
Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Single-Pass List Partitioning

Leonor Frias 1 Johannes Singler 2 Peter Sanders 2

1Dep. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

2Institut für Theoretische Informatik, Universität Karlsruhe

MuCoCos’08

1 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Outline

1 Introduction

2 Problem Definition

3 The SinglePass Algorithm

4 Experiments

5 Conclusions

6 References

2 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Motivation

Effectiveness of many parallel algorithms relies on partitioning the
input into pieces.

BUT most descriptions disregard how this is actually done (or just
assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be
partitioned so easily.
Example: Sequences as input to algorithms in the
Standard Template Library (STL), part of the C++ standard library.

3 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Motivation

Effectiveness of many parallel algorithms relies on partitioning the
input into pieces.

BUT most descriptions disregard how this is actually done (or just
assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be
partitioned so easily.
Example: Sequences as input to algorithms in the
Standard Template Library (STL), part of the C++ standard library.

3 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Motivation

Effectiveness of many parallel algorithms relies on partitioning the
input into pieces.

BUT most descriptions disregard how this is actually done (or just
assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be
partitioned so easily.

Example: Sequences as input to algorithms in the
Standard Template Library (STL), part of the C++ standard library.

3 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Motivation

Effectiveness of many parallel algorithms relies on partitioning the
input into pieces.

BUT most descriptions disregard how this is actually done (or just
assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be
partitioned so easily.
Example: Sequences as input to algorithms in the
Standard Template Library (STL), part of the C++ standard library.

3 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence

4 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike?

In compile-time:

1 The sequence is actually a random access sequence
(e.g. an array)

More operations: it + k, it - k, it2 - it1, ...
Sequence length can be known in constant time

2 The sequence is not random access

Sequence length is unknown in constant time

5 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice

PointerArray

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.

6 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice
1 Determine length (1st traversal)
2 Partition (2nd traversal)

PointerArray

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.

6 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice

PointerArray
1 Store pointers in a dynamic array (linear auxiliary memory)
2 Trivial index calculation

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.

6 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice

PointerArray

Cannot this be done more efficiently?

Amdahl’s law: speedup limited by the sequential portion.

6 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice

PointerArray

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.

6 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Our contribution

An efficient sequential algorithm to divide forward sequences.

Only one traversal

Sub-linear additional space

7 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

List Partitioning problem

Given a forward sequence, divide it into p parts of almost equal
length.

Quality ratio r : 1 ≤ |longest part|
|shortest part|

r correlates to the efficiency of processing the parts in parallel
(given that processing time is proportional to parts length)

R: constant, depends only on a tuning parameter, namely the
oversampling factor σ.

σ ∈ N \ {0}.

8 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

List Partitioning problem

Given a forward sequence, divide it into p parts of almost equal
length.

Quality ratio r : 1 ≤ |longest part|
|shortest part|

r correlates to the efficiency of processing the parts in parallel
(given that processing time is proportional to parts length)

R: constant, depends only on a tuning parameter, namely the
oversampling factor σ.

σ ∈ N \ {0}.

8 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

List Partitioning problem

Given a forward sequence, divide it into p parts of almost equal
length.

Quality ratio r : 1 ≤ |longest part|
|shortest part| ≤ R

r correlates to the efficiency of processing the parts in parallel
(given that processing time is proportional to parts length)

R: constant, depends only on a tuning parameter, namely the
oversampling factor σ.

σ ∈ N \ {0}.

8 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

List Partitioning as an online problem

Only one element is given at a time, no global information.

Optimal offline algorithm: the difference in length between the
parts is at most 1.
Quality ratio: rOPT = dn/pe/bn/pc n→∞→ 1.

9 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

List Partitioning as an online problem

Only one element is given at a time, no global information.

Optimal offline algorithm: the difference in length between the
parts is at most 1.
Quality ratio: rOPT = dn/pe/bn/pc n→∞→ 1.

9 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 1, S = {}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 1, S = {}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 1, S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:

1 Merge each two consecutive subsequences into one.
S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 1, S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 1, S = {0, 2, 4, 6, 8, 10, 12}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.

3 Iteratively append to S at most σp consecutive subsequences
of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 2, S = {0, 2, 4, 6, 8, 10, 12}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 2, S = {0, 2, 4, 6, 8, 10, 12, 14, 15}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Algorithm

Let σ = 2, p = 3

L:

k = 2, S = {0, 2, 4, 6, 8, 10, 12, 14, 15}
1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.

10 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {0, 2, 4, 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {0, 2, 4, 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {0, 2, [4, 6, 8, [10), 12, 14, 15)}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {0, 2, 4, 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {[0, 2, 4), 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Getting p subsequences of similar length

L:

S = {0, 2, 4, 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.

11 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Analysis

Auxiliary space (i.e. |S |): Θ(σp)

Time: Θ(n + σp log n).

L traversal: Θ(n)

Step 3 visits Θ(σp) elements of S in Θ(log n) iterations.

Ratio:

worst-case: r bounded by σ+1
σ .

average: Er < 1
σp

∑2σp−1
`=σp

d`/pe
b`/pc ≈ 1 + 1

σp ((p − 1) ln(2))

E. g. if σ = 10 and p = 32, then r <= 1.1 and Er < 1.07

12 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Analysis

Auxiliary space (i.e. |S |): Θ(σp)

Time: Θ(n + σp log n).

L traversal: Θ(n)

Step 3 visits Θ(σp) elements of S in Θ(log n) iterations.

Ratio:

worst-case: r bounded by σ+1
σ .

average: Er < 1
σp

∑2σp−1
`=σp

d`/pe
b`/pc ≈ 1 + 1

σp ((p − 1) ln(2))

E. g. if σ = 10 and p = 32, then r <= 1.1 and Er < 1.07

12 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Analysis

Auxiliary space (i.e. |S |): Θ(σp)

Time: Θ(n + σp log n).

L traversal: Θ(n)

Step 3 visits Θ(σp) elements of S in Θ(log n) iterations.

Ratio:

worst-case: r bounded by σ+1
σ .

average: Er < 1
σp

∑2σp−1
`=σp

d`/pe
b`/pc ≈ 1 + 1

σp ((p − 1) ln(2))

E. g. if σ = 10 and p = 32, then r <= 1.1 and Er < 1.07

12 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Generalization of the SinglePass Algorithm

Performs merge steps only every mth loop iteration.

In the remaining iterations, S is doubled in size, so that more
subsequences can be added.

Thus, the total number of iterations is kept the same: Θ(log n).

Equivalent to increasing the oversampling factor to σnγ with
γ = 1− 1/m.

13 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Generalization of the SinglePass Algorithm

Performs merge steps only every mth loop iteration.

In the remaining iterations, S is doubled in size, so that more
subsequences can be added.

Thus, the total number of iterations is kept the same: Θ(log n).

Equivalent to increasing the oversampling factor to σnγ with
γ = 1− 1/m.

13 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Generalization of the SinglePass Algorithm

Performs merge steps only every mth loop iteration.

In the remaining iterations, S is doubled in size, so that more
subsequences can be added.

Thus, the total number of iterations is kept the same: Θ(log n).

Equivalent to increasing the oversampling factor to σnγ with
γ = 1− 1/m.

13 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Analysis

nγ = n
m√n

=
m
√

nm−1

Auxiliary space (i.e. |S |): O(σpnγ).

Time: Θ(n + σp(nγ + log n)).

Ratio:
|longest| = (σnγ + 1)k |shortest| = σnγk
|longest|
|shortest| = 1 + 1

σnγ = 1 +
m√n
σn

n→∞→ 1

14 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Analysis

nγ = n
m√n

=
m
√

nm−1

Auxiliary space (i.e. |S |): O(σpnγ).

Time: Θ(n + σp(nγ + log n)).

Ratio:
|longest| = (σnγ + 1)k |shortest| = σnγk
|longest|
|shortest| = 1 + 1

σnγ = 1 +
m√n
σn

n→∞→ 1

14 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Choosing m

The choice of m trades off time and space versus solution quality
(better r as m larger).

Some interesting cases:

m = 1: merge is performed each iteration →
simple SinglePass Algorithm

m = 2: merge is performed once each two iterations

nγ =
√

n
Auxiliary space: O(σp

√
n)

Time: Θ(n + σp(
√

n + log n)).
Ratio: 1 + 1√

n

m = 2 appears to be a good compromise.

15 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Choosing m

The choice of m trades off time and space versus solution quality
(better r as m larger).

Some interesting cases:

m = 1: merge is performed each iteration →
simple SinglePass Algorithm

m = 2: merge is performed once each two iterations

nγ =
√

n
Auxiliary space: O(σp

√
n)

Time: Θ(n + σp(
√

n + log n)).
Ratio: 1 + 1√

n

m = 2 appears to be a good compromise.

15 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Choosing m

The choice of m trades off time and space versus solution quality
(better r as m larger).

Some interesting cases:

m = 1: merge is performed each iteration →
simple SinglePass Algorithm

m = 2: merge is performed once each two iterations

nγ =
√

n
Auxiliary space: O(σp

√
n)

Time: Θ(n + σp(
√

n + log n)).
Ratio: 1 + 1√

n

m = 2 appears to be a good compromise.

15 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Implementation

C++ implementation

Algorithms

generalized SinglePass

included in the MCSTL [SSP]
MCSTL = Multicore STL, parallel implementation of the STL

TraverseTwice

PointerArray

16 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Testing

Performance and quality results for p = 4.
Quality evaluated according the overhead h = r − 1.

Setup

AMD Opteron 270 (2.0 GHz, 1MB L2 cache).

GCC 4.2.0 + libstdc++, optimization (-O3).

Parameters for SinglePass

(o = 1, m = 1), Θ(p) space

(o = 10, m = 1), Θ(10p) space

(o = 1, m = 2), Θ(
√

np)

17 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Time results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

100 1000 10000 100000 106 107

R
un

ni
ng

 ti
m

e
[n

s]
 /

n

Number of elements (n)

PointerArray
TraverseTwice

SinglePass o=1,m=1
SinglePass o=10,m=1

SinglePass o=1,m=2

18 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Quality results

10-4

10-3

0.01

0.1

1

10

100

100 1000 10000 100000 106 107

O
ve

rh
ea

d
r-1

 (%
)

Number of elements (n)

Trivial
SinglePass o=1,m=1

SinglePass o=10,m=1
SinglePass o=1,m=2

19 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Conclusions

We have solved the list partitioning problem using only one
traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in
practice.

The larger m, the better the quality, trading off memory.
In the worst-case:

m = 1: h = 1/σ

m > 1: h decreases exponentially with n.

For large input instances and in most practical situations, no
difference with optimally partitioned sequences.

20 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Conclusions

We have solved the list partitioning problem using only one
traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in
practice.

The larger m, the better the quality, trading off memory.
In the worst-case:

m = 1: h = 1/σ

m > 1: h decreases exponentially with n.

For large input instances and in most practical situations, no
difference with optimally partitioned sequences.

20 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Conclusions

We have solved the list partitioning problem using only one
traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in
practice.

The larger m, the better the quality, trading off memory.
In the worst-case:

m = 1: h = 1/σ

m > 1: h decreases exponentially with n.

For large input instances and in most practical situations, no
difference with optimally partitioned sequences.

20 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

Further reading

[SK08] describes some of the problems and challenges in
parallelizing algorithms in the context of the C++ standard library.

21 / 22

Introduction Problem Definition The SinglePass Algorithm Experiments Conclusions References

References

Johannes Singler and Benjamin Kosnik.
The libstdc++ parallel mode: Software engineering
considerations.
In International Workshop on Multicore Software Engineering
(IWMSE), 2008.

Johannes Singler, Peter Sanders, and Felix Putze.
The Multi-Core Standard Template Library.
In Euro-Par 2007: Parallel Processing, volume 4641 of LNCS,
pages 682–694. Springer Verlag.

22 / 22

	Introduction
	Problem Definition
	The SinglePass Algorithm
	Experiments
	Conclusions
	References

