Parallel Partition Revisited

Leonor Frias and Jordi Petit

Dep. de Llenguatges i Sistemes Informatics, Universitat Politécnica de Catalunya

WEA 2008

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Given a pivot, rearrangement s.t for some splitting position s,
pivot = 6

@ elements at the left of s are < pivot [6[4[9]2]3[5[2[7]
@ elements at the right of s are > pivot [2]4]5]2[3]9]6]7]

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Given a pivot, rearrangement s.t for some splitting position s,

. pivot = 6
@ elements at the left of s are < pivot [6[4[9]2]3[5[2[7]
@ elements at the right of s are > pivot [2]4]5]2[3]9]6]7]

Sequential cost:

@ n comparisons
@ m swaps

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.
Several suitable parallel partitioning algorithms for these
architectures exists.
@ Algorithms by Francis and Pannan, Tsigas and Zang and
MCSTL.

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.
Several suitable parallel partitioning algorithms for these
architectures exists.

HOWEVER, they perform more operations than the sequential
algorithm.

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

Several suitable parallel partitioning algorithms for these
architectures exists.

HOWEVER, they perform more operations than the sequential
algorithm.

IN THIS PAPER:

@ Show how to modify these algorithms so that they achieve a
minimal number of comparisons.

@ Provide implementations and a detailed experimental
comparison.

Outline

© Previous work
© Algorithm

© Experiments
@ Conclusions

© References

Previous work

Partitioning in parallel: overview

General pattern
© Sequential setup of each processor's work
© Parallel main phase in which most of the partitioning is done

© Cleanup phase

p processors used to partition an array of n elements (p < n).

Previous work

Partitioning in parallel: STRIDED (1)

STRIDED algorithm by Francis and Pannan.

© Setup: Division into p pieces, elements in a piece with stride p
pivot = 40, p = 4
129115 37186254 730356419 2[39851 7531610279554 5]59]

Previous work

Partitioning in parallel: STRIDED (1)

STRIDED algorithm by Francis and Pannan.

© Setup: Division into p pieces, elements in a piece with stride p
pivot = 40, p = 4
129115 37186254 730356419 2[39851 7531610279554 5]59]

© Main phase: Sequential partitioning in each piece
123915 3[2[3525273086 519719 11017534 6854795546459

Previous work

Partitioning in parallel: STRIDED (1)

STRIDED algorithm by Francis and Pannan.

© Setup: Division into p pieces, elements in a piece with stride p
pivot = 40, p = 4
129115 37186254 730356419 2[39851 7531610279554 5]59]

© Main phase: Sequential partitioning in each piece
123915 3[2[3525273086 519719 11017534 6854795546459

© Cleanup: Sequential partitioning in the not correctly
partitioned range
123915 3[2[3525273017 519100 17186534 6854795546459
A

Previous work

Partitioning in parallel: STRIDED (2)

STRIDED Analysis:
@ Main phase: ©(n/p) parallel time
@ Cleanup phase: O(1) expected but can be ©(n)

[12911571] 386254 7306435592398 6871346 55735542259

Previous work

Partitioning in parallel: STRIDED (2)

STRIDED Analysis:
@ Main phase: ©(n/p) parallel time
@ Cleanup phase: O(1) expected but can be ©(n)

12911571/ 386254 7306435592398 6871346 55735542259

Previous work

Partitioning in parallel: STRIDED (2)

STRIDED Analysis:
@ Main phase: ©(n/p) parallel time
@ Cleanup phase: O(1) expected but can be O(n)

BESIDES, it has poor cache locality.

Previous work

Partitioning in parallel: BLOCKED

We can generalize STRIDED to blocks to improve cache locality.

pivot = 40, p =4, b =3
129115 3[7186254730356419 239851 7534610279554 559

123915173 [86252730 53519 2[9185[715346104 795546459

12391517 310252730 53519 2[9185[715346864 795546459

If b= 1, BLOCKED is equal to STRIDED.

Previous work

Partitioning in parallel: F&A (1)

Processors take elements from both ends of the array as they are
needed.
Fetch-and-add instructions are used to acquire the elements.

Blocks of elements are used to avoid too much synchronization.

References:
@ PRAM model: Heidelberger et al.
@ real machines: Tsigas and Zhang and MCSTL library

Previous work

Partitioning in parallel: F&A (2)

© Setup: Each processor takes one left block and one right block
1291015 3[71/86252 730356419 2[39851 7534610279554 5[59)

Previous work

Partitioning in parallel: F&A (2)

© Setup: Each processor takes one left block and one right block
1291015 3[71/86252 730356419 2[39851 7534610279554 5[59)

© Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.
1251537186252 730356419 2398517534 6102795549159

Previous work

Partitioning in parallel: F&A (2)

© Setup: Each processor takes one left block and one right block

129115 37186254 730356419 2398517534 610279554 559

© Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.

125[15 3178625393 0352719

2478571534 6106495549 159

Previous work

Partitioning in parallel: F&A (2)

© Setup: Each processor takes one left block and one right block
1291015 3[71/86252 730356419 2[39851 7534610279554 5[59)

© Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.

© Cleanup: At most p blocks remain not completely partitioned
(unneutralized). The unpartitioned elements must be moved
to the middle
@ Tsigas and Zhang do it sequentially.
@ MCSTL moves the blocks in parallel and applies recursively
parallel partition to this range.

12515 3R719253930351 7108664857153 6 24795549159

Previous work

Partitioning in parallel: F&A (3)

F&A Analysis:

@ Main phase: ©(n/p) parallel time
@ Cleanup phase:

@ Tsigas and Zhang: O(bp)
@ MCSTL: ©(blog p)

10/ 27

Algorithm

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

117 /27

Algorithm

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

We present a new cleanup algorithm.

117 /27

Algorithm

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

We present a new cleanup algorithm.
@ |t avoids redundant comparisons.

@ The elements are swapped fully in parallel.

We apply it on the top of STRIDED, BLOCKED and F& A
algorithms.

117 /27

Algorithm

Terminology (1)

Our algorithm is described in terms of
@ Subarray
@ Frontier: Defines two parts (left and right) in a subarray
@ Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

19 /27

Algorithm

Terminology (1)

Our algorithm is described in terms of
@ Subarray
@ Frontier: Defines two parts (left and right) in a subarray
@ Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

m: total number of misplaced elements
M: total number of subarrays that may have misplaced elements.

19 /27

Algorithm

Terminology (1)

Our algorithm is described in terms of
@ Subarray
@ Frontier: Defines two parts (left and right) in a subarray
@ Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

m: total number of misplaced elements
M: total number of subarrays that may have misplaced elements.

19 /27

Algorithm

Terminology for BLOCKED

NN =N =l IS \Nr7zzZ==lllllll|
§ 16 24 32 40 48 36 64 72 80 8 9%

@ Subarray: each of the p pieces.

@ Frontier: position that would occupy the pivot after
partitioning the array.

@ Misplaced elements: as in the sequential algorithm.
o M<p

17 /27

Algorithm

Terminology for F& A

We deal separately and analogously with left and right blocks.

NN 7=y |
§ 16 24 32 4 48 36 o4 72 8 88 9

@ Subarray: one block.

@ Frontier: separates the processed part in a block from the
unprocessed part.

@ Misplaced elements: unprocessed elements not in the middle
and processed elements that are in the middle.

@ M < 2p (p unneutralized blocks which could be all misplaced
and almost full)

14 /27

Algorithm

Data Structure

Shared arrayed binary tree with M leaves.

(n',n';m';m’)
LN (47,49.,8,8

I*init 2™ init

(26.22.83)%) \@ (21,27,0,5)
SN N

19,5,0.3) O 7,178002 =9,15,0,1)[) 12,12,0,4)

@ Leaves: information on the subarrays

@ Internal nodes: accumulate children information

1 /2

Algorithm

Data Structure

Shared arrayed binary tree with M leaves.

(n',n';m';m’)
LN (47,49.,8,8

I*init 2™ init

(26.22.83)%) \@ (21,27,0,5)
SN N

19,5,0.3) O 7,178002 =9,15,0,1)[) 12,12,0,4)

@ Leaves: information on the subarrays

@ Internal nodes: accumulate children information

Use: deciding pairs of elements to be swapped without doing new
comparisons

1 /2

Algorithm

Algorithm (1)

Tree initialization
@ First initialization of the leaves: Computation of n}'J.
© First initialization of the non-leaves: Computation of n;r V.
© Second initialization of the leaves: Computation of m;'ar.

© Second initialization of the non-leaves: Computation of mf -

16 / 27

Algorithm

Tree initialization for BLOCKED

Computation of n}"r: trivially
(the layout is deterministic, b and i are known)

NNz '==IlIIIIINN\77ZZ: ==l N\ZzZ==|lllll|
8 16 24 32 40 48 36 64 72 80 8 96

(n',n',m\;m’)
e (47.49.8,8)@

1* it 2" init
(26,22,8,3)) \@ (21, 27,0,5)
VRN

19,5,0,3) V(7,178,002 =09,150,1)() 12,12,0,4)

17 /27

Algorithm

Tree initialization for F& A

Computation of nj_r: Trivially once the subarrays are known.
Determination of the subarrays:
@ The unneutralized blocks are known after the parallel phase.

@ To locate the misplaced neutralized blocks, the unneutralized
blocks are sorted by address and then, traversed.

NN 7= |
24 3 40 48 56 64 72 80 88 9

8 16

(n',n',m',;m')
(20,12,10,10

1"init - 2" init

T
(6.10,10.0)6%) € (14.2,0,10)
/N /N

44400 26607 = 8,004(]) (62,0.6)

19 /27

Algorithm

Algorithm (2)

Parallel swapping
Independent of the algorithm in the main parallel phase.

The misplaced elements to swap are divided equally among the
Processors.

swap[1, 3) (47,49,8.8)

(26,22,8 3)@/ \@ (21, 27,0,5)
S\ / AN
19,5,0,3) O7,17.8002 —9,150,1/]]) 12,12,0,4)

10 /27

Algorithm

Parallel swapping for BLOCKED

L (47,49.8.8)

(26,22,8,3)@/ \@ (21,27,0,5)
SN N

19,503) O(7,17802 09,1501 12,12,0.4)

NN == IIIINNZ I IS N7z =TIl
8 16 24 32 40 4 56 64 72 80 88 96

2 /27

Algorithm

Parallel swapping for BLOCKED

(n,n',m',m')
L (47,49.8.8)@R

I*init 2"init
(26,2283)@/ \@ (1,27,0,5)

SN N
19,5,03) N7,17.80/2 £=09,15,0,1)[]) 12,12,0,4)

NN \V I IS N7z =TIl
56 64 72 80 88 96

to be partitioned

A W%Z‘HHHHHN \\V ﬁ:MHHI\HHN\W AZ‘HHHHHH

2 /27

Algorithm

Parallel swapping for F& A

i i i

('’ m' ')
T (20,12,10,1

I*init 2"init

T
(6,10,10,06% @ (142,0,10)
/N /N

44400 26607) = 80.04)/(]) (6,2.0.6)
to be partitioned
e »

N\ 77 = =]

8 24

80 88 96

21 /27

Algorithm

Parallel swapping for F& A

i i i

(n',n' m'm')
’ ’ (20,12,10,10

I*init 2"init

T
(6,10,10,06% @ (142,0,10)
/N /N

44400 26607) = 80.04)/(]) (6,2.0.6)
to be partitioned
e »

N\ 77 = =]

8 24

80 88 96

to be partitioned

]
C N Wy A:NHHWH—
8 K6 24 432 40 48 56 64 72 80 88 96

21 /27

Algorithm

Algorithm (3)

Completion
BLOCKED : The array is already partitioned.

F&A : The array is partitioned except for the elements in the
middle (not yet processed).

@ Apply recursively parallel partitioning in the middle.

We provide a better cost bound making recursion on b
(b« b/2 for log p times) instead of p.

N /27

Algorithm

Analysis: comparisons & swaps

BLOCKED
comparisons swaps
original tree | original tree
main n <n/2
cleanup Vimax — Vmin 0 m/2 m/2
total | N+ Vmax — Vmin 0 | <55 <MD
F&A
comparisons swaps
original tree original tree
main n—|V| < "_2|V|
cleanup < 2bp V| < 2bp <m/2+|V|
total | <n+2bp n g"_TW'+2bp < oEm |V

27 /A7

Algorithm

Analysis: worst-case time

BLOCKED
parallel time
original tree
main ©(n/p)
cleanup | ©(Vmax — Vmin) ©(m/p + log p)
total ©(n) ©(n/p+ log p)
F&A
parallel time
original tree
main ©(n/p)
cleanup ©(blog p) O(log” p + b)!
total | ©(n/p+ blogp) ©(n/p + log” p)

!better provided that log p < b

250/ A7

Experiments

Implementation

Algorithms: STRIDED, BLOCKED, F&A (MCSTL & own)
o With original cleanup

@ With our cleanup

Languages: C++, OpenMP
STL partition interface.

29 /27

Experiments

Machine
@ 4 GB of main memory

@ 2 sockets x Intel Xeon quad-core processor at 1.66 GHz with a
shared L2 cache of 4 MB shared among two cores

Compiler: GCC 4.2.0, -03 optimization flag.

Measurements:
@ 100 repetitions
@ Speedups with respect to the sequential algorithm in the STL

2% / 27

Experiments

Parallel partition speedup, n = 10® and b = 10*

Strided_tree

Strided ---%---
BlockedStrided_tree - |
BlockedStrided
F&A_MCSTL_tree
¥trrnas F&-MCSTlye .- @ X
F&A _tree —-A-—
F&A oo
0 1 1 1 L . :
1 2 3 4 5 6 ! °

thr

7 /27

Experiments

Parallel partition speedup for costly <, n = 108 and
b=10*

o)
B . Strided_tree ---x--- |
8 > Strided -+ ¥+
M«‘”"/ BlockedStrided_tree -3
2k ’5:" BlockedStrided <
A~ F&A_MCSTL _tree
e F&A_MCSTL - -@- -
14 F&A tree —-A— =
F&A koo
O 'l 'l 'l 'l 'l 'l
1 2 3 4 5 6 7 8
thr

g /27

Experiments

Parallel partition with varying block size,n = 108 and
num_threads = 8

e 4F 4

° .

(5]

[

% -
BlockedStrided_tree £t

BlockedStrided

F&A_MCSTL _tree J

F&A_MCSTL - -@- -
F&A tree —-A-—
F&A -

Il Il Il
100 1000 10000 100000 1e+06
block

20 /27

Experiments

Number of extra comparisons, n = 108 and b = 10*

12

L T T T T
Strided_tree
— Strided ---%---
@ BlockedStrided_tree -2
s 10F BlockedStrided g
% F&A MCSTL tree
k=) F&A_MCSTL - -@- -
S F&A tree - ac—
o 8T FRA - aee -
c
2 Y
IS .
g 6f } .
o .®
< . .. _...
_§ .o N
g A ° I 3
..e en)
S . — R R— ”
S 2} B :
g L
* ___________ *
0k = = = . = =
1 2 3 4 5 6 7 8
thr

20/ 27

Experiments

Number of extra swaps, n = 108 and b = 10*

extra swap operations (/block size)

18

1.6

14

1.2

Stride'd_tree

Strided ---

BlockedStrided_tree
BlockedStrided
F&A MCSTL _tree

F&A_MCSTL - -
F&A_tree - A
F&A - ae o

21

27

Experiments

Parallel quickselect speedup, n = 108 and b = 10*

speedup

Strided_tree
Strided ---%----
BlockedStrided_tree £

BlockedStrided
F&A_MCSTL tree
P e FA-MCSThk @ -
F&A tree — A=
F&A - aee-
M ']
5 6 !

27 /27

Conclusions

Conclusions (1)

We have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

27 /A7

Conclusions

Conclusions (1)

We have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

Algorithmic contributions:

@ Novel cleanup algorithm NOT disregarding any comparisons
made in the parallel phase.

@ Applied to STRIDED, BLOCKED and F&A partitioning
algorithms.

e STRIDED and BLOCKED : worst-case parallel time from ©(n)
to ©(n/p + logp).
@ Better cost bound for F& A changing recursion parameters.

27 /A7

Conclusions

Conclusions (2)

Implementation contributions: carefully designed implementations
following STL partition specifications.

Detailed experimental comparison. Conclusions:
@ Algorithm of choice: F&A (ours was best).
@ Benefits in practice of the cleanup algorithm very limited.

@ |/0O limits performance as the number of threads increases.

21/ 27

Conclusions

Thank you for your attention

More information:
http://www.lsi.upc.edu/ " 1lfrias.

A /Ay

http://www.lsi.upc.edu/~lfrias

References

References

@ R.S. Francis and L. J. H. Pannan.
A parallel partition for enhanced parallel quicksort.
Parallel Computing, 18(5):543-550, 1992.

@ P. Heidelberger, A. Norton, and John T. Robinson.
Parallel quicksort using fetch-and-add.
IEEE Trans. Comput., 39(1):133-138, 1990.

@ J. Singler, P. Sanders, and F. Putze.
The Multi-Core Standard Template Library.
In Euro-Par 2007: Parallel Processing, volume 4641 of Lecture
Notes in Computer Science, pages 682—694, Rennes, France,
2007. Springer Verlag.

2R / 7

References

@ P. Tsigas and Y. Zhang.
A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000.
In 11th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing (PDP 2003), pages 372-381, 2003.

	Previous work
	Algorithm
	Experiments
	Conclusions
	References

