
Lógica en la Informática / Logic in Computer Science

January 23, 2012. Results published: Wed Jan 25. Review: Thu Jan 26, 10h, Omega 139.

Time: 2h30min. No books, lecture notes or formula sheets allowed.

SOLUTIONS

1) Let us remember the Heule-3 encoding for at-most-one (amo), that is, for expressing in CNF
that at most one of x1 . . . xn is true. It uses the fact that amo(x1 . . . xn) iff amo(x1, x2, x3, aux) AND
amo(¬aux, x4 . . . xn). Then the part amo(¬aux, x4 . . . xn), which has n− 2 variables, can be encoded
recursively in the same way, and amo(x1, x2, x3, aux) can be expressed using the quadratic encoding
with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses,
so in total we need n/2 variables and 3n clauses.

Also remember: an encoding for amo is arc-consistent for unit propagation if, when one of x1 . . . xn
becomes true, the SAT solver’s unit propagation mechanism will set the other variables to false.

1a Is this Heule-3 encoding for amo arc-consistent for unit propagation? Prove it.

Answer: Yes, it is. We can prove it, for example, by induction on n.
Base case: if n ≤ 4 the quadratic encoding part is the whole constraint. For example, for n = 4 we

have ¬x1 ∨ ¬x2, ¬x1 ∨ ¬x3, ¬x1 ∨ ¬x4, ¬x2 ∨¬x3, ¬x2 ∨¬x4, and ¬x3 ∨ ¬x4. For every distinct
pair i, j ⊂ {1 . . . 4} we have a clause ¬xi ∨ ¬xj, so if xi becomes true, all other variables xj become
false by unit propagation.

Induction case: If n > 4 the part amo(x1, x2, x3, aux) is expressed using the quadratic encoding
with 6 clauses: ¬x1∨¬x2, ¬x1∨¬x3, ¬x1∨¬aux, ¬x2∨¬x3, ¬x2∨¬aux, and ¬x3∨¬aux. Now there
are two cases: A) some variable of {x1, x2, x3} becomes true, or B) some variable of x4 . . . xn becomes
true. In case A, as before unit propagation will set the other variables in {x1, x2, x3, aux} to false, and
hence ¬aux becomes true, and then we can apply the induction hypothesis since amo(¬aux, x4 . . . xn)
has two variables less: unit propagation will set all variables in {x4 . . . xn} to false.

In case B, by induction hypothesis, since amo(¬aux, x4 . . . xn) has two variables less, unit propa-
gation will set all other variables in {x4 . . . xn,¬aux} to false and hence aux becomes true, and by the
clauses ¬x1 ∨ ¬aux, ¬x2 ∨ ¬aux, ¬x3 ∨ ¬aux, unit propagation will set x1, x2, and x3 to false.

1b We now want to extend the encoding for at-most-two (amt) constraints. Prove that amt(x1 . . . xn)
has a model I iff amt(x1, x2, x3, aux1, aux2) ∧ amt(¬aux1,¬aux2, x4 . . . xn) has a model I ′.

Answer: If amt(x1 . . . xn) has a model I, then we can extend it to construct a model I ′ of
amt(x1, x2, x3, aux1, aux2)∧amt(¬aux1,¬aux2, x4 . . . xn): if no variable of {x1, x2, x3} is true in I, then
we make aux1 and aux2 true in I ′; if one variable of {x1, x2, x3} is true in I, then we make (for example)
aux1 true and aux2 false in I ′; if two variables of {x1, x2, x3} are true in I, then we make aux1 and aux2
false in I ′. In all three cases I ′ is a model of amt(x1, x2, x3, aux1, aux2)∧amt(¬aux1,¬aux2, x4 . . . xn).

Reversely, if amt(x1, x2, x3, aux1, aux2)∧ amt(¬aux1,¬aux2, x4 . . . xn) has a model I ′, then (“for-
getting” the part of the auxiliary variables), I ′ is also a model of amt(x1 . . . xn): if aux1 and aux2 are
true in I ′, then no variable of {x1, x2, x3} is true in I and at most two of {x4 . . . xn} are true in I ′; if
aux1 is true and aux2 is false in I ′ (or vice versa) then at most one variable of {x1, x2, x3} is true in I
and at most one of {x4 . . . xn} is true in I ′; if aux1 and aux2 are false in I ′ then at most two variables
of {x1, x2, x3} are true in I and no variable of {x4 . . . xn} is true in I ′.

1c Explain how to encode the part amt(x1, x2, x3, aux1, aux2) with no more auxiliary variables.

Answer: Using the following clauses for all subsets of 3 elements out of 5, that is
(

5

3

)

= 10 clauses:
¬x1 ∨ ¬x2 ∨ ¬x3, ¬x1 ∨ ¬x2 ∨ ¬aux1, ¬x1 ∨ ¬x2 ∨ ¬aux2, ¬x1 ∨ ¬x3 ∨ ¬aux1, ¬x1 ∨ ¬x3 ∨

¬aux2, ¬x1 ∨ ¬aux1 ∨ ¬aux2, ¬x2 ∨ ¬x3 ∨ ¬aux1, ¬x2 ∨¬x3 ∨ ¬aux2, ¬x2 ∨ ¬aux1 ∨ ¬aux2, and
¬x3 ∨ ¬xaux1 ∨ ¬aux2,

1d How many clauses and auxiliary variables are needed in total for amt(x1 . . . xn) in this way?

Answer: The part amt(¬aux1,¬aux2, x4 . . . xn) has one variable less. So to eliminate one variables,
we need 10 clauses and 2 auxiliary variables. So in total we will need 10n clause and 2n auxiliary
variables.

1e Is this amt encoding arc-consistent for unit propagation? (That is, if two of x1 . . . xn become true,
will unit propagation set the other variables to false?) Prove it.

Answer: No. It is not arc-consistent for unit propagation. For example, if x1 and x4 become true,
no unit propagation takes place at all. Note that none of the 10 clauses becomes unit.

2) Facebook Catalunya has all the information about its N registered Catalan users and for each
user, the list of her friends. Now they want to find a subset of 200 Catalan users that are all friends
of each other (every two users in the subset are friends). Explain in detail how they can do this using
the Barcelogic SAT Solver.

Answer: Define a SAT encoding with variables xi, for all i in 1..N , meaning that “user i is in the
subset”. Then, for each pair of users (i, i′) with 1 ≤ i < i′ ≤ N such that i and i′ are not friends,
we add clause epressing that at least one of them is not in the subset: ¬xi ∨ ¬xi′ . Finally we need to
express that exactly 200 of the N variables xi are true. This we can do with a cardinality constraint
(for example, encoded using sorting networks). The resulting CNF is given to the Barcelogic SAT
solver. If it finds a model, from this model we can easily reconstruct the solution for Facebook. If it
returns “unsatisfiable”, then no solution for Facebook exists.

Another encoding is to have 200N variables xi,j with i in 1..N , and j in 1.,200, and meaning “user
i is the j-th member of the subset”. Then we need clauses, for each j in 1..200, saying that exactly one
of {x1,j . . . xN,j} is true, and we need clauses, for each user i, saying that at most one of {xi,1 . . . xi,200}
is true. And, as before, for each pair of users (i, i′) with 1 ≤ i < i′ ≤ N such that i and i′ are not
friends, we add all clause epressing that at least one of them is not in the subset: for all j, j′ in 1..200,
all clauses of the form ¬xi,j ∨ ¬xi′,j′ .

3) Now we want to solve problem 2) in Prolog. Assume there are 500,000 users and 500,000 clauses like:
friends(3454,[3,7,11,23,37854]). meaning that (all) the friends of user 3454 are 3,7,11,23 and
37854.

3a) Define a predicate list200(L) that can generate in L under backtracking all lists of 200 different
users (200 numbers in 1 . . . 500,000).

subset(0,_,[]):-!.

subset(N,[X|L],[X|S]):- N1 is N-1, subset(N,L,S).

subset(N,[X|L], S):- subset(N,L,S).

listNumbers(0,[]):-!.

listNumbers(N,[N|L]):- N1 is N-1, listNumbers(N1,L).

list200(L):- listNumbers(500000,LNums), subset(200,LNums,L).

3b) Define a predicate friendsforever that writes a list of 200 friends of each other, if it exists.

friendsforever:- list200(L), allfriends(L,L), write(L), nl.

allfriends([],_).

allfriends([X|Rest],L):- friends(X,FrX), isSubset(L,FrX), allfriends(Rest,L).

isSubset([],_).

isSubset([X|Rest],L):- member(X,L), isSubset(Rest,L).

3c) This predicate is called friendsforever because it may run for a long time (almost forever).
Modify your program to make it faster.

Answer: As always, the idea is to not to have a pure “generate and test” in the form of list200(L)
(generate) and allfriends(L,L) (test), but to interleave them (entrelazarlos) instead. One possibility
is:

friendsforever:- friends(X,FrX), ff([X],[X|FrX],L), write(L), nl.

%the 1st argument L of ff is input, the list built so far.

%The 2nd one I is the intersection of all friends of the members of L

%The 3rd one L1 is the output list.

ff(L,_,L):- length(L,200),!.

ff(L,I,L1):- member(X,I), \+member(X,L), friends(X,FrX), isSubset(L,Frx),

intersection(I,[X|Frx],I1), length(I1,K), K>=200, ff([X|L],I1,L1).

intersection([],_,[]).

intersection([X|L],L1,[X|I]):- member(X,L1), !, intersection(L,L1,I).

intersection([_|L],L1, I):- intersection(L,L1,I).

4) Formalize and prove by resolution that sentence D is a logical consequence of the other three:
A: All politicians sometime lie.
B: Friends of football players never lie.
C: Messi is a football player.
D: Messi has no friends that are politicians.

Answer: We prove that A ∧B ∧ C ∧ ¬D is unsatisfiable.
A : ∀x Pol(x) → Lies(x)
B : ∀x (∃y Friends(x, y) ∧ Player(y)) → ¬Lies(x)
C : Player(messi)
¬D : ∃x Friends(x,messi) ∧ Pol(x)

In clausal form:
A : ¬Pol(x) ∨ Lies(x)
B : ¬Friends(x, y) ∨ ¬Player(y)) ∨ ¬Lies(x)
C : Player(messi)
¬D1 : Friends(cx,messi)
¬D2 : Pol(cx)

Resolution:
6 : Lies(cx) (from ¬D2 and A)
7 : ¬Friends(cx, y) ∨ ¬Player(y)) (from B and 6)
8 : ¬Friends(cx,messi) (from C and 7)
9 : � (from ¬D1 and 8).

