
Previous work Algorithm Experiments Conclusions References

Parallel Partition Revisited

Leonor Frias and Jordi Petit

Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

WEA 2008

1 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Given a pivot, rearrangement s.t for some splitting position s,

elements at the left of s are ≤ pivot

elements at the right of s are ≥ pivot

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Given a pivot, rearrangement s.t for some splitting position s,

elements at the left of s are ≤ pivot

elements at the right of s are ≥ pivot

Sequential cost:

n comparisons
m swaps

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

Several suitable parallel partitioning algorithms for these
architectures exists.

Algorithms by Francis and Pannan, Tsigas and Zang and
MCSTL.

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

Several suitable parallel partitioning algorithms for these
architectures exists.

HOWEVER, they perform more operations than the sequential
algorithm.

2 / 37

Previous work Algorithm Experiments Conclusions References

Overview

Partitioning an array with respect to a pivot is a basic building
block of key algorithms such as as quicksort and quickselect.

Nowadays, multi-core computers are ubiquitous.

Several suitable parallel partitioning algorithms for these
architectures exists.

HOWEVER, they perform more operations than the sequential
algorithm.

IN THIS PAPER:

Show how to modify these algorithms so that they achieve a
minimal number of comparisons.

Provide implementations and a detailed experimental
comparison.

2 / 37

Previous work Algorithm Experiments Conclusions References

Outline

1 Previous work

2 Algorithm

3 Experiments

4 Conclusions

5 References

3 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: overview

General pattern

1 Sequential setup of each processor’s work

2 Parallel main phase in which most of the partitioning is done

3 Cleanup phase

p processors used to partition an array of n elements (p ≪ n).

4 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (1)

Strided algorithm by Francis and Pannan.

1 Setup: Division into p pieces, elements in a piece with stride p

5 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (1)

Strided algorithm by Francis and Pannan.

1 Setup: Division into p pieces, elements in a piece with stride p

2 Main phase: Sequential partitioning in each piece

5 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (1)

Strided algorithm by Francis and Pannan.

1 Setup: Division into p pieces, elements in a piece with stride p

2 Main phase: Sequential partitioning in each piece

3 Cleanup: Sequential partitioning in the not correctly
partitioned range

5 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (2)

Strided Analysis:

Main phase: Θ(n/p) parallel time

Cleanup phase: O(1) expected but can be Θ(n)

6 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (2)

Strided Analysis:

Main phase: Θ(n/p) parallel time

Cleanup phase: O(1) expected but can be Θ(n)

6 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Strided (2)

Strided Analysis:

Main phase: Θ(n/p) parallel time

Cleanup phase: O(1) expected but can be Θ(n)

BESIDES, it has poor cache locality.

6 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: Blocked

We can generalize Strided to blocks to improve cache locality.

If b = 1, Blocked is equal to Strided.

7 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (1)

Processors take elements from both ends of the array as they are
needed.
Fetch-and-add instructions are used to acquire the elements.

Blocks of elements are used to avoid too much synchronization.

References:

PRAM model: Heidelberger et al.

real machines: Tsigas and Zhang and MCSTL library

8 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (2)

1 Setup: Each processor takes one left block and one right block

9 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (2)

1 Setup: Each processor takes one left block and one right block

2 Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.

9 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (2)

1 Setup: Each processor takes one left block and one right block

2 Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.

9 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (2)

1 Setup: Each processor takes one left block and one right block

2 Main phase: Sequential partitioning in sequence made by left
block + right block. When one block border is reached and so
neutralized, another block is acquired.

3 Cleanup: At most p blocks remain not completely partitioned
(unneutralized). The unpartitioned elements must be moved
to the middle

Tsigas and Zhang do it sequentially.
MCSTL moves the blocks in parallel and applies recursively
parallel partition to this range.

9 / 37

Previous work Algorithm Experiments Conclusions References

Partitioning in parallel: F&A (3)

F&A Analysis:

Main phase: Θ(n/p) parallel time

Cleanup phase:

Tsigas and Zhang: O(bp)
MCSTL: Θ(b log p)

10 / 37

Previous work Algorithm Experiments Conclusions References

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

11 / 37

Previous work Algorithm Experiments Conclusions References

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

We present a new cleanup algorithm.

11 / 37

Previous work Algorithm Experiments Conclusions References

New Parallel Cleanup Phase

Existing algorithms disregard part of the work done in the main
parallel phase when cleaning up.

We present a new cleanup algorithm.

It avoids redundant comparisons.

The elements are swapped fully in parallel.

We apply it on the top of Strided, Blocked and F&A

algorithms.

11 / 37

Previous work Algorithm Experiments Conclusions References

Terminology (1)

Our algorithm is described in terms of

Subarray

Frontier: Defines two parts (left and right) in a subarray

Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

12 / 37

Previous work Algorithm Experiments Conclusions References

Terminology (1)

Our algorithm is described in terms of

Subarray

Frontier: Defines two parts (left and right) in a subarray

Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

m: total number of misplaced elements
M: total number of subarrays that may have misplaced elements.

12 / 37

Previous work Algorithm Experiments Conclusions References

Terminology (1)

Our algorithm is described in terms of

Subarray

Frontier: Defines two parts (left and right) in a subarray

Misplaced element

Their realization depends on the algorithm used in the main
parallel phase.

m: total number of misplaced elements
M: total number of subarrays that may have misplaced elements.

12 / 37

Previous work Algorithm Experiments Conclusions References

Terminology for Blocked

Subarray: each of the p pieces.

Frontier: position that would occupy the pivot after
partitioning the array.

Misplaced elements: as in the sequential algorithm.

M ≤ p

13 / 37

Previous work Algorithm Experiments Conclusions References

Terminology for F&A

We deal separately and analogously with left and right blocks.

Subarray: one block.

Frontier: separates the processed part in a block from the
unprocessed part.

Misplaced elements: unprocessed elements not in the middle
and processed elements that are in the middle.

M ≤ 2p (p unneutralized blocks which could be all misplaced
and almost full)

14 / 37

Previous work Algorithm Experiments Conclusions References

Data Structure

Shared arrayed binary tree with M leaves.

Leaves: information on the subarrays

Internal nodes: accumulate children information

15 / 37

Previous work Algorithm Experiments Conclusions References

Data Structure

Shared arrayed binary tree with M leaves.

Leaves: information on the subarrays

Internal nodes: accumulate children information

Use: deciding pairs of elements to be swapped without doing new
comparisons

15 / 37

Previous work Algorithm Experiments Conclusions References

Algorithm (1)

Tree initialization

1 First initialization of the leaves: Computation of ni
l ,r .

2 First initialization of the non-leaves: Computation of nj
l ,r , v .

3 Second initialization of the leaves: Computation of mi
l ,r .

4 Second initialization of the non-leaves: Computation of mj
l ,r .

16 / 37

Previous work Algorithm Experiments Conclusions References

Tree initialization for Blocked

Computation of ni
l ,r : trivially

(the layout is deterministic, b and i are known)

17 / 37

Previous work Algorithm Experiments Conclusions References

Tree initialization for F&A

Computation of ni
l ,r : Trivially once the subarrays are known.

Determination of the subarrays:

The unneutralized blocks are known after the parallel phase.

To locate the misplaced neutralized blocks, the unneutralized
blocks are sorted by address and then, traversed.

18 / 37

Previous work Algorithm Experiments Conclusions References

Algorithm (2)

Parallel swapping
Independent of the algorithm in the main parallel phase.

The misplaced elements to swap are divided equally among the
processors.

19 / 37

Previous work Algorithm Experiments Conclusions References

Parallel swapping for Blocked

20 / 37

Previous work Algorithm Experiments Conclusions References

Parallel swapping for Blocked

20 / 37

Previous work Algorithm Experiments Conclusions References

Parallel swapping for F&A

21 / 37

Previous work Algorithm Experiments Conclusions References

Parallel swapping for F&A

21 / 37

Previous work Algorithm Experiments Conclusions References

Algorithm (3)

Completion

Blocked : The array is already partitioned.

F&A : The array is partitioned except for the elements in the
middle (not yet processed).

Apply recursively parallel partitioning in the middle.

We provide a better cost bound making recursion on b
(b ← b/2 for log p times) instead of p.

22 / 37

Previous work Algorithm Experiments Conclusions References

Analysis: comparisons & swaps

Blocked

comparisons swaps

original tree original tree

main n ≤ n/2

cleanup vmax − vmin 0 m/2 m/2

total n + vmax − vmin n ≤ n+m
2 ≤ n+m

2

F&A

comparisons swaps

original tree original tree

main n − |V | ≤ n−|V |
2

cleanup ≤ 2bp |V | ≤ 2bp ≤ m/2 + |V |

total ≤ n + 2bp n ≤ n−|V |
2 + 2bp ≤ n+m

2 + |V |

23 / 37

Previous work Algorithm Experiments Conclusions References

Analysis: worst-case time

Blocked

parallel time

original tree

main Θ(n/p)

cleanup Θ(vmax − vmin) Θ(m/p + log p)

total Θ(n) Θ(n/p + log p)

F&A

parallel time

original tree

main Θ(n/p)

cleanup Θ(b log p) Θ(log2 p + b)1

total Θ(n/p + b log p) Θ(n/p + log2 p)

1better provided that log p ≤ b
24 / 37

Previous work Algorithm Experiments Conclusions References

Implementation

Algorithms: Strided, Blocked, F&A (MCSTL & own)

With original cleanup

With our cleanup

Languages: C++, OpenMP

STL partition interface.

25 / 37

Previous work Algorithm Experiments Conclusions References

Setup

Machine

4 GB of main memory

2 sockets x Intel Xeon quad-core processor at 1.66 GHz with a
shared L2 cache of 4 MB shared among two cores

Compiler: GCC 4.2.0, -O3 optimization flag.

Measurements:

100 repetitions

Speedups with respect to the sequential algorithm in the STL

26 / 37

Previous work Algorithm Experiments Conclusions References

Parallel partition speedup, n = 108 and b = 104

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

27 / 37

Previous work Algorithm Experiments Conclusions References

Parallel partition speedup for costly <, n = 108 and
b = 104

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

28 / 37

Previous work Algorithm Experiments Conclusions References

Parallel partition with varying block size,n = 108 and
num threads = 8

 0

 1

 2

 3

 4

 5

 6

 7

 100 1000 10000 100000 1e+06

sp
ee

du
p

block

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

29 / 37

Previous work Algorithm Experiments Conclusions References

Number of extra comparisons, n = 108 and b = 104

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

ex
tr

a
co

m
pa

ris
on

 o
pe

ra
tio

ns
 (

/b
lo

ck
 s

iz
e)

thr

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

30 / 37

Previous work Algorithm Experiments Conclusions References

Number of extra swaps, n = 108 and b = 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 2 3 4 5 6 7 8

ex
tr

a
sw

ap
 o

pe
ra

tio
ns

 (
/b

lo
ck

 s
iz

e)

thr

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

31 / 37

Previous work Algorithm Experiments Conclusions References

Parallel quickselect speedup, n = 108 and b = 104

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

sp
ee

du
p

thr

Strided_tree
Strided

BlockedStrided_tree
BlockedStrided

F&A_MCSTL_tree
F&A_MCSTL

F&A_tree
F&A

32 / 37

Previous work Algorithm Experiments Conclusions References

Conclusions (1)

We have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

33 / 37

Previous work Algorithm Experiments Conclusions References

Conclusions (1)

We have presented, implemented and evaluated several parallel
partitioning algorithms suitable for multi-core architectures.

Algorithmic contributions:

Novel cleanup algorithm NOT disregarding any comparisons
made in the parallel phase.

Applied to Strided, Blocked and F&A partitioning
algorithms.

Strided and Blocked : worst-case parallel time from Θ(n)
to Θ(n/p + log p).

Better cost bound for F&A changing recursion parameters.

33 / 37

Previous work Algorithm Experiments Conclusions References

Conclusions (2)

Implementation contributions: carefully designed implementations
following STL partition specifications.

Detailed experimental comparison. Conclusions:

Algorithm of choice: F&A (ours was best).

Benefits in practice of the cleanup algorithm very limited.

I/O limits performance as the number of threads increases.

34 / 37

Previous work Algorithm Experiments Conclusions References

Thank you for your attention

More information:
http://www.lsi.upc.edu/~lfrias.

35 / 37

http://www.lsi.upc.edu/~lfrias

Previous work Algorithm Experiments Conclusions References

References

R. S. Francis and L. J. H. Pannan.
A parallel partition for enhanced parallel quicksort.
Parallel Computing, 18(5):543–550, 1992.

P. Heidelberger, A. Norton, and John T. Robinson.
Parallel quicksort using fetch-and-add.
IEEE Trans. Comput., 39(1):133–138, 1990.

J. Singler, P. Sanders, and F. Putze.
The Multi-Core Standard Template Library.
In Euro-Par 2007: Parallel Processing, volume 4641 of Lecture
Notes in Computer Science, pages 682–694, Rennes, France,
2007. Springer Verlag.

36 / 37

Previous work Algorithm Experiments Conclusions References

P. Tsigas and Y. Zhang.
A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000.
In 11th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing (PDP 2003), pages 372–381, 2003.

37 / 37

	Previous work
	Algorithm
	Experiments
	Conclusions
	References

