
Lgica en la Informtica / Logic in Computer Science
June 20th, 2017. Time: 2h30min. No books or lecture notes.

Note on evaluation:
eval(propositional logic) = max{ eval(Problems 1,2,3), eval(partial exam) }.
eval(first-order logic) = eval(Problems 4,5,6).

1 Consider the at-most-one (AMO) constraint, expressing that at most one of the propositional vari-
ables x1 . . . xn is true, also written x1 + · · ·+ xn ≤ 1. Consider:

1) the encoding for AMO you know that needs the smallest (in terms of n) number of clauses, and
2) the encoding that needs the smallest number of auxiliary variables.

For each case, write giving no further explanations: a) the name of the encoding, b) which, and
how many, auxiliary variables it uses, c) which, and how many, clauses (always expressing how many
in terms of n).

Answer: 1) a) the ladder encoding. b) n auxiliary variables a1 . . . an. c) 3n clauses: ¬ai ∨ ai+1,
¬xi ∨ ai, ¬ai ∨ ¬xi+1, for 1 ≤ i ≤ n.

OR a) the Heule-3 encoding. b) n/2 auxiliary variables. c) 3n clauses, by expressing x1+· · ·+xn ≤
1 as x1+x2+x3+a ≤ 1 ∧ ¬a+x4+ · · ·+xn ≤ 1, and using

(

4

2

)

= 6 clauses for x1+x2+x3+a ≤ 1.
2) a) the quadratic encoding. b) no auxiliary vars c) the

(n
2

)

clauses ¬xi ∨¬xj, for 1 ≤ i < j ≤ n.

2 My friend John says that he has found a new way to speed up SAT solving. Before starting his SAT
solver, he removes from the set of clauses S some clauses he calls “unnecessary”:

A: if there is some variable x that appears only in positive literals of clauses of S, then he removes
from S all clauses containing x

B: similarly, if some variable y appears in S only in negative literals then he removes from S all
clauses containing y.
Note that after eliminating some “unnecessary” clauses, step A or B may be (or become) applicable
for other variables, so John continues doing this until no more variables of type A or B exist and then
launches his solver on a (hopefully) much smaller set of clauses. Is John’s idea correct? Explain why,
in very few words.

Answer: Yes. Each time such a subset of clauses is removed, the satisfiability is not changed. For
case A, let S be the set S′ ∪ {x ∨ C1, . . . , x ∨ Ck} where x does not appear in S′. Then S and S′ are
equisatisfiable: if I is an interpretation with I |= S then I |= S′ because S ⊇ S′; reversely, if I ′ |= S′

then we can extend I ′ to a an interpretation I with I(x) = 1 and we get I |= S. Case B is of course
analogous (extending I ′ with I(x) = 0).

3A: What is the complexity of 2-SAT? (just answer, no explanations needed).
3B: Any set of propositional positive clauses, that is, clauses with only positive literals (no negations),
is of course satisfiable, because the interpretation making all variables true is a model. What is the
complexity of deciding the satisfiablity of a given “2-or-positive” set of clauses S, that is, such that
every clause in S is either positive or two-literal (or both)? Explain why, in very few words.
Hint: with two-literal clauses we can express that one variable is the negation of another variable.

Answer:
3A: 2-SAT is polynomial (linear, in fact).
3B: But if clauses of both kinds are allowed, then it becomes NP-Complete.
If it were polynomial, then SAT for any clause set S would be polynomial!
This is because because we can easily transform any clause set S into an equisatisfiable 2-or-positive
clause set S′, by introducing, for each variable xi, a new variable x′i. Then S′ will consist of the
following clauses:

a) For every xi, two two-literal clauses expressing that x′i and xi are the negation of each other:
¬xi ∨ ¬x

′

i and xi ∨ x′i.
b) For every clause C of S with more than two literals, a positive clause C ′ where all negative

literals ¬xj of C have been replaced by positive ones x′j.



4: Consider the following Prolog program and its well-known behaviour:

brother(joan,pere).

father(enric,joan).

uncle(N,U):- father(N,F), brother(F,U).

?- uncle(X,Y).

X = enric,

Y = pere.

Express the program as a set of first-order clauses P and prove that ∃x∃y uncle(x, y) is a logical
consequence of P . Which values did the variables x and y get (by unification) in your proof? Only
write the steps and values. No explanations.

Answer: We have to prove that P ∧ ¬(∃x∃y uncle(x, y)) is unsatisfiable.
Note that uncle(N,U):- father(N,F), brother(F,U) is
∀N ∀U uncle(N,U)← (∃F father(N,F ) ∧ brother(F,U)), which is
∀N ∀U uncle(N,U) ∨ ¬(∃F father(N,F ) ∧ brother(F,U)), which is
∀N ∀U uncle(N,U) ∨ (∀F ¬father(N,F ) ∨ ¬brother(F,U)).

Furthermore, the negation of ∃x∃y uncle(x, y) is ∀x∀y ¬uncle(x, y).
So, from P ∧ ∀x∀y ¬uncle(x, y) we get four clauses:

1. brother(joan, pere)
2. father(enric, joan)
3. uncle(N,U) ∨ ¬father(N,F ) ∨ ¬brother(F,U)
4. ¬uncle(x, y)

By resolution we get:
5. ¬father(x, F ) ∨ ¬brother(F, y) by resolution between 3 and 4, σ = {N = x,U = y}
6. ¬brother(joan, y) by resolution between 5 and 2, σ = {x = enric, F = joan}
7. the empty clause by resolution between 5 and 2, σ = {y = pere}

Here x and y got the values x = enric and y = pere.

5: For each statement, say whether it is true or false and show why in an as simple and short as
possible way:
5A: The formula ∀x∃y (p(x, f(y)) ∧ ¬p(x, y)) is satisfiable.

Answer: True. The following interpretation I is a model: DI = {a, b}, pI(a, a) = 1, pI(a, b) = 0,
pI(b, a) = 1, pI(b, b) = 0, fI(a) = a and fI(b) = a.

5B: ∀x∀y ∃z q(x, z, y) |= ∀x∃z ∀y q(x, z, y).

Answer: False. For following interpretation I, we have I |= ∀x∀y ∃z q(x, z, y), but
I 6|= ∀x∃z ∀y q(x, z, y): DI = {a, b}, and qI(x, y, z) = 1 iff y = z.

6: My good old friend John says that he has written a C++ program P that takes as input an
arbitrary first-order formula F , and such that, if F is a tautology, P always outputs “yes” after a
finite amount of time, and if F is not a tautology, P outputs “no” or it does not terminate.

Is this possible? If this is not possible, explain why. If it is possible, explain how P would work.
A very short answer suffices.

Answer: Yes. It is possible. We have F tautology iff ¬F unsatisfiable iff S = clausal form(¬F )
unsatisfiable iff the empty clause is in the closure under resolution and factoring of S. So John’s
program P can implement those steps and:

-If F is a tautology, terminate with output “yes” as soon the empty clause appears (note that this
happens after finite time).

-If F is not a tautology, the empty clause will not appear. Then P only terminates (with output
“no”) if the closure under resolution and factoring of S is finite.


