satisfiable (if I(p) = 1 then I = F') but p A —p is unsatisfiable.

2) Given a natural number n with n > 1, let F}, denote the propositional formula

(P11 Ao Ap1n) Vo (P2 AcAD2) Voot Vo (Pri A A Ppn).
2a) Write F5 and write an equivalent formula in CNF without using any auxiliary variables. Do the
same for F3. Express how many clauses are needed in general for F),, as a function of n.
Answer: The CNF for F, has the 22 = 4 clauses: p11 V p21, pi1 V pa2, P12 V pai, pi2 V pao. In
general, the CNF for F}, has all clauses with exactly one literal from each conjunction in Fj,, so it has
has n" clauses. Indeed, the CNF for F3 has the 33 = 27 clauses:

P11V p21 Vp3t, pi1Vp2rVp3z, pi1VpaVp33, pinVp22Vps, pinVp2eVp32

P11V p22 VP33, p11Vp23Vpar, pi1Vp2sVps2, pi1Vp2sVpss
and the same 9 clauses with p1s instead of p1; and another 9 clauses with pi3 instead of pq1.

2b) Write the Tseitin transformation of Fj. Is it logically equivalent to F»? How many clauses are
there in the Tseitin transformation of F},, as a function of n?

Answer: F,is (p11Ap12) V (p21Ap22). A new symbol auz; is introduced for the outermost connective
V, and two more auxrs and auxs for the two A connectives. A unit clause aur; is generated for the
root of the formular. Three more clauses are generated for auzy:

auxry V maurs, auxry V Daurs, —aury V auxrs V aurs
and three clauses for auxo and three more for auxs:

—auxrz V pii, —auxry V prz,  auxz V pir VP12

—auxrs V pai, —auxrs V p22, auxz V —p21 V Tp22

This Tseitin transformation is not logically equivalent to Fs. It is only equisatisfiable (that is, a
formula is satisfiable iff its Tseitin transformation is satisfiable). Since F}, has n? — 1 connectives, the
Tseitin transformation of F;, will have 1 + 3(n? — 1) = 3n? — 2 clauses.

3) Recently we got a visit from N students from the Ecole Normale Superieure de Cachan (Paris).
First we had a session where each one of 9 research groups of our LSI department gave a short talk.
After each that, each student ¢ € 1..N selected a subset {i1,1i2,i3} C {1,2,3,4,5,6,7,8,9} with 3 of
the 9 groups to receive a long talk from those 3 groups, for which there were 3 slots (named A, B and
C) for the remainder of the day. Note that if a certain student chooses, for example, talks 3, 5 and
6, then these three long talks must be given in three different slots, but not necessarily in that order.



Obviously, one possibility is to give all the long talks in all 3 the slots (27 talks in total), but here at
most K talks, with K < 27 are allowed.
3a) Explain how to use a SAT solver for scheduling the talks. If you use any AMO, cardinality or
pseudo-Boolean constraints, it is not necessary to convert these into CNF.
Hint: note that if a student chooses, for example, talks 3, 5 and 6, then it suffices to state that talks
3 and 5 are given in (at least) two different slots, and also 3 and 6 in different slots, and also 5 and
6. Furthermore, to state that two talks are given in (at least) two different slots out of three slots, it
suffices to force that in any pair of slots at least one of the two talks is given.
Answer: we introduce 27 variables x; s meaning “talk ¢ is given (at least) in slot s”. We need one
cardinality constraint: x14 + 15 + 10 + -+ + g4 + T9p + x9¢ < K. In addition, we need nine
four-literal clauses per student i with for each pair {¢,¢'} C {i1,142,i3}, three clauses to express that
talks ¢ and ¢ are given in (at least two) different slots:
TtAV TV Ty ANV Typ, TtAVTioNVITyaNV Tyc, TeaN TieVITypV Tyco.
For example, to express that talks 3 and 5 are given in different slots we would have the clauses:
T34V 3BV T54 vV Tsp, T34V T3¢V TsaNV Tsc, X3BV T3¢ VTsBV Tse.
3b) Express that no talk is given more than twice.
Answer: For each talk ¢, we would need a clause —x¢ 4 V —z¢ g V —z¢ ¢ (total, nine 3-literal clauses).
3c) How could you use the SAT solver to find the solution with the minimal total number K of talks?
If K = 27 obviously the problem is satisfiable, so we try first with
1A+ 21B + 21+ -+ 294 + T9B + T9C < 26.
If we get a solution, we make another call to the SAT solver with
1A+ 1B + 210 + -+ + X9a + X9 + T9o < 25,
and we keep making calls to the SAT solver with each time smaller K's until it returns “unsatisfiable”.
The smallest K for which the SAT solver finds a solution is the optimal one.

4a) Is there any procedure that takes as input a formula F' of first-order logic, and that always
terminates saying “yes” if F' is satisfiable, and that always terminates saying “no” if F'is unsatisfiable?
If so, briefly explain how it works.

Answer: No. This problem is not decidable.

4b) Is there any procedure that takes as input two formulas F' and G of first-order logic, and that
always terminates saying “yes” if F' = G, and that always terminates saying “no” or does not terminate
if F' = G? If so, briefly explain how it works.

Answer: Yes. Let S be the clausal form of F' A =G. The procedure systematically computes the
closure of S under resolution and factoring. It will terminate saying “yes” as soon as the empty clause
appears (which always happens iff F' = G), and tt will terminate saying “no” if resolution and factoring
terminate without empty clause (but termination may never happen).

4c) Is there any procedure that takes as input a formula F' of first-order logic, and that always
terminates saying “yes” if F' is satisfiable, and that always terminates saying “no” or does not terminate
if F'is unsatisfiable? If so, briefly explain how it works.

Answer: No. This problem is not semi-decidable. It is co-semi-decidable: the procedure alwys ter-
minates saying “no” if the answer is “no”, but it may not terminate if the answer is “yes”.

5a) Consider the first-order interpretation I where:

Dy ={0,1,2}, ar =2, and Pr(n,m) =1 if and only if m = (n + 1) modulo 3.

Let F be the formula Vz 3y 3z P(a,y) A (P(y, z) V P(z,x)). Do we have I = F'? Prove it.

Answer: Yes. For any element x of Dy, if we choose y = 0 and z = 1 the formula evaluates to 1.
5b) Let F' be the first-order formula Vz 3y Vz P(x,y, 2) AQ(y), and let G be JyVa Vz Q(z)AP(z,y, 2).
Are they logically equivalent? Is any one of the two a logical consequence of the other one? Prove it.
Answer: They are not logically equivalent because F' [~ G: for the interpretation I where Dy = {a, b},
Pr(...) =1 always, Qr(a) =1 and Q(b) = 0, we have that I = F but I = G. It is the case however
that G = F. We show that G A —=F is unsatisfiable. In clausal form, G gives two clauses: Q(z) and



P(2/,b,z). The formula —F gives one clause: =P(a,y, f(y)) V =Q(y). In two simple resolution steps
we obtain the empty clause.

6) We have three dice (a die in Spanish is “dado”, and the plural of die is dice). They are fair (each
one of their six sides has the same probability of coming up) and their sides have numbers between
1 and 9 (not between 1 and 6!). Now suppose we play a game (many times): I pick a die; after that,
you pick another die, we roll both dice, and the player who gets the highest number receives one Euro
from the other player. Can you design the dice (putting the numbers on them) in such a way that you
can become rich, that is, so that you can always pick a die that is better than mine (here better means
that it wins with probability p > 0.5)7 Write a Prolog program that checks whether this is possible
or not. Include all non-predefined predicates you use.

To make the problem easier, assume that die A has number Al on two of its sides, A2 on two sides
and A3 on two sides, and similarly, die B has B1, B2, B3 and die C has C1, C2 and C3 (each number
on two sides), where all nine numbers A1,A2 A3, B1,B2B3, C1,C2,C3 are different and between 1 and
9. Also note that die A is better than die B if A wins in at least five of the nine possible outcomes
(A1,B1),(A1,B2),...,(A3,B3), and that you have to make die A better than die B, die B better than
C, and C better than A.

Answer:

p:- permutation( [1,2,3,4,5,6,7,8,9], [A1,A2,A3, B1,B2,B3, (1,C2,C3] ),
wins( [A1,A2,A3], [B1,B2,B3] ),
wins( [B1,B2,B3], [C1,C2,C3] ),
wins( [C1,C2,C3], [A1,A2,A3] ),
nl, write( [A1,A2,A3]-[B1,B2,B3]-[C1,C2,C3] ), nl, halt.

wins(A,B):- findall( X-Y, (member(X,A),member(Y,B),X>Y), L ), length(L,K), K>=5.

% this writes: [1,5,9]1-[3,4,8]1-[2,6,7]
% Well-known definitions of member, length and permutation to be added.



