
Lógica en la Informática / Logic in Computer Science

Thursday January 12th, 2017

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:
eval(propositional logic) = max{ eval(Problems 1,2,3,4), eval(partial exam) }.
eval(first-order logic) = eval(Problems 5,6,7).

1) Let F and G be arbitrary propositional formulas.

1a) Can it happen that F |= G and F |= ¬G? Prove it from the definitions of propositional logic.

Answer: Yes, if F is unsatisfiable (e.g., if F is p ∧ ¬p); then any formula is a logical consequence of F.

1b) Assume F |= G. Prove, from the definitions of propositional logic, that then F ≡ F ∧G.
Hint: prove F ≡ F ∧G distinguishing the two cases: I |= F and I 6|= F (and use F |= G in one case).

Answer: To prove F ≡ F ∧G, (by definition of ≡) we have to prove that F and F ∧G have the same models,
that is, for every interpretation I, evalI(F) = evalI(F ∧G). We distinguish two cases:
Case evalI(F) = 1. This (since F |= G) implies

evalI(F) = evalI(G) = 1 which (by definition of min) implies
min(evalI(F), evalI(G)) = 1 which (by definition of evalI(∧)) implies evalI(F ∧G) = 1.

Case evalI(F) = 0. This (by definition of min) implies
min(evalI(F), evalI(G)) = 0 which (by definition of evalI(∧)) implies evalI(F ∧G) = 0.

2) The Tseitin transformation T transforms an arbitrary propositional formula F into a CNF (a set of clauses
with auxiliary variables) T (F) that is equisatisfiable: F is SAT iff T (F) is SAT. Moreover, the size of T (F)
is linear in the size of F. Answer very briefly: Is there any known transformation T ′ into an equisatisfiable
linear-size DNF? If yes, which one? If not, why?

Answer: No such a transformation T ′ is known, because then it would also be known that P = NP: then we
could solve an NP-complete problem (is F SAT?) by transforming F in linear time into the DNF T ′(F), and
then deciding whether the DNF T ′(F) is satisfiable (which, as we know, can be done in linear time for DNFs).

3) Answer very briefly: What is 2-SAT? Is it polynomial? Why?

Answer: 2-SAT is the problem of deciding the satisfiability of a given set of clauses S where each clause in
S has at most two literals. It is polynomial. One method is by checking if the empty clause is in the closure
under resolution of S , which is quadratic since only clauses with at most two literals are generated, and only a
quadratic number of such clauses exist.

4) Answer very briefly: Which clauses are needed to encode the pseudo-Boolean constraint 2x+3y+5z+6u+

8v ≤ 11 into SAT, if no auxiliary variables are used? Which clauses are needed in general, with no auxiliary
variables, for a constraint a1x1 + . . . + anxn ≤ k?

Answer: To encode 2x + 3y + 5z + 6u + 8v ≤ 11, for every (minimal) subset of variables such that the sum of
its coefficients is more than 11, we forbid that all of them are true. In this case, it suffices to have five clauses:
¬v ∨ ¬u, ¬v ∨ ¬z, ¬v ∨ ¬x ∨ ¬y, ¬u ∨ ¬z ∨ ¬y and ¬u ∨ ¬z ∨ ¬x.

Note that “minimal” here means that, for example, the clause ¬v ∨ ¬z ∨ ¬y is not needed because it is
subsumed by the stronger clause ¬v ∨ ¬z.

In general, given a constraint a1x1 + . . . + anxn ≤ k, we need one clause ¬xi1 ∨ . . . ∨ ¬xik for each subset
S = {i1 . . . ik} of {1 . . . n} such that ai1 + · · ·+aik > k, and such that moreover S is minimal (ai1 + · · ·+aik −ai j ≤ k
for every j with 1 ≤ j ≤ k).



5) Is the following first-order formula satisfiable? If not, explain why. If yes, give a model (and no explanations).
∀x ¬p(x, x) ∧
∀x ∀y ∀z ( p(x, y) ∧ p(y, z)→ p(x, z) ) ∧
∀x ∃y p(x, y) ∧
∀x ∀y ( p(x, y)→ ∃z (p(x, z) ∧ p(z, y)) )

Answer: Yes. Example of model I: DI = � and pI(x, y) = 1 iff x < y (x is a smaller rational number than y).
Note: there is no finite model; the first three conjuncts (p is an irreflexive, transitive and serial relation), are the
typical example of this.

6)
6a) Explain in a few words how you would formally prove, given two first-order formulas F and G, that F 6|= G.
6b) Same question for F |= G.
6c) F is ∀x p(a, x) ∧ ∃y ¬q(y) and G is ∃v∃w (¬q(w) ∧ p(v, a)). Do we have F |= G? Prove it.
6d) F is ∀x∃y p(x, y) and G is ∃y∀x p(x, y). Do we have F |= G? Prove it.

Answer:
6a: Giving a counter example, an interpretation I such that I |= F but I 6|= G.

6b: By proving that F ∧¬G is unsatisfiable, turning it into clausal form S , and obtaining the empty clause from
S by resolution and factoring.

6c: Yes. F |= G. We prove it as in 6b. Here F gives two clauses: 1 : p(a, x) and 2 : ¬q(cy) (here cy is the
Skolem constant introduced for y).
¬G is ¬(∃v∃w (¬q(w) ∧ p(v, a))) which becomes ∀v∀w ¬(¬q(w) ∧ p(v, a)) which becomes
∀v∀w (q(w) ∨ ¬p(v, a)) which becomes the clause 3 : q(w) ∨ ¬p(v, a).
By one step of resolution between 1 and 3 with mgu {x = a, v = a} we get clause 4 : q(w), and with one more
step of resolution between 2 and 4 with mgu {w = cy} we get the empty clause.

6d: No. F 6|= G. We prove it as in 6a. Consider the interpretation I where DI = {a, b} and pI is interpreted as
equality on this domain. Then I |= F but I 6|= G.

7) Write a program return(L,A) in swi prolog (using library(clpfd) or not, feel free) that outputs (writes)
the minimal number of coins needed for returning the amount A if (infinitely many) coins of each value of the
list L are available. Two examples:
?-return([1,5,6],10). writes 2 (since 2*5 = 10).
?-return([1,2,5,13,17,35,157],361). writes 5 (since 1*13 + 2*17 + 2*157 = 361).

Answer: Note: greedy algorithms (starting with the largest coin, etc.) do not work (try the first example!).

return(L,A):- between(0,A,N), coins(N,L,A), write(N), nl.

coins(0,[],0).

coins(N,[C|Cs],A):- N>0,A>0, between(0,N,K), N1 is N-K, A1 is A-K*C, coins(N1,Cs,A1).

Another answer:

:-use_module(library(clpfd)).

return(L,A):- length(L,N), length(V,N), V ins 0..A, sumExpression(V,SumExpr),

totalValueExp(V,L,Expr), Expr #= A, labeling( [min(SumExpr)], V ),

S is SumExpr, write(S), nl,!.

sumExpression( [], 0 ):- !.

sumExpression( [V|Vs], V+Expr ):- sumExpression(Vs,Expr),!.

totalValueExp( [], [], 0 ):- !.

totalValueExp( [V|Vs], [C|Cs], V*C + Expr ):- totalValueExp(Vs,Cs,Expr),!.


