
Single-Pass List Partitioning

Leonor Frias ∗

Universitat Politècnica de Catalunya
Dep. de Llenguatges i Sistemes Informàtics

Jordi Girona Salgado, 1-3
08034 Barcelona, Spain

lfrias@lsi.upc.edu

Johannes Singler, Peter Sanders †

Universität Karlsruhe
Institut für Theoretische Informatik

ITI Sanders
76128 Karlsruhe, Germany
{singler,sanders}@ira.uka.de

Abstract

Parallel algorithms divide computation among several
threads. In many cases, the input must also be divided. Con-
sider an input consisting of a linear sequence of elements
whose length is unknown a priori. We can evenly divide it
naı̈vely by either traversing it twice (first determine length,
then divide) or by using linear additional memory to hold
an array of pointers to the elements. Instead, we propose
an algorithm that divides a linear sequence into p parts of
similar length traversing the sequence only once, and using
sub-linear additional space. The experiments show that our
list partitioning algorithm is effective and fast in practice.

1. Introduction

An algorithm is a well-defined computational procedure
that takes input values and produces output values. A par-
allel algorithm divides computation among several threads.
For data-parallel algorithms, the input must be also divided
into (independent) parts of similar size, so that parallel com-
putation is effective. Most parallel algorithm descriptions
disregard how the input is actually divided (or assume that
the input can be divided by index computations). If we want
to use such algorithms in practice, we have to deal with se-
quences that are non-trivial to partition.

In particular, we focus on the algorithms in the Standard
Template Library (STL), which is a part of the C++ pro-
gramming language [1]. In this setting, the input consists
of a sequence of elements, given as a pair of iterators. The
standard requires these to satisfy only the forward iterator

∗Supported by ALINEX project (TIN2005-05446) and by grants num-
ber 2005FI 00856 and 2006BE-2 00016 of the Agència de Gestió d’Ajuts
Universitaris i de Recerca with funds of the European Social Fund. This
work was partially done while visiting Universität Karlsruhe.

†Authors partially supported by DFG grant SA 933/3-1.

concept. The only feasible operations for a forward itera-
tor are dereferencing, and advancing to the next element.
Thus, a forward iterator sequence is a linear sequence of
unknown length (e. g. a sequence implemented as a singly-
linked list). Traversing it is inherently sequential. Even if
the sequence comes with an associated length variable, this
information is lost when passing iterators, as required by
most STL algorithms. Also, keeping the length up to date
is inefficient for operations like splitting one list into two,
at a known iterator. This is why std::list, for example,
does not guarantee the calculation of size() to take only
constant time.

However, the speedup of a parallelized program is lim-
ited by the sequential portion, according to Amdahl’s law.
Hence, making the sequential partition before the parallel-
ing processing as fast as possible, is of utmost importance.

Given that the length of the sequence is unknown, one
could think of first traversing the sequence to determine
its length, and then traversing it a second time to actu-
ally divide the sequence. We call this algorithm TRAVER-
SETWICE. However, traversing the sequence can be expen-
sive, so we do not want to pay for it twice. The elements
can be spread in memory cache-unfriendly, and/or calculat-
ing the next element may be costly. To avoid this, one could
also think of using a dynamic array, storing the pointers to
the elements there, effectively converting the sequence to a
randomly accessible one. We call this algorithm POINTER-
ARRAY. However, this is very costly in terms of additional
space. We subsume both algorithms as the trivial solutions.

In this paper, we present an algorithm that divides such
a linearly traversable sequence into p parts of similar length
using only a little additional space, and accessing each
element exactly once. In the next section, we first for-
mally define the problem, called list partitioning. Then, we
present our single-pass list partitioning algorithm. Finally,
we present the experiments and sum up the results.

Figure 1. Basic SINGLEPASS list partitioning algorithm scheme.

2. Problem Definition

A linearly traversable sequence of unknown length n,
given by two forward iterators, is to be divided into p parts
of almost equal length. Let the ratio r be the quotient of
the length of the longest part and the length of the short-
est part. It is a good quality measure for the partitioning,
since it correlates to the efficiency of processing the parts
in parallel, given that processing time is proportional to a
part’s length. Thus, to guarantee good efficiency, r should
be upper-bounded by a constant R at any time, only depend-
ing on a tuning parameter, namely the oversampling factor
σ ∈ N \ {0}.

W. l. o. g. we assume that the input sequence has length
at least σp, i. e. n ≥ σp. Otherwise, if p ≤ n, we can lower
σ down so that σp ≤ n. If p > n, we reduce p to n to avoid
that any part is empty (and therefore, r = ∞), which would
not be sensible for our purposes.

Actually, we can consider this an online problem because
the input is given one element at a time, without information
about the whole problem. Thus, we can define a competitive
ratio between the optimal offline algorithm and our online
algorithm. For the optimal offline algorithm, the difference
in part lengths is at most 1, which gives a ratio rOPT =
dn/pe/bn/pc n→∞→ 1.

3. The SINGLEPASS Algorithm

Let L be a forward linearly traversable input sequence
(e. g. a linked list). Our single-pass algorithm, denoted
SINGLEPASS, keeps a sequence of boundaries S[0 . . . p],
where [S[i], S[i + 1]) defines the ith subsequence of L. In-
serting a subsequence into S means storing its boundaries
in the appropriate places. A boundary is identified by its
rank in L.

The basic SINGLEPASS algorithm works as follows:

1. Let k := 1, S := {}.

2. Iteratively append to S at most 2σp 1-element consec-
utive subsequences from L.
S = {0, 1, 2, . . . , 2σp}

3. While L has more elements do:

Invariant: |S| := 2σp, S[i + 1]− S[i] = k

(a) Merge each two consecutive subsequences into
one subsequence.
S[0, 1, 2, . . . , σp] := S[0, 2, 4, . . . , 2σp]
This results in σp subsequences of length 2k.

(b) Let k := 2k.

(c) Iteratively append to S at most σp consecutive
subsequences of length k from L.

S := {0, k, . . . σpk, (σp+1)k, (σp+2)k, . . . , l},
σpk < l ≤ 2σpk
If L runs empty prematurely, the last subse-
quence is shorter than k.

4. The σp ≤ |S| ≤ 2σp subsequences are divided into
p parts of similar lengths as follows. The |S| mod p
rightmost parts are formed by merging d|S|/pe con-
secutive subsequences each, from the right end. The
remaining p−(|S|mod p) leftmost parts are formed by
merging b|S|/pc consecutive subsequences each, from
the left end.

The algorithm (visualized in Figure 1) takes special care
of the rightmost subsequence E, which might be shorter
than the others, i. e. |E| ≤ k. Let T be the part contain-
ing E, there is no part that consists of more subsequences
than T . So, if exactly one part is longer than all the others
(i. e. |S| mod p = 1), this is specifically T . In this case,
T differs from the other parts in |E| elements. As a whole,
the algorithm guarantees that in the worst-case, two parts
differ at most in one complete subsequence (i. e. in at most
k elements).

The basic SINGLEPASS algorithm needs Θ(σp) addi-
tional space to store S. The time complexity is Θ(n +
σp log n). This is proved as follows. We need to traverse
the whole sequence, taking Θ(n) time. In addition, step 3
visits Θ(σp) elements of S in Θ(log n) iterations.

The worst case ratio r is bounded by σ+1
σ . The worst

case occurs when just one complete subsequence was ap-
pended after reducing the list. W. l. o. g., to analyze the ex-
pected worst-case ratio, we consider only complete subse-
quences, therefore σp ≤ |S| < 2σp. The expected worst-
case ratio is upper-bounded by

Er <
1
σp

2σp−1∑
`=σp

d`/pe
b`/pc

=

1
σp

σ +
2σp−1∑

`=σp,p-`

d`/pe
b`/pc

 =

1
σp

(
σ + (p− 1)

σ−1∑
`=0

σ + ` + 1
σ + `

)
=

1
σp

(
σp + (p− 1)

σ−1∑
`=0

1
σ + `

)
=

1 +
1
σp

(
(p− 1)

σ−1∑
`=0

1
σ + `

)
=

1 +
1
σp

((p− 1)(Ψ(2o)−Ψ(σ))) ≈

1 +
1
σp

((p− 1)(ln(2o)− ln(σ))) =

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

100 1000 10000 100000 106 107

R
un

ni
ng

 ti
m

e
[n

s]
 /

n

Number of elements (n)

PointerArray
TraverseTwice

SinglePass o=1,m=1
SinglePass o=10,m=1

SinglePass o=1,m=2

Figure 2. Running times of the list partitioning algo-
rithms for p = 4.

1 +
1
σp

((p− 1) ln(2)) .

E. g., for σ = 10 and p = 32, the longest subsequence is
at most 10% longer than the shortest one, expectedly 7%
longer.

A generalization of this algorithm performs step 3a and
3b only every mth loop iteration. In the remaining itera-
tions of the main loop, S is doubled in size, so that space for
additional subsequences is needed. This is equivalent to in-
creasing the oversampling factor to σnγ with γ = 1− 1/m.

The generalized SINGLEPASS algorithm needs as many
iterations of Step 3 as the basic algorithm, i. e. Θ(log n)
iterations. The additional space increases, but sub-linearly,
growing with O(σpnγ). The time complexity of this algo-
rithm is Θ(n + σp(nγ + log n)).

In the worst case, the longest sequence and the shortest
sequence have length (nγ + 1)k and (nγ)k, respectively.
It holds σpnγk ≈ n, so k ≈ n1/m

σp . Subsuming this, the

lengths of the subsequences do at most differ by n1/m

σp el-
ements, i. e. the difference decreases relatively to n, as n
grows. Therefore, the bound for r also converges to 1.

Generally speaking, the choice of m trades of time and
space versus solution quality. The larger m, the more mem-
ory and time is used, but r becomes better. This is the
same effect as would be caused by a dynamically growing
σ. Choosing m = 2 appears to be a good compromise.

4. Experiments

We have implemented our SINGLEPASS algorithm in the
general form, so it subsumes the two variants. We have im-
plemented it in C++ and we have included it into the MC-
STL [2]. MCSTL stands for Multi-Core Standard Template
Library and is a parallel implementation of the standard

10-4

10-3

0.01

0.1

1

10

100

100 1000 10000 100000 106 107

O
ve

rh
ea

d
r-

1
(%

)

Number of elements (n)

Trivial
SinglePass o=1,m=1

SinglePass o=10,m=1
SinglePass o=1,m=2

Figure 3. Quality of the list partitioning algorithms
for p = 4. We show the worst-case overhead ratio
h = r − 1, as well as its expectancy. The results are
in %. Note that the missing points are actually 0.

C++ library. Besides, we have implemented the two naı̈ve
algorithms, namely TRAVERSETWICE and POINTERAR-
RAY algorithms. Dynamic arrays have been implemented
using the STL vector class.

We have compared all the algorithms both measuring the
running time as well as the quality of the results. Concern-
ing quality, we have computed both the worst-case ratio
r and its expectancy. For a better plot reading, we have
rescaled these results using the overhead ratio h. h is de-
fined from the ratio r as h = r − 1. It must be noted that
the actual quality of the results is deterministic with respect
to a problem size. That is, the quality of our solution does
not depend on the specific input data but only on its size.

Setup. We have tested our program on an AMD Opteron
270 (2.0 GHz, 1 MB L2 cache). We have used GCC 4.2.0
as well as its libstdc++ implementation, compiling with op-
timization (-O3).

Parameters for Testing. We have repeated our experi-
ments at least 10 times. The focus is on results for p = 4.
Recall that as p grows, r becomes smaller.

For SINGLEPASS, there are the following parameter
combinations: 1) (o = 1, m = 1), 2) (o = 10, m = 1)
and 3) (o = 1, m = 2). Therefore, it uses Θ(p), Θ(10p),
and Θ(

√
np) additional space, respectively.

Results. Figure 2 summarizes the performance results,
and Figure 3 the quality results. We see that the perfor-
mance of the SINGLEPASS algorithm is very good. In par-
ticular, it takes only half the time compared to the TRAVER-
SETWICE algorithm, and even less compared to the POINT-

ERARRAY algorithm. That is, we can divide a sequence into
parts using virtually the same time as for only traversing it
once. Further, the varying running times for POINTERAR-
RAY must be due to the amortization of the vector doubling
cost (i. e. depending on how much of the allocated memory
has been actually used by the vector).

The quality of the solution for our algorithm improves
with the amount of additional space allowed for the aux-
iliary sequence S (i. e. increased o or m). The simplest
variant (o = 1, m = 1) has a worst-case ratio of 2 and an
expected worst-case ratio of 1.5. In addition, the overhead
r − 1 is divided by o (in our case, o = 10). When set-
ting m to 2, our algorithm behaves very well, converging
to zero overhead. The expected worst-case overhead ratio
decreases exponentially with the input size n. Note that the
optimal (expected) worst-case ratio achieved by the naı̈ve
algorithms also decreases exponentially, even faster.

5. Conclusions

We have presented a simple though non-trivial algorithm
to solve the list partitioning problem using only one traver-
sal and sub-linear additional space. Our algorithm divides a
linearly traversable sequence of unknown length n in time
Θ(n+σp(n1−1/m+log n)) using O(σpn1−1/m) additional
space. σ and m are tuning parameters of the algorithm.

Our experiments have shown that our algorithm is very
efficient in practice. It takes almost the same time as if the
list was just traversed, without any processing. Besides,
very high quality solutions can be obtained. The larger m,
the better the quality, trading off memory. If m = 1, the
worst-case overhead ratio 1 is divided by the oversampling
factor σ. If m > 1, the worst-case overhead ratio decreases
exponentially with n.

Therefore, for large input instances and in most practi-
cal situations, processing perfectly equal parts and almost
equal parts should take about the same time, because the
time to process each of the parts fluctuates in the same or-
der of magnitude. In addition to this, our approach com-
putes the partitioning twice as fast as the naı̈ve approach.

References

[1] The C++ Standard (ISO 14882:2003). John Wiley & Sons,
Ltd, 2003.

[2] J. Singler, P. Sanders, and F. Putze. The Multi-Core Standard
Template Library. In Euro-Par 2007: Parallel Processing,
volume 4641 of LNCS, pages 682–694. Springer Verlag.

