Légica en la Informatica / Logic in Computer Science
January 16th, 2019. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) = max{ eval(Problems 1,2,3,4), eval(partial exam) }.
eval(first-order logic) = eval(Problems 5,6,7).

la) Let F' and G be propositional tautologies. Is it true that, for every propositional formula H, we
have H |= F A G7 Prove it using only the definitions of propositional logic.

Answer:
F and G propositional tautologies =—- by definition of tautology
forall I, IEFand Il EFG= by definition of =
forall I, eval;(F) =1 and eval;(G) =1 = by definition of min
forall I, min(eval;(F), eval;(G)) =1 = by definition of evalr(A)
forall I, evali(FAG) =1 = by definition of =
forall I, I=EFNG = from the meaning of if-then
forall I, if [EHthen I = FANG = by definition of logical consequence

HEFAG

1b) Is it true that the formula p is a logical consequence of the set S of three clauses
{ pVaqgVvr, —gqVr, —r }7Proveitin the simplest and shortest way you know. You may use
any well-known property of propositional logic, even without proving that property.

Answer: yes. We know that resolution is correct. So if by resolution from pV ¢ V r and —¢q V r we
obtain the clause p V r, then S |= p V r. In fact, therefore S = SU {pV r}. Similarly, from p V r and
—r we obtain the clause p.

2) Let Res(S) denote the closure under resolution of a set S of propositional two-literal clauses.
Which three properties of Res(S) do you find essential to prove that 2-SAT is polynomial? Answer
in three lines like this:

1. ..

2. ...

3. ...

Answer:

1. Res(S) only contains 2-literal clauses (cannot get larger clauses by resolution from 2-literal clauses).
2. Only a quadratic number of 2-literal clauses exist, so |Res(S)| is quadratic and can be computed
in polynomial time.

3. S insat iff empty clause in Res(S).

3) Given a propositional CNF, that is, a set of propositional clauses S, explain in two lines your best
method to decide wether S is a tautology.

Answer: S is a tautology iff all clauses C' in S are tautologies. A clause is a tautology iff it contains
some predicate symbol p and its negation —p. So the best method is to check this: linear time.

4) Write the clauses needed for expressing x1 + ...+ 24 < 1 using the ladder encoding. (Please write
them in a clean and ordered way; give no explanations.)

Answer:
-1 Va —ay V X9 —ay Vas
—xo V a2 —ag V —xs —as Voas

—x3V as —asz V xy



5) Let F be the folowing formula of first-order logic with equality:

Ve VyVz f(z, f(y,2))=f(f(z,y).2) N Vafle,z)=z N Vo f(i(z),z)=e A VaVyf(z,y)=f(y z).
Any model of F' is called a conmutative group (where e is the neutral element for f and i its inverse).
5a) Give a well-known example of a conmutative group with infinite domain. Please write it as clean
and simple as possible; give no explanations.

Answer: Dy is the integers, fr(n,m) = n + m (the addition of integers), i;(n) = —n, and e; = 0.
5b) Give an as simple as possible example of a conmutative group with a finite domain. Please write
it as clean and simple as possible; give no explanations.

Answer: D; = {a}. Then the functions can only be: fr(a,a) =a, i;(a) =a, and e; = a.

6) Formalize and prove by resolution that sentence D is a logical consequence of the other three:
A: Everybody loves his father and his mother.
B: John is stupid.
C: When someone is stupid, at least one of his parents is stupid too.
D: There are stupid people that are loved by someone.
Mandatory: use function symbols f(z) and m(x) meaning “father of 27 and “mother of z”.

Answer:
A: Va Loves(z, f(x)) A Loves(z,m(x))
B: IsStupid(John)
C: Vx [sStupid(x) — (IsStupid(f(z)) V IsStupid(m(x)))
—D:  =(3z Iy IsStupid(z) N Loves(y,x))
In clausal form, these become:
Al.  Loves(z, f(x))
A2.  Loves(z,m(z))
B.  IsStupid(John)
C.  —IsStupid(z) V 1sStupid(f(x)) V IsStupid(m(zx))
—D. —IsStupid(z) V —Loves(y,x)
By resolution we obtain:
6. IsStupid(f(John))V IsStupid(m(John)) B+ C, o ={x=John}
7. =Loves(y, f(John)) V IsStupid(m(John)) —D+6, o= {x= f(John)}
8. —Loves(y, f(John)) V = Loves(y',m(John)) —-D+7, o={x=m(John)}
9. —Loves(y',m(John)) A1 +8, o={y=John,x = John}
10. empty clause A2+9, o={y = John,x = John}

7) Consider a l-ary function symbol f and a 3-ary predicate symbol P and a first-order interpretation
I with a finite domain D; = {a, b} and the (finite) definition of the functions f; and P;. Answer in a
few words: Is it decidable whether I satisfies a given formula F' (over f and P)? If so, what do you
think is the complexity of this? (hint: any relationship with 3-SAT?).

Answer:
Yes, this is decidable: evaluating a given F' in a given first order interpretation I is obviously a finite
process if Dy is finite.

About the complexity: it is NP-hard even for this simple set of symbols. Let I be the interpretation
where Dy = {a,b}, fr(a) =, f1(b) = a, and Pr(x,y,z) = 1 iff at least one of its arguments is a. Then
we can express 3-SAT as a problem of checking I = F, in the following way:

(T7VaegVT2) A ... issatisfiable IFF [ = 3zi3xe...3x, P(f(x7),zs, f(x2)) A ...
Hence checking I |= F' cannot be easier than 3-SAT. Here a and b act as true and false, f; as negation
and P; says if a clause is true.

Note: in fact checking I = F is P-space-complete, i.e., it is believed to be even harder than NP-
complete problems.



