
Lógica en la Informática / Logic in Computer Science

Tuesday November 26th, 2013

Time: 1h55min. No books, lecture notes or formula sheets allowed.

1A) Given two propositional formulas F and G, is it true that F → G is a tautology iff F ∧ ¬G is
unsatisfiable? Prove it using only the formal definitions of propositional logic.

Solution: It is true:
F → G tautology iff [def. →]
¬F ∨G tautology iff [def. tautology]
for every I, evalI(¬F ∨G) = 1 iff [def. evalI ∨]
for every I, max(evalI(¬F ), evalI(G)) = 1 iff [def. evali ¬]
for every I, max(1− evalI(F ), evalI (G)) = 1 iff [arithmetic: evalI(F ) = 0 or evalI(G) = 1]
for every I, min(evalI(F ), 1 − evalI(G)) = 0 iff [def. evalI ¬]
for every I, min(evalI(F ), evalI (¬G)) = 0 iff [def. evalI ∧]
for every I, evalI(F ∧ ¬G) = 0 iff [def. unsat.]
F ∧ ¬G unsatisfiable

1B) Given two propositional formulas F and G, is it true that F |= G iff F → G is satisfiable? Prove
it using only the formal definitions of propositional logic.

Solution: It is false. A counterexample is as follows: let F be the formula p and G be the formula ¬p.
The resulting formula p → ¬p is satisfiable (I(p) = 0 is a model), but p 6|= ¬p, as the interpretation
I(p) = 1 is a model of p but not a model of ¬p.

1C) What is the complexity of Horn-SAT? What is the complexity of 2-SAT? What do you think is
the complexity of HornOrTwo-SAT, that is, deciding the satisfiability of sets S of clauses such that
every clause in S is either Horn or has at most two literals?

Solution: Horn-SAT and 2-SAT are both polynomial (linear, in fact). But if clauses of both kinds
are allowed, then it becomes NP-Complete, because we can easily transform any clause set S into an
equisatisfiable HornOrTwo-SAT clause set, as follows. For each variable xi, we introduce a new variable
x′i and add two-literal clauses expressing that x′i is the negation of xi (this is similar to the Tseitin
transformation): ¬xi ∨¬x′i and xi ∨x′i. After that we can convert all clauses of S into clauses with
only negative literals (which are Horn clauses) by replacing, for each variable xi, all positive literals
xi by ¬x′i.

2) Consider the at most one constraint (AMO), saying that among n literals l1 . . . ln, at most one
can be true, that is, l1 + · · · + ln ≤ 1.
2A) Write the name of the encoding you know for this constraint that needs the fewest auxiliary
variables. How many (as a function of n)?
Solution: The quadratic encoding. Zero auxiliary variables.

2B) Write the name of the encoding for this constraint that needs the fewest clauses. How many?
Solution: Both the Ladder and the Heule 3 encodings need only 3n clauses.

2C) We call such an AMO encoding arc-consistent for unit propagation if, when one of l1 . . . ln
becomes true, the SAT solver’s unit propagation mechanism will set the other literals to false. This is
a good property. Does the encoding you gave as a answer for 2A fulfill it?
Solution: Yes, if a literal li becomes true, then for every other literal lj there is a clause ¬li ∨¬lj by
which unit propagation will set lj to false.

2D) Write all clauses needed to express the cardinality constraint l1 + · · ·+ l5 ≥ 2 without using any
auxiliary variables (do not write any unnecessary clauses).
Solution: l1 ∨ l2 ∨ l3 ∨ l4 l1 ∨ l2 ∨ l3 ∨ l5 l1 ∨ l2 ∨ l4 ∨ l5 l1 ∨ l3 ∨ l4 ∨ l5 l2 ∨ l3 ∨ l4 ∨ l5.



2E) Write all clauses needed to express the Pseudo-Boolean constraint 7x+4y+5z+3u+8v+9w ≤ 16
without using any auxiliary variables (do not write any unnecessary clauses).
Solution: ¬w∨¬v ¬w∨¬x∨¬z ¬w∨¬x∨¬y ¬w∨¬x∨¬u ¬w∨¬z∨¬y ¬w∨¬z∨¬u
¬v ∨ ¬x ∨ ¬z ¬v ∨ ¬x ∨ ¬y ¬v ∨ ¬x ∨ ¬u ¬v ∨ ¬z ∨ ¬y ¬x ∨ ¬z ∨ ¬y ∨ ¬u.

3) We need to plan the activities of a transportation company during a period of H hours. The
company has T trucks, D drivers and there are N transportation tasks to be done, each one of which
lasts one hour and needs one driver per truck.
Each task i ∈ 1 . . . N needs Ki trucks, and has a list Li ⊆ {1 . . . H} of hours at which this task i can
take place. For example, if L7 = {3, 4, 8} this means that task 7 can take place at hour 3, at hour 4
or at hour 8.
For each driver d ∈ 1 . . . D there is a list of blockings Bd ⊆ {1 . . . H} of hours at which driver D can
not work.
3A) Explain how to use a SAT solver for planning this: for each task, when does it take place, and
using which drivers. Clearly indicate which types of propositional variables you are using, and how
many of each type, using the following format:

variables ti,h meaning ”task i takes place at hour h”
for all tasks i ∈ 1 . . . N and for all hours h ∈ 1 . . . H
Total: N ·H variables.

Since H, D and N may be large, it is not allowed to use O(H ·D ·N) variables (but using such a large
number of clauses is fine). Hint: you many use several types of variables, for example one type with
N ·H variables and another one with N ·D.

Also clearly indicate which clauses you need, and how many of each type, and how many literals
each type of clause has. If you use any AMO, cardinality or pseudo-Boolean constraints, it is not
necessary to convert these into CNF.
Solution:
Variables ti,h meaning “task i takes place at hour h”

for all tasks i ∈ 1 . . . N and for all hours h ∈ 1 . . . H
Total: N ·H variables.

Variables dri,d meaning “task i has driver d among its drivers”
for all tasks i ∈ 1 . . . N and for all drivers d ∈ 1 . . . D
Total: N ·D variables.

Clauses to express that each task i is at exactly one hour from its list Li:
for each i, if Li = {h1, . . . hk}, one cardinality constraint ti,h1

+ · · ·+ ti,hk
= 1 (or one AMO+ALO).

Clauses to express that no driver d works on two different tasks i and j at the same hour h:
for each driver d and hour h and for each pair of tasks i, j such that h ∈ Li and h ∈ Lj ,
a four-literal clause ¬dri,d ∨ ¬drj,d ∨ ¬ti,h ∨ ¬tj,h.

Clauses to express that each task i needs Ki drivers:
one cardinality constraint dri,1 + · · ·+ dri,D = Ki per task (here ≥ would suffice instead of =).

Clauses to express that at no time point we are using more than T trucks:
for each hour h, a pseudo-Boolean constraint K1 t1,h + . . . +KN tN,h ≤ T .

Clauses to express that a driver d cannot work at hour h:
for each task i, a two-literal clause ¬ti,h ∨ ¬dri,d
i.e., for each such a blocking of a driver d at hour h there are N two-literal clauses.

3B) Extend your solution to take into account that no driver can work more than 50 hours in total
during the whole period of H hours. Hint: this may require another type of variables.
Solution:
Clauses to express that no driver works more than 50 hours:

for each driver d, one cardinality constraint dri,d + · · · + drN,d ≤ 50


