
Lógica en la Informática / Logic in Computer Science

Monday June 16th, 2014

Time: 2h30min. No books, lecture notes or formula sheets allowed.

1) We want to encode the at-most-one (AMO) constraint x1 + . . . + x10 ≤ 1 using 24 clauses and
3 auxiliary variables a, b, and c. Write the smaller constraints into which the constraint is split and
write the clauses for each part.

Solution: Using the Heule-3 encoding, we have that AMO(x1, . . . , x10) is equivalent to
AMO(x1, x2, x3, a) and AMO(¬a, x4, . . . , x10). The second constraint is equivalent to:
AMO(¬a, x4, x5, b) and AMO(¬b, x6, . . . , x10), where the latter is equivalent to:
AMO(¬b, x6, x7, c) and AMO(¬c, x8, x9, x10).

So in total we get four 4-literal AMO constraints:
AMO(x1, x2, x3, a) and AMO(¬a, x4, x5, b) and AMO(¬b, x6, x7, c) and AMO(¬c, x8, x9, x10).

For each one of them the quadratic encoding requires 6 clauses, e.g., AMO(x1, x2, x3, a) generates:
¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬a, ¬x2 ∨ ¬x3, ¬x2 ∨ ¬a and ¬x3 ∨ ¬a,

2) Consider an (undirected) graph: a set of vertices V and a set of edges E. We want to color it with
K colors: each vertex of V gets exactly one of the K colors such that, for each edge (i, i′), vertices i

and i′ get different colors. Explain very briefly what is the best way to do this using SAT for different
values of K, and why.

Solution: We use a SAT encoding with |V | ·K variables xij meaning “vertex i gets color j”.
We need |V | clauses with K literals expressing that each vertex gets at least one color:

for each vertex i, a clause xi1 ∨ . . . ∨ xiK .
We also need K 2-literal clauses per edge:

for each edge (i, i′) and each color j, a clause ¬xij ∨ ¬xi′j .
If K ≤ 2 this gives us a 2-SAT problem that can be solved in polynomial time using a specialized
2-SAT solver (e.g., based on resolution, or on detecting cycles in a graph).
If K > 2 the problem is NP-hard (so use any good SAT solver).

3A) Consider a number of N items, each item i ∈ 1..N having a weight of wi kg and a price of pi
euros. We also have a number of M trucks, each one of capacity 1000kg. Explain how to use a SAT
solver to select a subset (not necessarily all) of the items that will be carried, such that the total price
of all items carried is at least P euros. and to assign each selected item to some truck (respecting truck
capacities). Clearly indicate which variables you use and their precise meaning, and which properties
you impose using which clauses or which constraints (for cardinality or pseudo-Boolean constraints,
it is not necessary to write their encodings into clauses).

Solution: Consider N ·M propositional variables xij meaning “item i will be carried by truck j”.
For each truck j, one pseudo-Boolean constraint expressing that its capacity is not exceeded:

w1 x1j + . . .+ wN xNj ≤ 1000
One pseudo-Boolean constraint to express that the total price is at least P :

p1 x11 + . . . + p1 x1M + p2 x21 + . . .+ p2 x2M + . . . + pN xN1 + . . .+ pN xNM ≥ P

[Optional] For each item i, one AMO constraint expressing that it is in at most one truck:
AMO(xi1, . . . , xiM)

3B) How would you use a SAT solver to maximize the total price?

Solution: First run a SAT solver without the pseudo-Boolean constraint for the price. This is
always satisfiable, giving a first solution with price k. Then run again, with the additional constraint
p1x11 + . . .+ p1x1M + . . .+ pNxN1 + . . .+ pNxNM ≥ k+1 Repeat this: each time we get a solution
with price k, search for another one with price at least k + 1. Repeat this until the problem becomes
unsatisfiable, indicating that the last solution found was the optimal one.

4) Prove using first-order logic that sentence 5 is a logical consequence of the first four:
1. All dogs make noise.
2. Anyone who has a cat has no mice.
3. Neurotic people do not have any noisy animals.
4. John has either a cat or a dog.
5. If John is neurotic he has no mice.

Solution:

1.∀x Dog(x) → Noisy(x)
2.∀x (∃y(Has(x, y) ∧ Cat(y)) → ¬ ∃z Has(x, z) ∧Mouse(z)
3.∀x Neurotic(x) → ¬∃y Has(x, y) ∧Noisy(y)
4.∃x Has(John, x) ∧ (Cat(x) ∨Dog(x))
not5.¬(Neurotic(John) → ¬ ∃x Has(John, x) ∧Mouse(x))

Transforming into clausal form, intermediate steps are:

2. ∀x (∃y (Has(x, y) ∧ Cat(y)) → ¬ ∃z Has(x, z) ∧Mouse(z) becomes :
∀x ¬(∃y (Has(x, y) ∧ Cat(y)) ∨ ¬ ∃z Has(x, z) ∧Mouse(z) becomes :
∀x ∀y ¬Has(x, y) ∨ ¬Cat(y)) ∨ ¬ ∃z Has(x, z) ∧Mouse(z) becomes :
∀x ∀y ¬Has(x, y) ∨ ¬Cat(y)) ∨ ∀z ¬Has(x, z) ∨ ¬Mouse(z)

3. ∀x Neurotic(x) → ¬∃y Has(x, y) ∧Noisy(y) becomes :
∀x ¬Neurotic(x) ∨ ¬∃y Has(x, y) ∧Noisy(y) becomes :
∀x ¬Neurotic(x) ∨ ∀y ¬Has(x, y) ∨ ¬Noisy(y) becomes :
∀x ∀y ¬Neurotic(x) ∨ ¬Has(x, y) ∨ ¬Noisy(y)

4. ∃x Has(John, x) ∧ (Cat(x) ∨Dog(x)) becomes :
Has(John, c) ∧ (Cat(c) ∨Dog(c))

not5. ¬(Neurotic(John) → ¬ ∃x Has(John, x) ∧Mouse(x)) becomes :
¬(¬Neurotic(John) ∨ ¬ ∃x Has(John, x) ∧Mouse(x)) becomes :
Neurotic(John) ∧ ∃x Has(John, x) ∧Mouse(x) becomes :
Neurotic(John) ∧Has(John, d) ∧Mouse(d)

and the clausal form is:

1. ¬Dog(x) ∨Noisy(x)
2. ¬Has(x, y) ∨ ¬Cat(y) ∨ ¬Has(x, z) ∨ ¬Mouse(z)
3. ¬Neurotic(x) ∨ ¬Has(x, y) ∨ ¬Noisy(y)
4a : Has(John, c)
4b : Cat(c) ∨Dog(c)
5a : Neurotic(John)
5b : Has(John, d)
5c : Mouse(d)

Which by resolution gives us:

6. 3 + 5a ¬Has(John, y) ∨ ¬Noisy(y)
7. 6 + 4a ¬Noisy(c)
8. 7 + 1 ¬Dog(c)
9. 8 + 4b Cat(c)
10. 9 + 2 ¬Has(x, c) ∨ ¬Has(x, z) ∨ ¬Mouse(z)
11. 10 + 4a ¬Has(John, z) ∨ ¬Mouse(z)
12. 11 + 5b ¬Mouse(d)
13. 12 + 5c []

5) Consider an n × n chessboard (for any natural number n > 3, not necessarily 8), where n is
defined by a Prolog clause boardSize(n). (for example, boardSize(14) if if n = 14). Define a Prolog
predicate horse(I1,J1,I2,J2) that writes the shortest possible sequence of positions that a horse of
chess traverses to go from initial position I1,J1 to final position I2,J2 on the board (positions are
(row,column), each one in 1..n). It must write the sequence in the right order, the first position being
[I1,J1], and write “no solution” if no such a sequence exists.

Solution:

horse(I1,J1,I2,J2):-

boardSize(N), NumSquares is N*N,

between(0,NumSquares,K),

path([I1,J1], [I2,J2], [[I1,J1]], Path),

length(Path,K),

reverse(Path,Path1),

write(Path1).

horse(_,_,_,_):- write(’no solution’).

path(E,E, C,C).

path(CurrentState, FinalState, PathSoFar, TotalPath):-

oneStep(CurrentState, NextState),

\+member(NextState,PathSoFar),

path(NextState, FinalState, [NextState|PathSoFar], TotalPath).

reverse([],[]).

reverse([X|L],L1):- reverse(L,L2), append(L2,[X],L1),!.

exists(I,J):- boardSize(N), between(1,N,I), between(1,N,J).

oneStep([I1,J1], [I2,J2]):- I2 is I1+1, J2 is J1+2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- I2 is I1-1, J2 is J1+2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- I2 is I1+1, J2 is J1-2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- I2 is I1-1, J2 is J1-2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- J2 is J1+1, I2 is I1+2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- J2 is J1-1, I2 is I1+2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- J2 is J1+1, I2 is I1-2, exists(I2,J2).

oneStep([I1,J1], [I2,J2]):- J2 is J1-1, I2 is I1-2, exists(I2,J2).

