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1) Given two propositional formulas F' and G, is it true that F' — G is a tautology iff F' = G7 Prove

it using only the formal definitions of propositional logic.
Answer: This is true.

F — G is a tautology iff (by def. of —)
-FV G is a tautology iff (by def. of tautology)
forall I, I =—-F VG iff (by def. of =)
for all I, eval;(—-F Vv G) =1 iff (by def of evalr(V) )
for all I, max(eval;(—F), eval;(G)) = 1 iff (by def of eval;(—) )
for all I, max(1 — eval;(F),eval;(G)) = 1 iff (by def of max)
for all I, 1 — eval;(F) =1 or eval;(G) =1 iff (by def of —)
for all I, eval;(F) =0 or eval;(G) =1 iff (by def of )
forall I, I = F or I =G iff (by def of logical consequence)
FEG.

2) Let F be a formula. Is it true that F is satisfiable if, and only if, all logical consequences of F' are
satisfiable formulas? Prove it using only the formal definitions of propositional logic.
Answer: Yes, it is true.

—) Let G be any logical consequence of F', that is, F' = G. Now F satisfiable means F' has some
model I and by definition of F' = G, every model of F' is a model of G, which implies I = G, so G is
satisfiable.

<) By definition of logical consequence we have F' = F (obviously, every model of F' is a model
of F'), so if all logical consequences of F' are satisfiable formulas then F' itself is also satisfiable.

3) What is Horn-SAT? What is its computational complexity? Explain very briefly why.

Answer: Horn-SAT is the problem of deciding the satisfiability of a set of clauses S such that all
clauses in S are Horn: they have at most one positive literal.

It is polynomial, more precisely linear, because we can decide it simply by unit propagation of
positive unit literals.

For example, given the set of four Horn clauses S = { -r, p, -pVgq -pV-qVr }, by
propagation of the positive unit clause p, we get ¢, and then 7, and then a conflict (the empty clause).
Then S is unsat: since unit propagation is correct, all new units are logical consequences of S.

Another example: S = { —-rV ', p, =pVyg, —-pV-qgVr }. We also propagate positive
units p, ¢, r, but no empty clause appears. In that case S is sat, since we get a model I by setting all
propagated units to 1 and the rest to 0: here I(p) = I(¢) = I(r) = 1 and I(+’) = 0. Indeed then always
I is a model of S, i.e., I = C, for every non-empty clause C of S that is not a positive unit clause: if
C' has propagated, then I |= C; otherwise, since C' is Horn, it must have at least one negative literal
—p where p has not been propagated, so I = C too.



4) Consider the following decision problem, called “MaxSAT”:
Input: A natural number k and a set S of n propositional clauses over propositional symbols P.
Question: Is there any interpretation I : P — {0, 1} that satisfies at least k clauses of S?

4a) Do you think that MaxSAT is polynomial? NP-complete? Exponential? Why?

Answer: It is NP-complete.

~MaxSAT is not easier than general SAT, since SAT is the particular case of MaxSAT where k = n.
—MaxSat is also not harder than SAT since one can reduce MaxSat to SAT: decide MaxSat with one
call to a SAT solver (see 4b). Another independent proof (without using 4b): MaxSat is still in NP
because one can verify a given solution, an interpretation I, in linear time (check whether indeed I
satisfies at least k clauses).

4b) How would you use a SAT solver to decide it?

Answer: A single call to a SAT solver is sufficient.

Let S be {C1,...,Cy}. Use new auxiliary variables x1,...,x,. Let S be {C1 V —x1,...,Cp V —2y }.
Then we need to find a model I for S’ such that at least k of the auxiliary variables are true. Let
Card be the set of clauses obtained by encoding the cardinality constraint x1 + ...+ z, > k. Then,
running the solver with input clauses S’ U Card will find the desired I if it exists, and return “unsat”
otherwise.

4c) How would you use a SAT solver to solve the optimization version of MaxSAT, that is, how to
find the I that satisfies as many of the clauses of S as possible?

Answer: For this we need more than one call to the SAT solver.

A) Run the solver on the input S’ defined as in 4b). Note that S’ is satisfiable (just set all z;’s to 0).
B) If it finds a model where m x;’s are true, run again with input S’ U Clard, where Card is the set
of clauses obtained by encoding the cardinality constraint x1 + ...+ x, > m.

Repeat step B (finding each time models with more true z}s), until the solver returns unsat. The last
solution found is the optimal one.

Another algorithm is to make calls to the solver with S’ and a constraint x1 + ...+ x, > k, where
the first call k is n; if it is unsatisfiable, then try n — 1, etc., until a model is found, which is then
optimal. Yet another algorithm is to do a binary search. But the first algorithm given here works
very well, because it is usually easier to find a model than to prove unsatisfiability and because the
improvement in solution quality at each iteration frequently is by more than 1.



