
Lógica en la Informática / Logic in Computer Science

Friday June 7th, 2013

Time: 2h45min. No books, lecture notes or formula sheets allowed.
The part about propositional logic comprises the first three questions.

SOLUTIONS

1A) Given two propositional formulas F and G, is it true that F → G is a tautology iff F ∧ ¬G is
unsatisfibale? Prove it using only the formal definitions of propositional logic.

Solution: It is true:
F → G tautology iff [def. →]
¬F ∨G tautology iff [def. tautology]
for every I, evalI(¬F ∨G) = 1 iff [def. evalI ∨]
for every I, max(evalI(¬F ), evalI(G)) = 1 iff [def. evali ¬]
for every I, max(1− evalI(F ), evalI (G)) = 1 iff [arithmetic: evalI(F ) = 0 or evalI(G) = 1]
for every I, min(evalI(F ), 1 − evalI(G)) = 0 iff [def. evalI ¬]
for every I, min(evalI(F ), evalI (¬G)) = 0 iff [def. evalI ∧]
for every I, evalI(F ∧ ¬G) = 0 iff [def. unsat.]
F ∧ ¬G unsatisfiable

1B) Given two propositional formulas F and G, is it true that F |= G iff F → G is satisfiable? Prove
it using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F be the formula p and G be the formula ¬p.
The resulting formula p → ¬p is satisfiable (I(p) = 0 is a model), but p 6|= ¬p, as the interpretation
I(p) = 1 is a model of p but not a model of ¬p.

2) Consider a set of propositional clauses F , a clause C ∨ l1 ∈ F and a binary clause l1 ∨ l2 ∈ F .
Prove, by reasoning about interpretations, that F \ {C ∨ l1} ∪ {C ∨ l1 ∨ ¬l2} ≡ F .

Solution: Let F ′ be the left-hand side F \ {C ∨ l1} ∪ {C ∨ l1 ∨ ¬l2}.
In general, to prove F ′ ≡ F , it suffices to show A) that any model of F ′ is also a model of F , and

B) that any model of F is also a model of F ′. Here, part B) is trivial because the only difference is
that a literal has been added to a clause.

Let us now do A): pick a model I of F ′. We only need to prove that I |= C ∨ l1 (the only clause
in F that is not in F ′). If I(l1) = 1 we are done. If I(l1) = 0 then I(l2) = 1 (because I |= F ′ and
l1 ∨ l2 ∈ F ′), and then (since I |= C ∨ l1 ∨ ¬l2) also I |= C ∨ l1.

Imagine we want to check the satisfiability of a set of clauses {p ∨ q, q ∨ r, q ∨ ¬r} ∪ G. Explain
why, by applying the previous result, one can remove the clause p∨ q and only check the satisfiability
of {q ∨ r, q ∨ ¬r} ∪G.

Solution: By picking C = p, l1 = q and l2 = r we can apply the previous result and use p ∨ q ∨ ¬r
instead of p ∨ q to check the satisfiability. But now we can apply the result again with C = p ∨ ¬r,
l1 = q and l2 = ¬r to use instead the clause p ∨ q ∨ ¬r ∨ r. Since it is a tautology we can now remove
it to check satisfiability.

3) We have a list of n professional programmers {p1 . . . pn} and a set of m programming tasks
{t1 . . . tm}. We know, for each programmer pi, the amount of euros ei (s)he charges; that is, pi receives
ei euros in total iff (s)he does at least one task (not ei per task, but in total). For each task ti, we also
know which subset Si ⊆ {p1 . . . pn} of programmers have the right skills to do the task ti.



We want to know whether we can handle all tasks with less than K euros. Which (and how many)
variables and clauses do we need to do this using SAT? Note: if needed, you can leave arithmetical
constraints (at-most-one, cardinality, pseudo-Boolean...) without encoding them into SAT.

Solution: We introduce n propositional variables xi meaning “programmer i works” (i.e., “program-
mer i does one or more tasks”). For each task ti, we need one clause of length |Si|, saying that at least
one programmer of the set Si works:

∨
pj∈Si

xj. We also need one pseudo-Boolean constraint saying
that the programmers that work cost less than K euros in total: e1x1 + · · ·+ enxn < K. The number
of clauses needed for this pseudo-Boolean constraint depends on the encoding used.

4) Suppose we describe undirected graphs in Prolog using predicates as in the following example:

vertices([1,2,3,4]).

edge(1,2).

edge(1,4),

edge(2,3),

edge(3,4),

nonedge(1,3).

nonedge(2,4).

Program in Prolog a new predicate tree(T) which means that T is a subset of the vertices that
forms a tree: all vertices in T are connected but there are no cycles within T. Also give all auxiliary
predicates.

Solution:

tree(T):- vertices(V), subset(V,T), connected(T), \+hasCycle(T).

connected([]):-!.

connected([X|V]):- con([X],V). % here [X] is the already connected part

con(_,[]). % Below, find vertex Y to add to the already connected part C:

con(C,V):- memberRest(Y,V,Rest), member(X,C), edge1(X,Y), !, con( [Y|C], Rest ).

hasCycle(T):- subset(T,C), permutation(C,P), P=[First|_], isCycle(First,P).

isCycle(First,[Last] ):- edge1(Last,First),!.

isCycle(First,[X,Y|L]):- edge1(X,Y), isCycle( First, [Y|L] ), !.

%%%%% well-known auxiliary predicates:

subset([],[]).

subset([X|L],[X|S]):-subset(L,S).

subset([X|L], S ):-subset(L,S).

permutation( [X|L], Perm ):- permutation(L,P), append(P1,P2,P), append(P1,[X|P2],Perm).

memberWithRest(X,Set,Rest):- append(A,[X|B],Set), append(A,B,Rest).

edge1(X,Y):- edge(X,Y). % edge1: edges in both directions

edge1(X,Y):- edge(Y,X).

5) Using the CLP module for finite domains (clpfd) of SWI prolog, we can force labelings of the
variables to maximize a given expression. For example, the following code writes [5,5]:

[X,Y] ins 1..10, X+Y #= 10, labeling([max(X*Y)],[X,Y]), write([X,Y]).

Now you are flying back from China, and you should write such a program to compute how many
units of each one of six products you shoould take in your suitcase with capacity 80Kg, if you want
to maximize the total value, and the products have the following weights (Kg) and values (Euros):

p1 p2 p3 p4 p5 p6

weight: 1 2 3 5 6 7

value: 1 4 7 11 14 15

Solution:



china:- L = [A,B,C,D,E,F],

L ins 0 .. 80, 1*A + 2*B + 3*C + 5*D + 6*E + 7*F #=< 80,

labeling( [ max( 1*A + 4*B + 7*C + 11*D + 14*E + 15*F ) ], L ), write(L), nl,!.

6) Formalize in first-order logic and prove by resolution that A ∧B ∧C ∧D |= E:
A) All owners of crazy dogs are stupid
B) Everything has some owner
C) There are no stupid people
D) Pluto is a crazy dog
E) Mourinho is very well educated

Solution: We need to prove that A ∧B ∧ C ∧D ∧ ¬E is unsatisfiable. In fact, here A ∧B ∧ C ∧D

is already unsatisfiable (and E has nothing to do with them). Note that, intuitively, Pluto is a crazy
dog (by D) with some owner (by B) that is stupid (by A), and this contradicts C, so one needs all
four these sentences.

A) All owners of crazy dogs are stupid (here O(x, y) means “x owns y”):
∀x(∃yO(x, y) ∧ CD(y)) → S(x)
∀x¬(∃yO(x, y) ∧ CD(y)) ∨ S(x)
∀x∀y¬O(x, y) ∨ ¬CD(y) ∨ S(x)

B) Everything has some owner:
∀x∃yO(y, x)
∀xO(fy(x), x)

C) There are no stupid people:
∀x¬S(x)

D) Pluto is a crazy dog:
CD(pluto)

So we get four clauses:
A) ¬O(x, y) ∨ ¬CD(y) ∨ S(x)
B) O(fy(z), z)
C) ¬S(v)
D) CD(pluto).

By resolution we get:
1) ¬O(x, pluto) ∨ S(x) (from A and D)
2) S(fy(pluto)) (from 1 and B)
3) [] (from 2 and C)


