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Motivation

Effectiveness of many parallel algorithms relies on partitioning the
input into pieces.

BUT most descriptions disregard how this is actually done (or just
assume index calculations) ...

ALTHOUGH there are common settings where the input cannot be
partitioned so easily.
Example: Sequences as input to algorithms in the
Standard Template Library (STL), part of the C++ standard library.
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Algorithms in the STL

Input given using (forward) iterators, abstract from the underlying
data structure.

Operations on a forward iterator it:

*it: Dereference.

++it: Advance to next element.

Forward sequence
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How to partition forward sequences or alike?

In compile-time:

1 The sequence is actually a random access sequence
(e.g. an array)

More operations: it + k, it - k, it2 - it1, ...
Sequence length can be known in constant time

2 The sequence is not random access

Sequence length is unknown in constant time
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How to partition forward sequences or alike? (2)

Näıvely:

TraverseTwice

PointerArray

Cannot this be done more efficiently?
Amdahl’s law: speedup limited by the sequential portion.
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Our contribution

An efficient sequential algorithm to divide forward sequences.

Only one traversal

Sub-linear additional space
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List Partitioning problem

Given a forward sequence, divide it into p parts of almost equal
length.

Quality ratio r : 1 ≤ |longest part|
|shortest part|

r correlates to the efficiency of processing the parts in parallel
(given that processing time is proportional to parts length)

R: constant, depends only on a tuning parameter, namely the
oversampling factor σ.

σ ∈ N \ {0}.
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List Partitioning as an online problem

Only one element is given at a time, no global information.

Optimal offline algorithm: the difference in length between the
parts is at most 1.
Quality ratio: rOPT = dn/pe/bn/pc n→∞→ 1.
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Algorithm

Let σ = 2, p = 3

L:

1 Initialization.

2 Iteratively append to S at most 2σp 1-elem subsequences
from L.

3 While L has more elements do:
1 Merge each two consecutive subsequences into one.

S [0, 1, 2, 3, 4, 5, 6] := S [0, 2, 4, 6, 8, 10, 12]

2 Let k := 2k.
3 Iteratively append to S at most σp consecutive subsequences

of length k from L.

4 Merge the subsequences in S to obtain p subsequences.
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Getting p subsequences of similar length

L:

S = {0, 2, 4, 6, 8, 10, 12, 14, 15}

At the beginning of step 4:
σp ≤ s = |S | − 1 ≤ 2σp subsequences (s = 8)

s mod p rightmost subsequences: merge ds/pe subsequences

p − (s mod p) leftmost subsequences: merge bs/pc subsequences

Special care with the last subsequence in S , which may be not full.
The algorithm guarantees that two parts differ in length in at most
in k elements.
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Analysis

Auxiliary space (i.e. |S |): Θ(σp)

Time: Θ(n + σp log n).

L traversal: Θ(n)

Step 3 visits Θ(σp) elements of S in Θ(log n) iterations.

Ratio:

worst-case: r bounded by σ+1
σ .

average: Er < 1
σp

∑2σp−1
`=σp

d`/pe
b`/pc ≈ 1 + 1

σp ((p − 1) ln(2))

E. g. if σ = 10 and p = 32, then r <= 1.1 and Er < 1.07
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Generalization of the SinglePass Algorithm

Performs merge steps only every mth loop iteration.

In the remaining iterations, S is doubled in size, so that more
subsequences can be added.

Thus, the total number of iterations is kept the same: Θ(log n).

Equivalent to increasing the oversampling factor to σnγ with
γ = 1− 1/m.
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Analysis

nγ = n
m√n

=
m
√

nm−1

Auxiliary space (i.e. |S |): O(σpnγ).

Time: Θ(n + σp(nγ + log n)).

Ratio:
|longest| = (σnγ + 1)k |shortest| = σnγk
|longest|
|shortest| = 1 + 1

σnγ = 1 +
m√n
σn

n→∞→ 1
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Choosing m

The choice of m trades off time and space versus solution quality
(better r as m larger).

Some interesting cases:

m = 1: merge is performed each iteration →
simple SinglePass Algorithm

m = 2: merge is performed once each two iterations

nγ =
√

n
Auxiliary space: O(σp

√
n)

Time: Θ(n + σp(
√

n + log n)).
Ratio: 1 + 1√

n

m = 2 appears to be a good compromise.
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Implementation

C++ implementation

Algorithms

generalized SinglePass

included in the MCSTL [SSP]
MCSTL = Multicore STL, parallel implementation of the STL

TraverseTwice

PointerArray
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Testing

Performance and quality results for p = 4.
Quality evaluated according the overhead h = r − 1.

Setup

AMD Opteron 270 (2.0 GHz, 1MB L2 cache).

GCC 4.2.0 + libstdc++, optimization (-O3).

Parameters for SinglePass

(o = 1, m = 1), Θ(p) space

(o = 10, m = 1), Θ(10p) space

(o = 1, m = 2), Θ(
√

np)
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Time results
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Quality results
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Conclusions

We have solved the list partitioning problem using only one
traversal and sub-linear additional space.

Our experiments have shown that our algorithm is very efficient in
practice.

The larger m, the better the quality, trading off memory.
In the worst-case:

m = 1: h = 1/σ

m > 1: h decreases exponentially with n.

For large input instances and in most practical situations, no
difference with optimally partitioned sequences.
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Further reading

[SK08] describes some of the problems and challenges in
parallelizing algorithms in the context of the C++ standard library.
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