Lógica en la Informática / Logic in Computer Science

Monday June 13, 2016

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:

```
eval(propositional logic) = \max\{ \text{ eval}(\text{Problems 1,2,3}), \text{ eval}(\text{partial exam}) \}.
eval(first-order logic) = \text{eval}(\text{Problems 4,5,6}).
```

- 1a) Let F and G be propositional formulas such that F is a tautology. Is it true that $F \wedge G \equiv G$? Prove it using only the definitions of propositional logic.
- **1b)** Let F and G be propositional formulas such that F is satisfiable and $F \to G$ is also satisfiable. Is it true that G is satisfiable? Prove it using only the definitions of propositional logic.
- 2) Let us remember the well-known graph coloring problem. **Input:** a natural number k, and an (undirected) graph with n vertices and m edges of the form $(u_1, v_1) \dots (u_m, v_m)$, with all u_i and v_i in $\{1 \dots n\}$, and **Question:** is there a way to "color" each vertex with a color (a number) in $1 \dots k$ such that advacent vertices get different colors?

We know that graph coloring is NP-complete in general. But what is its complexity if k=2? Explain why using sat-based arguments.

- 3) Let S be a satisfiable set of propositional Horn clauses.
- **3a)** What is the complexity of finding the *minimal* model of S, that is, the model I with the minimal number of symbols p such that I(p) = 1?
- **3b)** What is the complexity of deciding whether S has only one model or more than one? For both questions, explain very, very, briefly why.
- 4) We want to write a computer program that takes as input two arbitrary first-order formulas F and G and always terminates writing "yes" if $F \equiv G$, and "no" otherwise. Explain very shortly the steps you would follow to do this, or to get something as similar as possible.
- $\mathbf{5}$) Formalize and prove by resolution that sentence E is a logical consequence of the other four.
 - A: If a person likes logic, he does not like football.
 - B: Brothers of football players like football.
 - C: Messi is a football player and Ney is his brother.
 - D: Ney likes logic.
 - E: Our teacher is a nice guy who knows a lot about football and logic.
- 6) Complete the following graph coloring program (see problem 2). Do makeConstraints recursively, using #\= and the built-in predicate nth1(I,L,X) ("the Ith element of the list L is X").