
Last names: ... 1st name: ... DNI: ...

Lgica en la Informtica / Logic in Computer Science

Permutation B. Tuesday April 18th, 2017
Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) Let us remember the Heule-3 encoding for at-most-one (amo) that is, for expressing in CNF
that at most one of the literals x1 . . . xn is true, also written x1 + . . . + xn ≤ 1. It uses the fact that
amo(x1 . . . xn) iff amo(x1, x2, x3, aux) AND amo(¬aux, x4 . . . xn). Then the part amo(¬aux, x4 . . . xn),
which has n − 2 variables, can be encoded recursively in the same way, and amo(x1, x2, x3, aux) can
be expressed using the quadratic encoding with 6 clauses. In this way, for eliminating two variables
we need one auxiliary variable end six clauses, so in total we need n/2 variables and 3n clauses.

1a We now want to extend the encoding for at-most-two (amt, also written x1+ . . .+xn ≤ 2). Prove
that amt(x1 . . . xn) has a model I iff amt(x1, x2, x3, aux1, aux2) ∧ amt(¬aux1,¬aux2, x4 . . . xn) has a
model I ′, with I(xi) = I ′(xi) for all i in 1 . . . n.

Answer:
=⇒: If I |= amt(x1 . . . xn) and k is the number of literals of {x1, x2, x3} that are true in I, then
we extend I into I ′ as follows: if k = 0 we set I ′(aux1) = I ′(aux2) = 1; if k = 1 we set (for
example) I ′(aux1) = 1 and I ′(aux2) = 0; if k = 2 we set I ′(aux1) = I ′(aux2) = 0. In all three cases
I ′ |= amt(x1, x2, x3, aux1, aux2) ∧ amt(¬aux1,¬aux2, x4 . . . xn).
⇐=: If I ′ |= amt(x1, x2, x3, aux1, aux2) ∧ amt(¬aux1,¬aux2, x4 . . . xn) then, “forgetting” the part of
the auxiliary variables, in all cases the resulting I is a model of amt(x1 . . . xn), because:

– if I ′(aux1) = I ′(aux2) = 1 then I |= ¬x1 ∧ ¬x2 ∧ ¬x3 and I |= amt(x4 . . . xn)
– if I ′(aux1) = I ′(aux2) = 0 then I |= amt(x1, x2, x3) and I |= ¬x4 ∧ . . . ∧ ¬xn
– if I ′(aux1) = 0 and I ′(aux2) = 1 (or vice versa) then I |= amo(x1, x2, x3) and I |= amo(x4 . . . xn).

1b Write all clauses for encoding amt(x1, x2, x3, aux1, aux2) with no more auxiliary variables.

Answer: We need one clause for each subset of 3 elements out of 5, that is,
(

5

3

)

= 10 clauses:
¬x1 ∨ ¬x2 ∨ ¬x3, ¬x1 ∨ ¬x2 ∨ ¬aux1, ¬x1 ∨ ¬x2 ∨ ¬aux2, ¬x1 ∨ ¬x3 ∨ ¬aux1,
¬x1 ∨ ¬x3 ∨ ¬aux2, ¬x1 ∨ ¬aux1 ∨ ¬aux2, ¬x2 ∨ ¬x3 ∨ ¬aux1, ¬x2 ∨ ¬x3 ∨ ¬aux2,
¬x2 ∨ ¬aux1 ∨ ¬aux2, ¬x3 ∨ ¬aux1 ∨ ¬aux2.

1c How many clauses and auxiliary variables are needed in total for amt(x1 . . . xn) in this way?

Answer: The part amt(¬aux1,¬aux2, x4 . . . xn) has one literal less. So to eliminate one literal, we
need 10 clauses and 2 auxiliary variables and hence in total 10n clauses and 2n auxiliary variables.

1d The Heule-3 encoding for amo(x1, . . . , xn) has a good property: if one of the literals xi becomes
true, all other literals in x1, . . . , xn are set to false by unit propagation. Does this amt encoding
have such a property?, that is, if two of x1 . . . xn become true, will unit propagation set the other
variables to false? Explain why.

Answer: No. For example, if x1 and x4 become true, no unit propagation takes place at all.

2) Every propositional formula F over n variables can also expressed by a Boolean circuit with n
inputs and one output. In fact, sometimes the circuit can be much smaller than F because each
subformula only needs to be represented once. For example, if F is

x1 ∧ (x3 ∧ x4 ∨ x3 ∧ x4) ∨ x2 ∧ (x3 ∧ x4 ∨ x3 ∧ x4),
a circuit for F with only five gates, representing the output of each logical gate as a new variable (a
natural number, and using 0 as the output), is:

0 = or(1,2) 1 = and(x1,3) 3 = or(4,4)

2 = and(x2,3) 4 = and(x3,x4)

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine
whether two circuits C1 and C2, represented like this, are logically equivalent.

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already
has its auxiliary variable. Each gate n = and(x, y), generates three clauses: ¬n ∨ x, ¬n ∨ y, and
n ∨ ¬x ∨ ¬y, and each gate n = or(x, y) another three: n ∨ ¬x, n ∨ ¬y, and ¬n ∨ x ∨ y. Negations
can also be handled as usual. Let S1 and S2 be the resulting sets of clauses for the gates of C1 and
C2, respectively, using different names 0′, 1′, 2′ . . . for the auxiliary variables of C2. Then we have:

C1 ≡ C2 (both circuits have the same models) iff
there is no model of S1 ∪ S2 such that the root variables 0 and 0′ get different values iff
on (CNF) input S1 ∪ S2 ∪ { ¬0 ∨ ¬0′, 0 ∨ 0′ }, the SAT solver returns unsatisfiable.

Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply
Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.

3) For each one of the following statements, indicate here whether it is true or false without giving
any explanations why.

1. If F is unsatisfiable, then for every G we have G |= F . False

2. If F is unsatisfiable, then for every G we have F |= G. True

3. Let F,G,H be formulas. If F ∨G |= H then F ∧ ¬H is unsatisfiable. True

4. The formula p ∨ p is a logical consequence of the formula (p ∨ q ∨ r) ∧ (¬q ∨ r) ∧ (¬r). True

5. The formula (p ∨ q) ∧ (¬p ∨ q) ∧ (¬p ∨ ¬q) ∧ (¬q ∨ p) is unsatisfiable. True

6. If F is a tautology, then for every G we have F |= G. False

7. Let F,G,H be formulas. If F ∧G 6|= H then F ∧G ∧H is unsatisfiable. False

8. Let F,G,H be formulas. If F ∧G |= ¬H then F ∧G ∧H is unsatisfiable. True

9. If F es a tautology, then for every G we have G |= F . True

10. Assume |P| = n. There are 2n interpretations. Moreover there are exactly k = 22
n

formulas
F1, . . . , Fk such that for all i, j with i 6= j in 1 . . . k, Fi 6≡ Fj . Each one of these Fi represents a
different Boolean function. True

