Lógica en la Informática / Logic in Computer Science

Thursday May 10th, 2018

Time: 1h30min. No books, lecture notes or formula sheets allowed.

- **1)** (3 points)
- **1a)** Let F, G, H be propositional formulas. Is it true that always $(F \wedge G) \wedge H \equiv F \wedge (G \wedge H)$? Prove it using only the definition of propositional logic.
- **1b)** Let F, G, H be propositional formulas. Is it true that always $F \wedge (G \vee H) \equiv F \vee (G \wedge H)$? Prove it using only the definition of propositional logic.
- 2) (2 points) Write all clauses obtained by applying Tseitin's transformation to the formula $(p \land (q \lor \neg r)) \lor q$. Use auxiliary variables named a_0, a_1, a_2, \ldots (where a_0 is for the root).
- 3) (4 points) John wants to buy a subset of Amazon's n products (and, as you know, with a very large
- n). But he has the following 1 + p + q constraints, where all M, I_i, L_j, R_j denote subsets of $\{1 \dots n\}$:
 - \blacksquare he *must* buy all products of M
 - $I_1 \dots I_p$ are incompatibility sets: for each I_i , John cannot buy all products in I_i
 - constraints $L_1 \to R_1$... $L_q \to R_q$, where $L_i \to R_i$ means that if John buys *all* products of L_i , then he must also buy *all* products of R_i .
- **3a)** Answer all three questions **very briefly**. What would you recommend John to do for *efficiently* finding a set S of products that he can buy without violating any of the constraints?
- **3b)** Same question for finding a set S with minimal |S|.
- 3c) Is the minimal set S of 3b) unique or can there be several distinct minimal sets?
- 4) Consider the following problem, called *model counting*:

Input: a natural number k and a set of propositional clauses S over symbols \mathcal{P} .

Question: does S have at least k different models $I: \mathcal{P} \to \{0,1\}$?

We want to analyze the computational complexity of model counting, that is, determine if it is polynomial, NP-complete, or perhaps even harder, etc. Answer all four questions **very briefly** (max. 10 words per question).

- **4a)** (1 point) Is model counting at least as hard as SAT? (that is, can we express SAT as a model counting problem?) Why?
- **4b)** (4b,c,d: 1 bonus point, if short and correct) What do you think, is SAT at least as hard as model counting? Why?
- 4c,4d) Same questions if S is a set of Horn clauses.