
Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Data Structures Libraries

Leonor Frias Moya

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya

Advisors: Jordi Petit Silvestre and Salvador Roura Ferret

Supported by: ALINEX project, ALBCOM research group, and
Agència de Gestió d’Ajuts Universitaris i de Recerca

8th June 2010

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Outline

This thesis contributes specialized algorithms and data
structures for:

The Standard Template Library

Current computer architectures

Strings

Type of contributions:

Theoretical (analysis of algorithms)

Engineering (implementations)

Experimental (evaluation of implementations)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

The Standard Template Library (STL)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Typical implementations

vector:

list:

(multi)map, (multi)set:

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Typical implementations

vector:

list:

(multi)map, (multi)set:

sort: Θ(n log n)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Typical implementations

vector:

list:

(multi)map, (multi)set:

sort: Θ(n log n)

iterators:
[]

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL specification

Foundations of former implementations can be found in:

Standard cost requirements are based on those algorithms and
data structures.

Random Access Machine model: 1 CPU, 1 memory level

Generic atomic keys

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Current computers: multiprocessors

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Modern computer architectures

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

An ubiquitous data type: strings

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Algorithm engineering

Bring together theory and practice in algorithmics.

Focus: implementations and experiments

Several conferences, journals and books devoted.

E.g., ALENEX, SEA (WEA), ESA, JEA

STL projects:

STL-XXL, Uni Karlsruhe

MCSTL, Uni Karlsruhe

STAPL, Texas A&M University

CPH-STL, Performance Engineering Laboratory

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapter 3

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL lists

1 2 3 4 5

begin() it end()

Properties:

Perfect costs: Θ(1) insertion/deletion

Resistant iterators.

What can we improve?

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL lists

1 2 3 4 5

begin() it end()

Properties:

Perfect costs: Θ(1) insertion/deletion

Resistant iterators.

What can we improve? Cost constant factors

Our approach: cache-conscious design
(Lamarca 1996; Frigo et al. 1999; Demaine, 2002)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Effect of the memory hierarchy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256 512

tim
e

pe
r

el
em

en
t (

in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal

gcc-before-shuffling
gcc-after-shuffling

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Cache-conscious STL lists

. . .

1 2 1. . .

begin() it1 it2 end()

Main point: resistant iterators

Several variants

Some assumptions for best performance:

“Small” number of iterators

Usage: Mainly traversals + modifications at arbitrary points

Plain data types

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Traversal after shuffling

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 4 8 16 32 64 128 256 512

tim
e

pe
r

el
em

en
t (

in
 m

ic
ro

se
c)

list size (in 10^4)

Traversal

gcc-before-shuffling
gcc-after-shuffling

variant1
variant2
variant3

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Theoretical guarantees of the reorganization algorithm

1. A minimal average bucket occupancy of 2/3.

2. Efficient bucket management.

Theorem

Let a list conform to the representation invariants. Consider an arbitrary
long alternating sequence of insertions and deletions at the same point.
Then, at most 2 buckets are allocated and deallocated.

Theorem

Let L be an empty list, let K be the bucket capacity. Consider a
sequence of r insertions and/or deletions at arbitrary positions applied to
L. Then, the number of allocated and deallocated buckets is O(r/K).

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions

Several variants of cache-conscious and compliant lists.

Amortized analysis of the reorganization algorithm.

Thorough experimental analysis:

Traversal: x5-10 faster

Sort: x3-5 faster

Competitive even for big iterator loads.

bucket capacity K ∈ [10, 100]: not critical

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias, J. Petit, and S. Roura. Lists Revisited: Cache Conscious
STL Lists. In WEA 2006, volume 4007 of LNCS. Springer.

L. Frias, J. Petit, and S. Roura. Lists Revisited: Cache Conscious
STL Lists. JEA, 14:3, 2009.

Code at SourceForge.net:
http://sourceforge.net/projects/cachelists

http://sourceforge.net/projects/cachelists

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapter 4

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Enhanced BSTs for strings: aBSTs

Key idea: keep combinatorial properties +
avoid character comparisons based on comparisons order.

Generalizable techniques (Grossi and Italiano, 1999; Roura, 2001):
e.g., quicksort (aQSort) and quickselect (aQSel).

Amenable for specializing STL components for strings.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

String lookups in aBSTs

Observation: some comparisons do not need accessing the strings.

This is relevant for cache performance: strings are accessed
through pointers (very likely cache misses).

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Analysis of string lookups in aBSTs

Key: relationship with TST properties.

Theorem

Let t be a TST and let b be an equivalent
aBST. Let w be any string. Then, the
number of string lookups in b when
searching for a string w coincides with the
number of search descent paths in t when
searching for w .

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Some concrete results

Exact analysis on TSTs: derived from previous results on TSTs
(Clément, Flajolet, et al., 2001).

Corollary

Let t be a TST and let w be a string. The number of search descent
paths in t for w is equal to R(t, w) + 1.

The number of string lookups in aBSTs is reduced by a
constant factor for memoryless and Markovian distributions.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Extension: CaBSTs

Key idea: Avoid string lookups (cache misses) using redundancy.

Applicable also to quicksort and quickselect.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Analysis of string lookups in CaBSTs

Relationship with TSTs:

Theorem

Let t be a TST, let β be an equivalent CaBST, let w be any string. The
number of proper search descent paths in the searching path of t for w

coincides with the number of strings looked up in β when searching for w .

Relationship with Patricia tries:

Corollary

The number of strings looked up in CaBST β when searching for any
string w is upper bounded by the search cost in a Patricia trie storing the
same set of strings.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions

Analysis of the number of string lookups in (C)aBSTs, (C)aQSort,
(C)aQSel relating them to TSTs.

Concrete results for aBSTs and aQSort for some string
distributions.

Follow-ups:

CaBSTs on red-black trees for STL map

(Master thesis of F. Mart́ınez, 2009)

(C)aQSort and (C)aQSel: Chapter 9

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias. On the number of string lookups in BSTs (and related
algorithms) with digital access. Technical report LSI-09-14-R,
2009.

Code at SourceForge.net:
http://sourceforge.net/projects/stringbsts

http://sourceforge.net/projects/stringbsts

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapter 5

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Selection problem

Given an unsorted array of size n,
find the r-th element in sorted order.

STL nth element:
selection + partitioned output

Average cost: O(n)

String elements?

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Specialized selection algorithms for strings

Existing: aQSel, radixselect

Linear additional space

More than one traversal per iteration

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Specialized selection algorithms for strings

Existing: aQSel, radixselect

Linear additional space

More than one traversal per iteration

Our proposal: Multikey quickselect (MkQSel)

In-place

Easy-to-implement

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Multikey quicksort and multikey quickselect

MkQSort

(Bentley and Sedgewick, 1997)
MkQSel

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Recurrence for ternary MkQSel

Random uniform distribution, infinite keys.

Tk(n) = tk (n) +

n
∑

m=0

P
(

n, m,
1

k

)mTC (m)

n
+

k−1
∑

i=0

n
∑

ℓ=0

P
(

n, ℓ,
i

k

)2ℓTi(ℓ)

kn

where

C : alphabet cardinality

k : remaining alphabet cardinality for the current character

tk(n) : toll function

P(n, ℓ, p) =
(

n
ℓ

)

pℓ(1− p)n−ℓ is the probability of a binomial r.v.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Solution for ternary MkQSel

Theorem

The cost of ternary MkQSel is described by the following statements:

The expected number of ternary comparisons is:

(3 + 13
(C−1) −

6(C+1)HC

C(C−1))n + o(n)

The expected number of second binary comparisons is:

(2 + 59
9(C−1) −

24(C+1)HC+1
9C(C−1))n + o(n)

The expected number of swaps for the partitioned output variant is:

(1
2 − 14

9(C−1) + 30(C+1)HC−7
18C(C−1))n + o(n)

The expected number of swaps for the only selection variant is:

(1
2 + 7

18(C−1) +
4(C+1)H⌊C/2⌋+3

12C(C−1) − (2C−1)[C is even]
12C(C−1)2 +

(2C+1)[C is odd]
12C2(C−1))n + o(n)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Using k in the algorithm

Observation: MkQSel could also proceed
to the next character position when k = 1.

Incorporating k into the algorithm:

Negligible cost

Saves comparisons and swaps

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Using k in the algorithm

Observation: MkQSel could also proceed
to the next character position when k = 1.

Incorporating k into the algorithm:

Negligible cost

Saves comparisons and swaps

Using k, we define binary MkQSel.

Cheaper comparisons

Avoids useless swaps

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Analysis for binary MkQSel

Random uniform distribution, infinite keys.

Recurrence:

Xk (n) = xk (n) +
n

∑

m=0

P
(

n, m,
1

k

)2mXC (m)

(k − 1)n
+

k−1
∑

i=2

n
∑

ℓ=0

P
(

n, ℓ,
i

k

) 2ℓXi (ℓ)

(k − 1)n

X1(n) = XC (n)

Solution:

Theorem

On the average, binary MkQSel performs n/2 + o(n) swaps and

(3 − 2(HC−1)
C−1)n + o(n) comparisons.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Confronting algorithms: comparisons

 0

 2

 4

 6

 8

 10

 2 4 8 16 32 64 128 256 512 1024

C
ha

ra
ct

er
 c

om
pa

ris
on

s
pe

r
el

em
en

t

alphabet cardinality

GENERIC QUICKSELECT
TERNARY, ternary comparisons

TERNARY using k, ternary comparisons
TERNARY, binary comparisons

TERNARY using k, binary comparisons
BINARY

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Confronting algorithms: swaps

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 8 16 32 64 128 256 512 1024

S
w

ap
s

pe
r

el
em

en
t

alphabet cardinality

TERNARY, partitioned output
TERNARY using k, partitioned output

TERNARY, only selection
TERNARY using k, only selection

BINARY

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions

MkQSel: new, efficient, in-place string selection algorithm.

Ternary partitioning

Binary partitioning

Detailed analysis for a random uniform distribution.

Binary partitioning: least number of binary comparisons and
swaps.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias and S. Roura. Multikey Quickselect. Technical report
LSI-09-27-R, 2009.

Code at SourceForge.net:
http://sourceforge.net/projects/mkqsel

http://sourceforge.net/projects/mkqsel

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapter 6

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL
dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL dictionaries

set, multiset, map, multimap.

Properties:

Logarithmic time insertion/deletion

Linear time traversal in sorted order

Parallelization?

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL dictionaries

set, multiset, map, multimap.

Properties:

Logarithmic time insertion/deletion

Linear time traversal in sorted order

Parallelization? Bulk operations

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Parallelization of bulk insertion and construction

Consider p processors.

1. Preprocessing → sorted sequence divided into p parts.

2. Allocation and initialization of an array of nodes.

3. Bulk operations

Construction

Insertion

Tools: OpenMP + MCSTL

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Construction

Key property: independent calculation of each element.
(Park and Park, 2001)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Insertion

Key property: negligible work of tree split/concatenate with
respect to actual insertion.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Insertion

Key property: negligible work of tree split/concatenate with
respect to actual insertion.

+ Dynamic load-balancing for enhanced robustness.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Experimental results

Insertion in an 8-core Xeon, tree 10x smaller than the input.

 0

 2

 4

 6

 8

 10

100 1000 10000 100000 106 107

S
pe

ed
up

Number of inserted elements (k)

8 threads
7 threads
6 threads
5 threads
4 threads
3 threads
2 threads
1 threads

gcc

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions

New parallel algorithms for bulk insertion and construction.

Thorough experimental analysis:

Scalable insertion and construction

Fast sequential insertion algorithm

Dynamic load-balancing shows useful

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias and J. Singler. Parallelization of Bulk Operations for STL
Dictionaries. In HPPC 2007, volume 4854 of LNCS. Springer.

Code in the MCSTL 0.8.0-beta.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapter 7

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

List partitioning problem

Problem: Divide a sequence into p parts of “equal” length.

Unknown size

Only sequential access

Application example: prerequisite for parallelization
→ limits speedup (Amdahl law)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

SinglePass: basic algorithm

Näıve solutions:

Traversing twice the sequence

Using linear additional space

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

SinglePass: basic algorithm

Näıve solutions:

Traversing twice the sequence

Using linear additional space

Our solution:

One traversal (online)

Sublinear additional space

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Basic SinglePass algorithm

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Basic SinglePass algorithm

Theorem

The basic SinglePass algorithm has the following properties:

Time complexity: Θ(n+ σp log n)

Quality guarantee: g = σ+1
σ

where g = |longest part|
|shortest part| (optimal g = 1)

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Generalized SinglePass algorithm

Change in making room for new subsequences:

Every m-th iteration: basic algorithm

Otherwise: double the size of the array

→ Trade-off quality/space

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Generalized SinglePass algorithm

Change in making room for new subsequences:

Every m-th iteration: basic algorithm

Otherwise: double the size of the array

→ Trade-off quality/space

Theorem

The generalized SinglePass algorithm for m = 2 has the
following properties:

Time complexity: Θ(n+ p
√

n log n)

Quality guarantee: g = 1 +
√

n
σn

n→∞−→ 1

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions

SinglePass: new algorithm for the list partitioning problem.

One traversal

Sublinear additional space

Theoretical analysis on the quality of solutions.

Quality improves with the input size

Thorough experimental analysis:

Very fast list partitioning

Practical for parallelization

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias, J. Singler, and P. Sanders. Single-Pass List Partitioning.
In MuCoCoS 2008. IEEE Computer Society Press.

L. Frias, J. Singler, and P. Sanders. Single-pass list partitioning.
SCPE, 9(3), 2008.

Code in the MCSTL 0.8.0-beta + libstdc++ parallel mode

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions: Chapters 8-9

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL partition, sort, nth element

partition nth element sort

Parallelization?

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

STL partition, sort, nth element

partition nth element sort

Parallelization?

Parallelizing partition is fundamental for scalability.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Practical parallel partitioning algorithms

Several practical algorithms for multi-core computers:

Blocked: Blocked variant of (Francis and Panan, 1992)

F&A: (Tsigas and Zhang 2003; Singler et al. 2007)

Properties:

Use blocks

3 steps:
1 Sequential setup of each processor
2 Parallel main phase: most of the partitioning is done
3 Cleanup phase

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Number of element comparisons

Observation: Cleanup partitions an already processed range
→ more than n comparisons in total.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

New cleanup algorithm

Key idea: manage information about misplaced elements using a
small order-statistics tree.

Properties:

Additional space: Θ(p).

A processed element is not compared again.

Perfect parallelizable swaps.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

New parallel partitioning algorithms

Let p be the number of processors, let b be the size of blocks.

Theorem

Blocked and F&A perform exactly n comparisons when using our
cleanup algorithm.

Theorem

Blocked takes Θ(n/p + log p) parallel time using our cleanup algorithm.

Theorem

Consider p ≤ b. F&A takes Θ(n/p + log2 p + b) parallel time using our
cleanup algorithm.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions for the generic case

New cleanup algorithm for parallel partitioning.

Resulting parallel partitioning algorithms:

Optimal in the number of comparisons

STL compliant

Thorough experimental comparison:

Scalable

Optimality does not bring performance improvements

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Taking advantage for strings

Using comparison optimal parallel partitioning algorithms,
parallel aQSort and aQSel can be defined.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Taking advantage for strings

Using comparison optimal parallel partitioning algorithms,
parallel aQSort and aQSel can be defined.

Key points:

Parallelism and string techniques are orthogonal.

Keeping up with the relative order of comparisons needs
comparison optimal partitioning.

Properties: as in the sequential case.

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Conclusions for strings

Novel combination of techniques:

Specialized comparison-based algorithms for strings +
parallelism

Thorough experimental analysis:

Sequential: aQSort/aQSel pay off

+ Parallel: reasonable speedups

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Publications

L. Frias and J. Petit. Parallel partition revisited. In WEA 2008,
volume 5038 of LNCS. Springer.

L. Frias and J. Petit. Combining digital access and parallel
partition for quicksort and quickselect. In IWMSE ’09. IEEE
Computer Society.

Code at SourceForge.net:
http://sourceforge.net/projects/{parpartition,stringbsts}

http://sourceforge.net/projects/{parpartition,stringbsts}

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Contributions

Cache-conscious STL lists

Analysis of string lookups in aBSTs

Multikey quickselect MkQSel

Parallel bulk operations for STL dictionaries

Single-pass list partitioning

Parallel partition:

Generic
String keys

Σ∗

Σ∗

Σ∗

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Dissemination of results

Publications at: JEA, SCPE, WEA, HPPC, MuCoCoS, IWMSE.

Implementations at:

Sourceforge.net

MCSTL

/usr/include/c++/4.3/parallel/list partition.h

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Further work

Some difficulties:

Tight requirements

Parallelism and exceptions

Parallel allocators

A wish: statistical data, benchmarks on STL usage.

An open issue: parallel&string algorithms and data structures.

Theory: algorithms + analysis

Practice:

Further experiments
STL: specializations, new Standard

Overview Cache-conscious lists aBSTs MkQSel Parallel dictionaries SinglePass Parallel Partition Conclusions

Thanks!

	Overview
	Cache-conscious lists
	aBSTs
	MkQSel
	Parallel dictionaries
	SinglePass
	Parallel Partition
	Conclusions

