
Lógica en la Informática / Logic in Computer Science
January 16th, 2019. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) = max{ eval(Problems 1,2,3,4), eval(partial exam) }.
eval(first-order logic) = eval(Problems 5,6,7).

1a) Let F and G be propositional tautologies. Is it true that, for every propositional formula H, we
have H |= F ∧G? Prove it using only the definitions of propositional logic.

Answer:
F and G propositional tautologies =⇒ by definition of tautology
forall I, I |= F and I |= G =⇒ by definition of |=
forall I, evalI(F ) = 1 and evalI(G) = 1 =⇒ by definition of min
forall I, min(evalI(F ), evalI (G)) = 1 =⇒ by definition of evalI(∧)
forall I, evalI(F ∧G) = 1 =⇒ by definition of |=
forall I, I |= F ∧G =⇒ from the meaning of if-then
forall I, if I |= H then I |= F ∧G =⇒ by definition of logical consequence
H |= F ∧G

1b) Is it true that the formula p is a logical consequence of the set S of three clauses
{ p ∨ q ∨ r, ¬q ∨ r, ¬r }? Prove it in the simplest and shortest way you know. You may use

any well-known property of propositional logic, even without proving that property.

Answer: yes. We know that resolution is correct. So if by resolution from p ∨ q ∨ r and ¬q ∨ r we
obtain the clause p ∨ r, then S |= p ∨ r. In fact, therefore S ≡ S ∪ {p ∨ r}. Similarly, from p ∨ r and
¬r we obtain the clause p.

2) Let Res(S) denote the closure under resolution of a set S of propositional two-literal clauses.
Which three properties of Res(S) do you find essential to prove that 2-SAT is polynomial? Answer
in three lines like this:
1. ...
2. ...
3. ...

Answer:
1. Res(S) only contains 2-literal clauses (cannot get larger clauses by resolution from 2-literal clauses).
2. Only a quadratic number of 2-literal clauses exist, so |Res(S)| is quadratic and can be computed
in polynomial time.
3. S insat iff empty clause in Res(S).

3) Given a propositional CNF, that is, a set of propositional clauses S, explain in two lines your best
method to decide wether S is a tautology.

Answer: S is a tautology iff all clauses C in S are tautologies. A clause is a tautology iff it contains
some predicate symbol p and its negation ¬p. So the best method is to check this: linear time.

4) Write the clauses needed for expressing x1 + . . .+ x4 ≤ 1 using the ladder encoding. (Please write
them in a clean and ordered way; give no explanations.)

Answer:
¬x1 ∨ a1 ¬a1 ∨ ¬x2 ¬a1 ∨ a2
¬x2 ∨ a2 ¬a2 ∨ ¬x3 ¬a2 ∨ a3
¬x3 ∨ a3 ¬a3 ∨ ¬x4



5) Let F be the folowing formula of first-order logic with equality:
∀x∀y ∀z f(x, f(y, z))=f(f(x, y), z) ∧ ∀x f(e, x)=x ∧ ∀x f(i(x), x)=e ∧ ∀x∀y f(x, y)=f(y, x).
Any model of F is called a conmutative group (where e is the neutral element for f and i its inverse).
5a) Give a well-known example of a conmutative group with infinite domain. Please write it as clean
and simple as possible; give no explanations.

Answer: DI is the integers, fI(n,m) = n+m (the addition of integers), iI(n) = −n, and eI = 0.

5b) Give an as simple as possible example of a conmutative group with a finite domain. Please write
it as clean and simple as possible; give no explanations.

Answer: DI = {a}. Then the functions can only be: fI(a, a) = a, iI(a) = a, and eI = a.

6) Formalize and prove by resolution that sentence D is a logical consequence of the other three:
A: Everybody loves his father and his mother.
B: John is stup̀ıd.
C: When someone is stupid, at least one of his parents is stupid too.
D: There are stupid people that are loved by someone.

Mandatory: use function symbols f(x) and m(x) meaning “father of x” and “mother of x”.

Answer:
A: ∀x Loves(x, f(x)) ∧ Loves(x,m(x))
B: IsStupid(John)
C: ∀x IsStupid(x) → (IsStupid(f(x)) ∨ IsStupid(m(x)))
¬D: ¬(∃x∃y IsStupid(x) ∧ Loves(y, x))

In clausal form, these become:
A1. Loves(x, f(x))
A2. Loves(x,m(x))
B. IsStupid(John)
C. ¬IsStupid(x) ∨ IsStupid(f(x)) ∨ IsStupid(m(x))
¬D. ¬IsStupid(x) ∨ ¬Loves(y, x)

By resolution we obtain:
6. IsStupid(f(John)) ∨ IsStupid(m(John)) B + C, σ = {x = John}
7. ¬Loves(y, f(John)) ∨ IsStupid(m(John)) ¬D + 6, σ = {x = f(John)}
8. ¬Loves(y, f(John)) ∨ ¬Loves(y′,m(John)) ¬D + 7, σ = {x = m(John)}
9. ¬Loves(y′,m(John)) A1 + 8, σ = {y = John, x = John}
10. empty clause A2 + 9, σ = {y′ = John, x = John}

7) Consider a 1-ary function symbol f and a 3-ary predicate symbol P and a first-order interpretation
I with a finite domain DI = {a, b} and the (finite) definition of the functions fI and PI . Answer in a
few words: Is it decidable whether I satisfies a given formula F (over f and P )? If so, what do you
think is the complexity of this? (hint: any relationship with 3-SAT?).

Answer:
Yes, this is decidable: evaluating a given F in a given first order interpretation I is obviously a finite
process if DI is finite.

About the complexity: it is NP-hard even for this simple set of symbols. Let I be the interpretation
where DI = {a, b}, fI(a) = b, fI(b) = a, and PI(x, y, z) = 1 iff at least one of its arguments is a. Then
we can express 3-SAT as a problem of checking I |= F , in the following way:

(x7 ∨ x8 ∨ x2) ∧ . . . is satisfiable IFF I |= ∃x1∃x2 . . . ∃xn P (f(x7), x8, f(x2)) ∧ . . .

Hence checking I |= F cannot be easier than 3-SAT. Here a and b act as true and false, fI as negation
and PI says if a clause is true.
Note: in fact checking I |= F is P-space-complete, i.e., it is believed to be even harder than NP-
complete problems.


